用补形法解立体几何题的常用策略
巧用补形法研究四面体问题
巧用补形法研究四面体问题作者:***来源:《数学教学通讯·高中版》2020年第11期[摘要] 立体几何问题中,有一类问题可以通过补形法,得到一个常见的几何体,使复杂的线面关系变得清晰明了. 文章从一道例题出发分析解决这类问题的方法,并在此基础上总结规律,归纳常见的一些四面体的补形方法.[关键词] 立体几何;四面体;补形教学中,遇到这样一个问题:已知在半径为2的球面上有A,B,C,D 四点,若AB=CD=2,则四面体ABCD的体积最大值为多少?这是某年数学全国卷的第12题,主要考查几何体的体积的计算、球的性质、异面直线间的距离,通过球这个载体考查学生的空间想象能力和推理计算能力.解答是这样的:过CD作平面PCD,使AB垂直于平面PCD,交AB于P. 设点P到CD的距离为h,则有V■=■×■×2×h×2=■h,当直径通过AB与CD中点时,h■=2■=2■,故V■=■.本小题这个解答当中,学生比较疑惑的有两点:(1)为什么可以过CD作平面PCD,使AB垂直于平面PCD,能这样作的前提是AB和CD要垂直,那为什么认定体积最大时AB和CD要垂直?(2)为什么直径通过AB与CD中点时,距离h最大?要解释清楚这两个疑点,首先需要补充说明一个公式.四面体体积公式:如果一个四面体的两条相对棱的长分别是a,b,它们的距离为d,所成的角为θ,那么它的体积为V■=■abdsinθ(证明见后).根据这个公式,我们首先得到结论:AB和CD必须垂直,即sinθ=90°时才能得到最大的体积.其次,由于AB=CD=R(球的半径),所以连结球心O和四个顶点,则容易知道△OAB 和△OCD都是正三角形.设AB的中点为E,CD的中点为F,则OE⊥AB,OF⊥CD.设AB与CD间的距离为d,有d≤EF≤OE+OF. (异面直线间公垂线段最短)因此,OEF共线时,四面体的体积可以达到最大值,因为OE=OF=■,故V■=■.?摇?摇这样解决一个选择题比较花费时间,而且在高中数学教学中,不涉及四面体的体积公式,异面直线的距离即公垂线段的长度在教学中也仅仅要求了解.下面我们用补形的思路来解决这个问题.因为题目当中两条线段长度一样,所以考虑把这个四面体补形成一个长方体:如图1:则四面体的外接球即是长方体的外接球,四面体的体积是长方体的体积减去四个全等的小三棱锥的体积.设长方体的边长为a,b,c,体对角线即为外接球的直径,得到:a2+b2+c2=42,b2+c2=22,所以a=2■,则V■=V■-4V■=abc-4×■×■abc=■abc=■.又b2+c2=22 ,所以V■=■≤■(b2+c2)=■,当且仅当b=c=■时,等号成立.从等号成立的条件可以比较容易地看出是在AB和CD垂直时,四面体的体积取到了最大值.我们会发现,使用补形,一下子把陌生的几何体变得熟悉了,原本错综复杂的线面关系也变得清晰起来. 利用这一方法解决某些几何问题,思路清晰明朗,较其他方法简洁明了.比如刚才提到的四面体的体积公式也可以用补形法得到.一个四面体的两条相对棱的长分别是a,b,它们的距离为d,所成的角为θ,将四面体补形成平行六面体(因为相对棱的长度不确定,相等的时候才能补成长方体).如图2:那么该平行六面体的底面积为S=■absinθ,平行六面体的体积为V■=■abdsinθ. 同样,该平行六面体由原四面体和四个全等的三棱锥构成. 三棱锥与平行六面体的高相等,底面积为平行六面体的一半,V■=■×■×■absinθ=■absinθ.所以V■=V■-4×V■=■absinθ.一起来看一下常见的几种四面体补形方式:一、把四面体的四个面各补上一个三棱锥,最后形成一个平行六面体. 其中正四面体是最特殊的形式,可以补成正方体. 而对棱相等的四面体则可以补形成一个长方体.例1:正四面体棱长为a,求外接球的半径R.正四面体补形为一个正方体,正四面体的外接球即为正方体的外接球.如图3:正方体的面对角线是正四面体的棱长,体对角线为外接球的直径.设正方体边长为b,则a=■b,2R=■b,所以R=■a.例2:在三棱锥A-BCD中,AB=CD=3,AD=BC=4,AC=BD=5,求三棱锥A-BCD外接球的半径.因为有三组对棱相等,把四面体补成一个长方形,如图4:长方体的三个面的面对角线是三棱锥的棱长,体对角线是外接球的直径.设长方体的棱长为a,b,c,外接球的半径为R,则a2+b2=32,b2+c2=42,a2+c2=52,(2R)2=a2+b2+c2,所以R=■.二、把四面体的一个角作为平行六面体的一个角补形成平行六面体.例3:四面体ABCD,侧棱AB,AC,AD两两垂直,AB=2,AC=3,AD=4,求四面体的外接球的半径R.因为四面体的侧棱两两垂直,所以可以把这个角看作长方体的一个角,把四面体补形成一个长方体,则四面体的外接球就是长方体的外接球四面体的三条侧棱就是长方体的长、宽、高,外接球的直径就是长方体的体对角线,则(2R)2=AB2+AC2+AD2=29,所以R=■.例4:若三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2■,AB=1,AC=2,∠BAC=60°,求球O的半径R.根据已知条件可以得到△ABC是直角三角形,把四面体补成一个长方体,则四面体的外接球就是长方体的外接球,外接球的直径就是长方体的体对角线.则(2R)2=SA2+AC2=16,所以R=2.例5:已知四面体PABC的侧面PAC与平面ABC垂直,∠ABC=90°,BC=2■,AB=2,且PA⊥PC,PA=PC,求异面直线PC与AB所成角的余弦值.解答:把四面体补成如图所示平行六面体,异面直线PC与AB所成角即為PC与CD所成角的补角的余弦值.取AC中点M,PA=PC,则PM⊥AC,又因为平面PAC与平面ABC垂直,所以PM⊥平面ABC.△ABC中,∠ABC=90°,AB=2,BC=2■,所以∠ACB=30°,AC=4.△PAC中,PA⊥PC,PA=PC,AC=4,所以PM=2,PC=2■.底面四边形ABDC中,DM2=DC2+CM2-2DC·CM·cos120°,得到DM=2■.Rt△PMD中,PD=4.△PCD中,cos∠PCD=■= -■.所以异面直线PC与AB所成角的余弦值为■.此题也可以用空间向量法解答,用补形能更好地体现线面关系.三、把四面体补形成三棱柱例6:已知某几何体底面ABC是棱长为1的等边三角形,PA⊥平面ABC,PA=3,求该几何体的外接球的半径.解答:将该四面体补形成一个三棱柱四面体的外接球就是三棱柱的外接球.先求三棱柱底面三角形外接圆半径r=■·■=■.又因为PA⊥平面ABC,PA=3,所以三棱柱的外接球半径为R=■=■.四面体的问题可以通过补形变成正方体、长方体乃至平行六面体的问题.尤其在正方体和长方体中,点线面的关系是我们所熟悉的. 一些几何题的证明和求解,由原几何图形分析探究会比较烦琐,通过补形填补成一个新的几何图形,能使原问题的本质得到充分的体现,解决起来比较容易. 本文着重讨论四面体的补形问题,希望窥一斑而知全豹,探究立体几何中补形法这一重要的转化策略.。
2022-2023学年高考数学二轮复习立体几何妙招 1外接球秒杀之补形法- Word版含解析
类型2:对棱相等
利用长方体相对面的对角线长度相等,把四面体放人其中
如图所示, ,三棱锥 可以放在长方体中,外接球直径 为长方体体对角线.
典型
【例1】已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()
A. B. C. D.
【解析】用公式 ,则 ,
【答案】C.
A. B.8 C. D.
【解析】由题意可采用割补法,考虑到四面体 的四个面为全等的三角形,所以可在其每个面补上一个以 为三边的三角形作为底面,且以分别 长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为 的长方体,并且 ,则有 ( 为球的半径),得 ,所以球的表面积为 ,
【答案】 .
5.在三棱锥 中,底面 是等边三角形,顶点 在底面 的投影是底面的中心,侧面 侧面 ,则此三棱锥的体积与其外接球的体积之比为( )
【答案】D.
【例6】在四面体 中, 是边长为2的等边三角形, 是以 为斜边的等腰直角三的等腰直角三角形,平面 平面 ,则四面体 的外接球的表面积为( )
A. B. C. D.
【解析】在四面体 中, 是边长为2的等边三角形, 是以 为斜边的等腰直角三角形, ,平面 平面 ,如图,可知 平面 ,可得 ,所以 是等腰直角三角形,所以三棱锥 是正方体的一个角,如图:外接球的直径就是长方体的体对角线的长度,所以 ,四面体 的外接球的表面积为 .
【答案】 .
【例4】在三棱锥 中, ,则三棱锥 外接球的表面积为
【解析】将三棱锥补形为长方体,三个长度为三对面的对角线长,设长方体的长、宽、高分别为 ,则 .
【答案】 .
【例5】已知三棱锥 的四个顶点在球 的球面上, 是边长为2的正三角形, 分别是 的中点, ,则球 的体积为( )
巧借“补形”思维,妙解立体几何问题
ʏ孙海鹰利用 补形 思维这一桥梁,可以使数学的思维方法更加活跃㊁简捷,应用起来更加灵活㊁多样,能有效培养同学们思维的灵活性㊁独创性㊂利用 补形 思维可以把空间立体几何中的一些不规则形体㊁不熟悉形体㊁残缺形体补成相应的规则形体㊁熟悉形体㊁完整形体等,对解决问题起到化繁为简㊁一目了然的作用,使得数学思维更加灵活,数学知识结构更加完整㊁充实,数学思想方法更加完美㊂一㊁还原补形法例1为了给数学家帕西奥利的‘神圣的比例“画插图,列奥纳多㊃达㊃芬奇绘制了一些多面体,图1所示的多面体就是其中之一㊂它是由一个正方体沿着各棱的中点截去八个三棱锥后剩下的部分,这个多面体的各棱长均为2,则该多面体外接球的体积为()㊂图1A.16πB.8πC.16π3D.32π3分析:对于此类空间立体几何中的不规则形体 多面体,直接处理起来有较大的难度,可借助空间几何体的还原补形法,把该多面体进行还原补形为正方体,结合补形前后对应图形中相关元素的位置关系与变化情况,进行合理分析与运算㊂解:结合图1,把该多面体进行还原补形为正方体,如图2所示㊂图2由所给多面体的棱长为2,可得正方体的棱长为22,那么正方体的中心即为多面体的外接球的球心,所以球心到多面体顶点的距离为(2)2+(2)2=2,即多面体外接球的半径R=2㊂故该多面体外接球的体积V=43πR3=32π3㊂应选D㊂还原是回归问题本质的一种逻辑推理方式㊂在解决一些空间几何体问题中,合理回归,完整地进行还原与补形是解题的关键㊂在处理空间几何体的还原补形时,要注意回归的简单几何体与 补 上去的小几何体之间要素的联系与图形之间的变化,正确构建相互之间的关系,不要出现添加或遗漏㊂二㊁联系补形法例2已知正三棱锥P-A B C,点P,A, B,C都在半径为3的球面上,若P A,P B, P C两两相互垂直,则球心到截面A B C的距离为㊂分析:此类不同空间几何体间(正三棱锥与球)的联系问题,需要进行合理补形,将正三棱锥与球这两种不同的空间几何体联系在一起,使得问题的处理直观易懂,从而便于分析与计算㊂解:由于正三棱锥的侧棱P A,P B,P C5知识结构与拓展高一数学2023年4月Copyright©博看网. All Rights Reserved.两两互相垂直,故以P A ,P B ,P C 为棱补成正方体,如图3所示㊂图3球心O 为正方体的体对角线P D 的中点,且P O =3,则正方体的棱长为2㊂设点P 到平面A B C 的距离为h ㊂根据正三棱锥的体积,借助等体积法得13ˑ34ˑ(22)2㊃h =13ˑ12ˑ2ˑ2ˑ2,解得h =233,所以所求球心到截面AB C 的距离为3-233=33㊂寻找联系是构建不同数学元素之间的桥梁㊂在空间立体几何问题中,抓住不同空间几何体之间的联系,合理补形(如三条侧棱两两互相垂直,可补形为正方体或长方体),使得问题更加直观易求㊂三㊁对称补形法 图4例3 如图4所示,在斜截圆柱中,已知圆柱的底面直径为40c m ,母线最短与最长的分别为50c m ,80c m ,则该斜截圆柱的体积V =㊂分析:此类空间几何体中的残缺形体,属于不太规则的空间几何体,直接求解无从下手,可借助空间几何体的几何特征进行合理的对称补形,将题设条件中的斜截圆柱按斜截面吻合对接,补全为一个完整的圆柱,再利用圆柱的体积公式求解㊂解:将题设条件中的斜截圆柱按斜截面吻合对接,补全为一个完整的圆柱(即斜截圆柱进行翻转对接)㊂由题意知所求体积V =12ˑ(πˑ202)ˑ(50+80)=26000π(c m 3)㊂对称是数学中的一种重要关系,也是充分展示数学美的一种表现形式㊂在解决空间几何体问题时,对于一些特殊的残缺形体,要善于发现图形中的对称关系与几何特征,借助相同图形之间的对称补形法进行化归与转化,对空间想象能力的提升很有帮助㊂编者的话: 补形 思维解决立体几何问题,是整体思想的一种具体体现,可将不规则的㊁陌生的㊁复杂的几何体补成规则的㊁熟悉的㊁简单的几何体(如常见的长方体㊁正方体㊁平行六面体㊁圆柱等),在所补成的空间几何体中研究原几何体的有关元素的位置关系㊁空间角或空间距离的计算等,从而实现问题的顺利解决㊂这类问题,能全面考查数学基础知识㊁基本技能㊁基本思想㊁基本活动经验这 四基 的落实情况,以及发现问题㊁提出问题㊁分析问题和解决问题能力的培养与提升㊂若三棱锥P -A B C 中最长的棱P A =2,且各面均为直角三角形,则此三棱锥外接球的体积是㊂图5提示:根据题意,可把该三棱锥补成长方体,如图5所示,则该三棱锥的外接球即为该长方体的外接球㊂易得外接球的半径R =12P A =1,所以该三棱锥外接球的体积V =43ˑπˑ13=43π㊂作者单位:江苏省江阴中等专业学校高新区校区(责任编辑 郭正华)6知识结构与拓展 高一数学 2023年4月Copyright ©博看网. All Rights Reserved.。
立体几何中的探索性问题求解策略(原卷版)
专题35 立体几何中的探索性问题求解策略【高考地位】立体几何中的探索性问题是高考几何的一个难点,尤常见于新高考的多选题中,其题目特点是灵活性较强,需要相对丰富的空间想象能力及计算能力,对所研究几何体进行深入的剖析与推理,其常见类型有两种:一、空间中位置关系的探索;二、空间角的探索.类型一空间中位置关系的探索方法一几何法-的所有棱长均为E,F分别是PC,AB的中点,M为棱PB上异于P,例1已知正四棱锥P ABCDB的一动点,现有以下结论:①线段EF的长度是△②EMF③存在点M使得PB⊥平面MEF;④EMF∠始终是钝角.其中不正确的结论共有()A.1个B.2个C.3个D.4个【来源】河北省沧州市2021届高三三模数学试题【变式演练1】(多选)在直角三角形ABC 中,∠B =2π,AC =2BC =4,D 为线段AC 的中点,如图,将∠ABD 沿BD 翻折,得到三棱锥P ﹣BCD (点P 为点A 翻折到的位置),在翻折过程中,下列说法正确的是( )A .∠PBD 的外接圆半径为2B .存在某一位置,使得PD ∠BDC .存在某一位置,使得PB ∠CDD .若PD ∠DC ,则此时三棱锥P ﹣BCD 的外接球的体积为323π 【来源】山东省百师联盟2021届高三二轮联考数学试题(二)方法二 向量法例2、3.已知长方体1111ABCD A B C D -中,12BB AB BC ==,点E 在线段1CC 上,()101CC λλ=≤≤平面α过线段1AA 的中点以及点1B 、E ,现有如下说法: (1)[]0,1λ∃∈,使得1BE B E ⊥;(2)若12,23λ⎡⎤∈⎢⎥⎣⎦,则平面α截长方体1111ABCD A B C D -所得截面为平行四边形;(3)若0λ=,2AB =,则平面α截长方体1111ABCD A B C D -所得截面的面积为以上说法正确的个数为( ) A .0B .1C .2D .3【来源】全国一卷2021届高中毕业班考前热身联合考试理科数学试题例3、(多选)在棱长固定的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,([0,1],[0,1])BF BC μλμ=∈∈,则( )A .当12μ=时,三棱锥11A B EF -的体积为定值 B .当12μ=时,存在λ使得1BD ⊥平面1B EF C .当12λ=时,点A ,B 到平面1B EF 的距离相等 D .当λμ=时,总有11A F C E ⊥【来源】江苏省苏州市2021-2022学年高三上学期期初调研数学试题【变式演练2】(多选)在棱长为1的正方体1111ABCD A B C D -中,点E 为线段1CD 上一动点(不包含端点),则下列说法正确的有( )A .1AB ⊥平面11A D EB .1DE A E +的最小值为1C .存在点E 使得1DE AD ⊥D .点D 到平面11A DE 【来源】全国新高考2021届高三数学方向卷试题(A )【变式演练3】如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,//AB CD ,24AB AD PA CD ====,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题类型二 空间角的探索 方法一 几何法例3.如图,矩形ABCD 中,已知2,4,AB BC E ==为BC 的中点.将ABE △沿着AE 向上翻折至MAE 得到四棱锥M AECD -.平面AEM 与平面AECD 所成锐二面角为α,直线ME 与平面AECD 所成角为β,则下列说法错误的是( )A .若F 为AD 中点,则ABE △无论翻折到哪个位置都有平面AEM ⊥平面MBFB .若Q 为MD 中点,则ABE △无论翻折到哪个位置都有//CQ 平面AEM Csin αβ=Dcos αβ=【来源】湖北省武汉市华中师范大学第一附属中学2021届高三下学期5月高考押题卷文科数学试题 【变式演练4】(多选)在棱长为1的正方体1111ABCD A B C D -中,点P 满足1DP DD DA λμ=+,[0,1]λ∈,[0,1]μ∈,则以下说法正确的是( )A .当λμ=时,//BP 平面11CB D B .当12μ=时,存在唯一点P 使得DP 与直线1CB 的夹角为3π C .当1λμ+=时,CPD .当1λμ+=时,CP 与平面11BCC B 所成的角不可能为3π 【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题方法二 向量法例4.如图1,菱形ABCD 中120ABC ∠=︒,动点E ,F 在边AD ,AB 上(不含端点),且存在实数λ使EF BD λ→→=,沿EF 将AEF 向上折起得到PEF ,使得平面PEF ⊥平面BCDEF ,如图2所示.(1)若BF PD ⊥,设三棱锥P BCD -和四棱锥P BDEF -的体积分别为1V ,2V ,求12V V ;(2)试讨论,当点E 的位置变化时,二面角E PF B --是否为定值,若是,求出该二面角的余弦值,若不是,说明理由.【来源】重庆市南开中学2021届高三下学期第六次质量检测数学试题【变式演练5】O 中,平行四边形ABCD 是圆O 的内接四边形,AD ,点P 是半球面上的动点,且四棱锥P ABCD -的体积为83.(1)求动点P 的轨迹T 围成的面积;(2)是否存在点P 使得二面角P AD B --的大小为3π?请说明理由. 【来源】山西省临汾市2021届高三下学期二模数学(理)试题【高考再现】1.(2018年全国卷Ⅲ文数高考试题)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【反馈练习】1.(多选)已知梯形ABCD ,112AB AD BC ===,//AD BC ,AD AB ⊥,P 是线段BC 上的动点;将ABD △沿着BD 所在的直线翻折成四面体A BCD ',翻折的过程中下列选项中正确的是( )A .不论何时,BD 与A C '都不可能垂直B .存在某个位置,使得A D '⊥平面A BC ' C .直线A P '与平面BCD 所成角存在最大值 D .四面体A BCD '的外接球的表面积的最小值为4π【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题2.(多选)已知某正方体的平面展开图如图所示,点E ,G 分别是棱BC ,BQ 的中点,F 是棱CR (不包含端点)上的动点,则下列说法正确的是( )A .四面体AEFP 的体积为定值B .存在点F 使得PC ⊥平面AEF C .存在点F 使得//PG 平面AEFD .当F 为棱CR 的中点时,平面AEF 截正方体所得上、下两个几何体的体积之比为17:7 【来源】2021新高考高考最后一卷数学第三模拟3.(多选)在棱长为1的正方体1111ABCD A B C D -中,已知E 为线段1B C 的中点,点F 和点P 分别满足111D F DC λ=,11D P D B μ=,其中,[0,1]λμ∈,则下列说法正确的是( ) A .当λ=12时,三棱锥P -EFD 的体积为定值 B .当µ=12时,四棱锥P -ABCD 的外接球的表面积是34πC .PE PF +D.存在唯一的实数对(,)λμ,使得EP∠平面PDF【来源】广东省2022届高三上学期新高考普通高中联合质量测评摸底数学试题4.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,2DB DE=,点P在线段EF上.给出下列命题:①直线PD⊥直线AC;②直线PD与平面ABCD所成角的正弦值的取值范围是⎤⎥⎣⎦;③存在点P,使得直线PD⊥平面ACF;④存在点P,使得直线//PD平面ACF.其中所有真命题的序号是______.【来源】四川省大数据精准联盟2021届高三第三次统一监测文科数学试题5.七面体玩具是一种常见的儿童玩具.在几何学中,七面体是指由七个面组成的多面体,常见的七面体有六角锥、五角柱、正三角锥柱、Szilassi多面体等.在拓扑学中,共有34种拓扑结构明显差异的凸七面体,它们可以看作是由一个长方体经过简单切割而得到的.在如图所示的七面体EABCFD中,EA⊥平面,//,//,,2, 4.ABCD EA FC AD BC AD AB AD AB BC FC EA⊥=====(1)在该七面体中,探究以下两个结论是否正确.若正确,给出证明;若不正确,请说明理由:①//EF平面ABCD;②AF⊥平面EBD;(2)求该七面体的体积.【来源】广东省珠海市第二中学2021届考前模拟数学试题6.如图,ABC 为正三角形,半圆O 以线段BC 为直径,D 是圆弧BC 上的动点(不包括B ,C 点)平面ABC ⊥平面BCD .(1)是否存在点D ,使得BD AC ⊥?若存在,求出点D 的位置,若不存在,请说明理由; (2)30CBD ∠︒=,求直线AC 与平面ABD 所成角的正弦值. 【来源】百强名校2021届高三5月模拟联考(A 卷)理科数学试题7.在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值; (2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【来源】天津市河东区2021届高三下学期一模数学试题8.如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,且2AB BP ==,1AD AE ==,AE AB ⊥,且//.AE BP(1)设点M 为棱PD 中点,求证//EM 平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD ?若存在,试求出线段PN 的长度;若不存在,请说明理由.【来源】湖北省新高考联考协作体2021-2022学年高三上学期新起点考试数学试题9.如图,在三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,12AB BC AC A A ====,E ,F 分别为11A C ,11B C 的中点.(∠)在四边形11ABB A 内是否存在点G ,使平面//GEF 平面1ABC ?若存在,求出该点的位置;若不存在,请说明理由;(∠)设D 是1CC 的中点,求DA 与平面1ABC 所成角θ的正弦值.【来源】“超级全能生”2021届高三3月份高考数学(理)联考试题(丙卷)10.在四棱锥S ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,平面SAD ⊥平面ABCD ,SAD 是边长为2的正三角形,E ,F 分别为AD ,SB 的中点. (∠)证明://EF 平面SCD ;(∠)在棱SA 上是否存在一点P ,使得锐二面角P BC S --若存在,求出SP SA 的值;若不存在,请说明理由.【来源】2021届高三数学临考冲刺原创卷(三)。
空间几何体中几种常见的补形法
s△^船 ·AA =丁1×24×8=96 .
【小结 】比较 上述 两种 方 法 ,补 形
图3
法显 然 比分割法要简 洁得 多 ,计算 量也很 小 ,但 要抓 住 图形
的对 称性 ,巧妙的补成熟悉的几何 体 ,并找到 原几何 体 与补
形后 的几何体 的关 系 ,实现化繁为 简的奇效.
了一种构造思 想 ,同时也反 映了对 立统一的辩证思想 .
利用补形 法解决立体几何 问题 的基本 步骤是 :
第一步 :把不熟悉 的或 复杂 的几 何体 延 伸或 补加 成 熟
悉的或简单 的几何 体 ,把不完整 的图形 补成完整 的图形 ;
第二 步 :运用常见几何体 的知识 等计算结果 ;
第三 步 :得 出结论.
以外接球直径 2R= ,所 以 R= ,所 以外接 球 的表 面积
s球=挚.
方 法 二 联 系补 形 例 2 已知 三棱 锥 P—ABC,PA=BC=5,朋 :AC= 4,PC:AB= l,求三棱 锥的体积. 【思路 】如按常规求法 ,需求三棱锥 的底 面积和 高 ,而高 很 难求 出.由已知三组相对棱相 等这一 特点 ,联想长 方体对 面不平行 的对 角线恰 好组 成对 棱相 等 的三棱 锥 ,因此 可把 三棱锥 P—ABC补成长方体 ,再将长方体 分割成三棱锥 P— ABC和 四个相 同体积 的三棱锥.
在高考 中 ,补形法既可 以在选 择填空 题 中体 现 ,也 可以
在解答题 中体 现 ,常见的补形法 有对称 补形 、联系补 形 和还
原补形 ,还原补形主要涉及 台体 中“还台为锥 ”.下 面结合 实
例进行剖析 :
方法一 对称补形
立体几何中的补形与等效问题
立体几何中的补形与等效问题一.将正四面体放在正方体中主要结论:1.正四面体的每一个面是正三角形,反之亦然.2.正四面体是三组对棱都垂直的等面四面体.3.正四面体的对棱中点的连线都互相垂直且相等,等于棱长的22倍,反之亦真.4.正四面体的外接球与正方体外接球相同.例1.已知四面体ABCD 2,M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论:①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为55⎡⎢⎣⎭;④FMN ∆21.其中正确结论的个数为()A.1B.2C.3D.4解析:由于是一个正四面体,所以可以通过正方体来解决该问题.对于①,可根据,M N 分别为正方体前后两个面的中心可得出结论:正确对于②,F 取为AB 的中点,G 取为MN 的中点,此时FG 与CD 相交:错误对于③,计算可得35cos 35MBN ∠=>,由逼近思想可作出判断:正确对于④,空间问题平面化的技巧,将三角形ABC 与ABD 放在同一平面上,可计算出2≥+MF NF ,正确例2.如图,已知四面体ABCD 为正四面体,2,AB E F =,分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.A.123D.2解析:补成正方体,如图.,EF α⊥Q ∴截面为平行四边形MNKL ,可得2NK KL +=,又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A.二.对棱相等的四面体四面体ABCD 中,==AB CD m ,==AC BD n ,==AD BC t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为,,a b c ,则222222222⎧+=⎪+=⎨⎪+=⎩b c m a c n a b t ,三式相加可得:222++=a b c 222,2++m n t 而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224+=+a b c R ,所以2228++=m n t R.例3.在四面体ABCD 中,41,34,5,,AB CD AC BD AD BC E F =====分别是,AD BC 的中点.则下述结论:①四面体ABCD 的体积为20;②异面直线,AC BD 所成角的正弦值为2425;③四面体ABCD 外接球的表面积为50π;④若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为6.其中正确的有_____.(填写所有正确结论的编号)解析:根据四面体特征,可以补图成长方体设其边长为,,a b c ,222222413425c b c a b a ⎧+=⎪+=⎨⎪+=⎩,解得3,4,5a b c ===,补成长,宽,高分别为3,4,5的长方体,在长方体中:①四面体ABCD 的体积为13454345203V ⨯⨯-⨯⨯⨯⨯==,故正确②异面直线,AC BD 所成角的正弦值等价于边长为5,3的矩形的对角线夹角正弦值,可得正弦值为1517,故错;③四面体ABCD外接球就是长方体的外接球,半径22R ==,其表面积为50π,故正确;④由于EF α⊥,故截面为平行四边形MNKL ,可得5KL KN +=,设异面直线BC 与AD 所成的角为θ,则sin sin HFB sin LKN θ∠∠==,算得2425sin θ=,224••6225MNKL KL KN S NK KL sin NKL +⎛⎫∴∠≤⨯= ⎪⎝⎭=.故正确.故答案为:①③④.三.墙角四面体墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),有以下四种类型:例4.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱锥B -ACD 的外接球的表面积为()A .5πB .203πC .10πD .34π解析:依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3,因此可将三棱锥B ACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π例5.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.四.圆锥等效于正棱锥,1.如图,P 的射影是A B C ∆的外心⇔三棱锥P A B C -的三条侧棱相等2.侧棱,底面半径,圆锥的高构成勾股定理.3.斜高,底面内切圆半径,圆锥的高构成勾股定理.例6:如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.解析:(1)由题设,知DAE △为等边三角形,设1AE =,则2DO =,1122CO BO AE ===,所以6264PO DO ==,,,44PC PB ====又ABC 为等边三角形,则2sin 60BA OA = ,所以2BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;五.异面直线计算中的补形例7.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =AB 与CD 所成的角为60 ,则四面体ABCD 的外接球的表面积为_________.解析:将四面体补形为直三棱柱如下图所示(设,O O '''为直三棱柱上下底面三角形的外接圆圆心):图(1)中60ABD '∠=︒,图(2)中120ABD '∠=︒,在图(1)(2)中可知:,,BC AB BC BD AB BD B ''⊥⊥= ,所以BC ⊥平面ABD ',图(1)(2)中取O O '''的中点O ,连接OB ,则O 为四面体ABCD 的外接球的球心,OB 为外接球的半径,图(1)中11122OO O O BC ''''===,且ABD '△为等边三角形,所以122cos30ABBO '==︒,所以R OB ===2420S R ππ==;图(2)中,11122OO O O BC ''''===,且O BD ''为等边三角形,所以BO AB '==所以R OB ==,所以外接球的表面积为2452S R ππ==;故答案为:20π或52π.。
巧用补形法,妙解立体几何题
则G ()m =e m -ma ()m -1<e 2-e 2=0,而G ()m G ()2<0,所以存在零点x 0∈()1,2使G ()x =0,即F ()x 有唯一极值点且为极小值x 0∈()1,2,因为F ()x 0=ae x 0x 0-ln x0,G ()x 0=e x 0-x 0a ()x 0-1=0,e x=x 0a ()x 0-1,所以F ()x 0=1x 0-1-ln x 0,因为F '()x 0=-1()x 0-12-1x 0<0,所以F ()x 0=1x 0-1-ln x 0在()1,2上单调递减,故F ()x 0>F ()2=1-ln 2>0,所以F ()x >0,综上可知,当a >2e 2时,总有f ()x >0.该不等式中含有多项式,于是通过移项、作差,将不等式变形,以便构造出新函数F ()x =ae xx-ln x ,再利用导数法证明函数F ()x 的极小值大于0,从而达到证明不等式的目的.对于含有指数、对数式的不等式恒成立问题,在构造出新函数后,通常需借助导数法,对函数求导,研究导函数与函数单调性之间的关系,根据函数单调性求得函数的最值.由此可见,解答不等式恒成立问题,关键在于将不等式与函数关联起来,利用函数、导函数的性质来解题.这就需将不等式进行合适的变形,如分离参数、构造出函数,以将问题转化为函数最值问题来求解.(作者单位:江苏省南京市第一中学)有些立体几何问题较为复杂,或几何图形不规则,我们采用常规方法很难求得问题的答案.此时,可巧用补形法,根据已知条件和图形,添加合适的辅助线,将不规则的、陌生的、不易计算边角的几何图形割补为规则的、熟悉的、易计算边角的图形,取得化难为易的效果.而运用补形法求解立体几何问题,关键在于如何巧妙地割补图形,主要有以下几种思路.一、将棱锥补成棱柱棱锥是常见的几何体,如三棱锥、四棱锥、五棱锥等.有些棱锥的高很难找到或求得,此时我们可以将棱锥补成棱柱,如将正三棱锥补为正方体,将对棱的长相等的三棱锥补为长方体,再根据正方体、长方体的性质,便能快速求得三棱锥的边、角的大小,从而使问题顺利获解.例1.如图1所示,三棱锥S-ABCD 的所有棱长都为2,四个顶点在同一球面上,则球的表面积为().图1A.3πB.4πC.33πD.6π解:如图2,将正三棱锥补为正方体,并使正方体的棱长为1,图2解题宝典42则正方体的对角线长为1+1+1=3,故球的半径为r =,所以球的表面积为4π×èø2=3π,因此正确选项为A .我们仅根据三棱锥的特征,很难确定其外接球的球心,为了便于计算,需采用补形法,将正三棱锥补形为正方体,那么正方体的中心即为三棱锥外接球的球心,即正方体的对角线就是球的直径,据此建立关系式,即可快速求得球的半径和表面积.二、将斜三棱柱补成四棱柱对于正三棱锥,一般很容易确定其高,但对于斜三棱柱,我们却很难确定其高.此时可采用补形法,将斜三棱柱补形为四棱柱,这样根据四棱柱的特点,可快速确定其高,求得顶点与底面之间、点与点之间的距离.例2.已知斜三棱柱的侧面A 1ACC 1与平面ABC 垂直,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C ,求点C 到侧面A 1ABB 1的距离.图3解:如图3所示,将斜三棱柱ABC -A 1B 1C 1补为四棱柱,设点C 到侧面A 1ABB 1的距离为d ,由四棱柱的上下底面平行的性质可知,d 也是平面ABB 1A 1与平面CMM 1C 1的距离,作A 1D ⊥AC 于点D ,作A 1E ⊥AB 于点E ,∵AA 1=A 1C ,AC =23,AA 1⊥A 1C ,∴A 1D =3,∵∠ABC =90°,BC =2,∴AB =22,∵侧面A 1ACC 1与平面ABC 垂直,A 1D ⊥AC 于点D ,∴A 1D ⊥AB ,A 1E ⊥AB ,∴AB ⊥面A 1ED ,∴AB ⊥ED ,即∠ABC =90°,∴DE ∥BC ,D 为AC 中点,且DE =12BC =1,∴A 1E =A 1D 2+DE 2=2,而V 四棱柱=S ABMC ∙A 1D =S A 1ABB 1∙d ,∴d =S ABMC ∙A 1D S A 1ABB 1==3.为了便于计算,将斜三棱柱补为四棱柱,从而将线面距离转化为面面距离,再利用等体积变换法使问题得解.三、将棱台补为棱锥棱台较为特殊,它的上下底面平行,且成比例,但侧棱相交于一点.为了便于计算,我们可采用补形法,将棱台补形为棱锥,这样便可构造出几组相似的三角形、多边形,借助相似图形的性质建立关系式,便可顺利求得棱台的边、高的长度.例3.如图4所示,平面EB 1C 1F 将三棱柱ABC -A 1B 1C 1分成体积为V 1,V 2两部分,其中AB ,AC 的中点分别是E ,F ,则V 1:V 2为______.图4解:延长A 1A 到A 2,B 1B 到B 2,C 1C 到C 2,使得A 1A =AA 2,B 1B =BB 2,C 1C =CC 2,并延长B 1E ,C 1F ,可知V ABC -A 2B 2C 2=V ABC -A 1B 1C 1,∵A 2A :A 2A 1=1:2,∴V A 2-AEF=18V A 2-A 1B 1C 1,∵V A2-AEF=14V A2-ABC=14×13V ABC -A 2B 2C 2=112×V ABC -A 1B 1C 1,∴V AEF -A 1B 1C 1=7V A 2-AEF =712V ABC -A 1B 1C 1,∴V 1:V 2=7:5.将棱台补成棱锥,利用棱锥A 2-AEF 的性质以及相似三角形的性质求得各条棱的长和各个三棱锥的体积,再借助棱台ABC -A 1B 1C 1与棱柱ABC -A 2B 2C 2之间的位置关系进行转换,即可顺利解题.由上述分析可以看出,对于一些较为复杂的立体图形、立体几何问题,采用补形法求解,能使问题快速获解.因此,在解答立体几何问题时,同学们要学会联想,根据几何体的结构特征合理添加辅助线,将棱锥补成棱柱,将斜三棱柱补成四棱柱,将棱台补为棱锥,以便根据棱柱、四棱柱、棱锥的性质来解题.(作者单位:江苏省如皋市第二中学)解题宝典43。
(甘志国)补形法,正四面体的最佳解法
补形法,正四面体的最佳解法甘志国(该文已发表 数学金刊(高考),2011(3):39)在求解正四面体的问题时,若把它放在正方体中,常常便于求解.下面以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版) (下简称《选修2-1》)中的三道题来介绍这一技巧.例1 (《选修2-1》第111页练习第1题)如图1,空间四边形ABCD 的每条边和BD AC ,的长都等于a ,点N M ,分别是CD AB ,的中点,求证:CD MN AB MN ⊥⊥,.证明 易得正四面体ABCD ,把它放在正方体中(如图2),则欲证结论显然成立(因为MN 垂直于图2中正方体的上下表面).图1 图2例2 (《选修2-1》第112页习题第5(1)题)如图3,空间四边形OABC 的各边以及BO AC ,的长都是1,点E D ,分别是边BC OA ,的中点,连结DE .(1)计算DE 的长;(2)求点O 到平面ABC 的距离.图3 图4解 易得正四面体OABC ,把它放在正方体中(如图4).(1)DE 的长即图4中正方体的棱长22. (2)我们在图4中求正四面体OABC 的体积V :122222221314224423=⋅⎪⎪⎭⎫ ⎝⎛⋅⋅-⎪⎪⎭⎫ ⎝⎛=-=-=--OAGB OAB G V V V V V 正方体正方体设点O 到平面ABC 的距离为h ,得︒⋅⋅⋅⋅===∆60sin 11213131122h S V ABC 36=h例3 (《选修2-1》第107-108页例3)如图5,一块均匀的正三角形面的钢板的质量为500kg ,在它的顶点处分别受力F 1, F 2, F 3,每个力与同它相邻的三角形的两边之间的角都是︒60,且|F 1|=|F 2|=|F 3|=200 kg.这块钢板在这些力的作用下将会怎样运动?这三个力最小都为多少时,才能提起这块钢板?图5 图6 图 7《选修2-1》是按图6建立空间直角坐标系来求解的,确实运算量很大,思维量也不小,而下面的解法却很简洁.解 易知图5中的三个力F 1, F 2, F 3必交于一点(设为点F ),且有正四面体FABC ,可不妨设该正四面体的棱长为)0(2>a a .我们把正四面体FABC 放在图 7中的棱长为a 的正方体中,并按图7建立空间直角坐标系,得),0,0(),,,(),0,,0(),0,0,(a C a a a B a A a F),0,(),,,0(),0,,(a a a a a a -=--=-=a 2===及图5中的F 1, F 2, F 3满足|F 1|=|F 2|=|F 3|=200,得F 1),0(2200a a a -=,, F 2),0(2200a a a --=,, F 3),0(2200a a a -=, F 1+ F 2+F 3)1,1,1(2200)2a ,22(2200--=--=a a a ,|F 1+ F 2+F 3|6200= 因为5006200<,所以这块钢板在这些力的作用下将会静止不动.设|F 1|=|F 2|=|F 3|=x ,则可得F 1+ F 2+F 3)1,1,1(2)2,22(2--=--=x a a a a x,|F 1+ F 2+F 3|6x = 当且仅当5006>x 即63250>x 时,才能提起这块钢板.(请注意:原问题“这三个力最小都为多少时,才能提起这块钢板”是无法回答的,建议把此问改为“这三个大小相等的力满足怎样的条件才能提起这块钢板”.)例4 (2013年高考课标全国卷II 卷理科第7题也即文科第9题)一个四面体的顶点在空间直角坐标系xyz O -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解 A.由图8可求解(先把这个正四面体放置在正方体中):图8本文介绍的技巧“把正四面体放在正方体中”实际上就是一种补形法,在立体几何中还有很多用补形法简洁解题的例子,比如把直角四面体(该四面体从一点出发的三条棱两两垂直)补成长方体,请读者留意.。
谈立体几何的补形法
谈立体几何的补形法
补形法是立体几何学中的重要概念,它涉及到形体中性质的变化。
一般来说,补形法可以理解为三维物体的塑造或重塑,包括位置变换、旋转、等轴变换和缩放,因而可以灵活地用于构建复杂形状和变换结构。
为了达到重塑目的,补形法首先要分析其原形体上的主要特征,并依据这些特征将原形体进行分割,找到其它形体的必要参数,并正确应用到原形体上,以得到最终想要的结果。
同时,补形法还需要预先考虑物体中每一部分形状的几何成分,比如边,面及体等。
补形法的本质是应用数学中的变换方程,将原始几何体的特征映射到新的特征空间,从而得到新几何体,这都取决于空间变换参数的精确度,其优势在于可以大大减少费时费力的传统造型工作,有效提升利用机器来制作产品的效率与质量。
另外,补形法还可以应用于多种表面和实体的仿真,它的实现原理是将一组较简单的物体转换为一个更复杂的几何体来塑造更真实的物体,当自由度越大,其建模能力就越强。
这对于复杂机械结构与工业部件有着重要的意义,有助于实现更加准确、全面的建模表述。
总之,补形法是立体几何中极其重要的概念,它可以有效提升几何物体建模与变形的效率,可实现贴近真实物品的逼真仿真,并具有重要的工业应用。
巧用“补形法”妙解几何题
。
囱6
半 圆 补 成 整 圆 , 延 长P 、 D, 再 C P 把 P 化 为 圆 周 角 , 时 运 用 转 同 圆 的 对称 性 求 出这 个 圆周 角 所 对 弧 的 度 数 , 题 迎 刃 而解 。 本 解 把半 圆补 成 整 圆 , 别 延 长 P 、 D交 圆 于E F 分 CP 、。
由J 边 Ac= 矩 Bn一 △ D— △D , . 边形 BD 2。 S 形 BD S 形 c :S AE S cF得 s 四 四 Ac=1 五 、 成 正 方 形 补
例 5 已 知 △ B C中 , A= 5 , 上BC于 D, D= DC= 4 。AD B 3, 析 , 求 问题 的答 案 , 种 方 法 称 为 “ 形 法 ” 探 这 补 。补 形 法 不 仅 能 2. 三 角 形ABC的 面积 求 t i 大 大 地 缩 短 从 已 知 到 未 知 的 探 求 过 程 ,使 解 题 方 法 简 洁 、 明 分 析 : 图5, 如 以AB为 轴 快 . 且 还 能 逐 步 培 养 学 生 丰 富 的想 象 力 , 进 学 生 创 造 性 思 而 促 补 画一 个 与 三 角 形A曰D对 称 维的发展。 的 直 角 三 角形 A E,再 以 C B 补 成 等 腰 三 角 形 为 轴 补 画一 个 与 三 角 形AC D 例 1 △A C , D是 A的 平 分 线 , B 中 A 且AD A = B。C M垂 直 对 称 的 直 角 三 角 形 AC 延 F. , , A D的 延 长 线 于 , 证 : B AC 2 M。 求 A + =A 长 E F 交 于 点 G, 由 B、 C 分 析 : 图 l 由 1 如 , =/2, AM j C, _ C AB= 5 4  ̄. 易 知 四 边 形 e 自然 地 想 到 等腰 三 角 形 的 三 线 合 一 定 理 AEGF. 正 方 形 且 边 长 等 于 为 延 长A曰与C M交 于 .于 是 将 原 图 形 补 成 G
怎样利用割补法解立体几何中的问题.
例5. 如图:在直三棱柱 ABC-A1B1C1中,∠ACB=90。, BC=5,AC=9,CC1=12
求:CB1与 AC1所成的角的大小
A
B
C
如图,补一个相同的直三棱柱, 连结C1B2,AB2,则CB1∥C1B2
∴ ∠AC1B2(或其补角)就是
A1 C1
A2 C2
AC1和 CB1所成的角。 B1 可得:AC1=15,C1B2=13,AB2=√682
注意!
复杂的几何体都是由简单几何体
组成,在求体积时,注意利用分割的 思想。另外,应注意改变对几何体的 观察角度,以得到最佳求积法。
例3. 如图:已知在正方体 ABCD-A1B1C1D1 中,棱长为 a , M、N 分别为 AA1、CC1 的中点,
求:四棱锥 A-MB1ND 的体积
A
D
A
D
B
C
B
C
(
3 3
2a)2
2 3
3a
V正四面体
1 3
S
h
A1
1 3
3 4
(
2a)2
2 3
3a
1 3
a3
B C1
0
E
D
例2.如图:在棱长为 a 的正方体ABCD--A1B1C1D1中取 点A1、C1、B、D,依次连结成一个多面体,
求:此多面体的体积。
A1 B1
A B
解二:用分割法
D1
求:四面体 ABCD 的体积。
A
D E
B
取 BC 的中点 E,
则 AE⊥BC,DE⊥BC。
V V V C
三棱锥外接球半径常见解法含答案解析
三棱锥外接球半径常见解法含答案解析在立体几何中,求三棱锥外接球半径是一个常见且重要的问题。
掌握有效的解法不仅能够帮助我们解决具体的数学题目,还能加深对空间几何关系的理解。
下面将为大家介绍几种常见的求解三棱锥外接球半径的方法,并通过具体的例子进行答案解析。
一、补形法补形法是一种常用的技巧,通过将三棱锥补成一个特殊的几何体,如长方体、正方体等,然后利用这些特殊几何体的外接球半径与原三棱锥外接球半径的关系来求解。
例如,对于墙角三棱锥(三条侧棱两两垂直的三棱锥),我们可以将其补成长方体。
设三棱锥的三条侧棱长分别为\(a\)、\(b\)、\(c\),则长方体的体对角线就是三棱锥外接球的直径\(2R\),根据长方体体对角线公式可得:\\begin{align}2R&=\sqrt{a^2 + b^2 + c^2}\\R&=\frac{\sqrt{a^2 + b^2 + c^2}}{2}\end{align}\例 1:已知三棱锥\(P ABC\)中,\(PA\perp PB\),\(PB\perp PC\),\(PC\perp PA\),且\(PA = 3\),\(PB =4\),\(PC = 5\),求其外接球半径。
解:将三棱锥\(P ABC\)补成长方体,长方体的体对角线就是外接球的直径。
\\begin{align}2R&=\sqrt{3^2 + 4^2 + 5^2}\\&=\sqrt{9 + 16 + 25}\\&=\sqrt{50}\\&=5\sqrt{2}\end{align}\所以,外接球半径\(R =\frac{5\sqrt{2}}{2}\)二、确定球心位置法通过寻找三棱锥外接球的球心位置,利用球心到各顶点的距离等于外接球半径来求解。
对于正三棱锥,球心通常在高线上。
设正三棱锥底面边长为\(a\),高为\(h\),底面外接圆半径为\(r\)(可由正弦定理求得\(r =\frac{\sqrt{3}}{3}a\)),球心到底面距离为\(d\),则根据勾股定理有:\\begin{align}R^2&=d^2 + r^2\\d&=h R\end{align}\联立可得\(R\)的表达式。
巧用正四面体的_补形正方体_解题_曹开清
补形法在立体几何中的妙用
补形法在立体几何中的妙用
张丽
【期刊名称】《天津教育》
【年(卷),期】1996(000)005
【摘要】补形法就是将一些不规则的图形补成我们熟悉的规则的图形.在立体几何题中,题目给出的图形往往是不规则的,其本质特征被掩盖,这就给解题带来一定的困难.如果我们能将图形进行适当的补形,使其转化为我们熟悉的具有某种特性的图形,如正三棱锥、长方体、正方体、直棱柱等,并利用其特有的性质,就可使问题化难为易.下面就常见的补形法举例说明.一、补成正三棱锥如果图形中含有等边三角形,则可考虑将其补成正三棱锥.例1.已知A、B、C是球面上三点,过这三点的截面与球心的距离等于球半径的一半,且AB=BC=CA=2,求球面面积.
【总页数】2页(P41-42)
【作者】张丽
【作者单位】天津耀华中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.“补形法”——立体几何解题中的转化策略 [J], 简素宁
2.补形法在立体几何中的应用 [J], 陈念红
3.巧借补形法解立体几何问题 [J], 闫伟; 刘彦强
4.例谈补形法解立体几何题 [J], 刘立强;杜红全
5.例谈补形法解立体几何题 [J], 刘立强;杜红全
因版权原因,仅展示原文概要,查看原文内容请购买。
数学立体几何解题技巧
数学立体几何解题技巧数学立体几何解题技巧我们把不同于一般解法的巧妙解题方法称为解题技巧,它来源于对数学问题中矛盾特殊性的认识。
下面是店铺精心整理的数学立体几何解题技巧,欢迎阅读与收藏。
数学立体几何解题技巧篇11平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
补形法在立体几何中的应用
三 将 不 规 则 的 几 何 体 补成 规 则 的 几 何体
如图 , ( 1 ) 四个截 面 是 正 三角 形 ( 如 AE F G、 AMN Q等 ) , 而 另 外 的 四
A
例 3 如图 , 三个 1 2×1 2 c m的正方 形 , 都被连 结 个 面 是 正 六 边 形 (如 正 六 边 形 F I P N M等) , 所以 留下 的多面体 不是 相邻两边 中点 的直线 分成 A、 曰两 片 [ 如 图( 1 ) ] , 把6 E 片粘在一个正六边形 的外 面 [ 如 图( 2 ) ] , 然后 折成 多 正 多 面 体 。
难的
一
题 如 果 采 用 割 补 法 解 此 题 就 相 当 简单 甚 至 补
, ,
,
解 题 可 考虑 采 用 补 形 法 即 补 形 的 技 巧 作 出辅
,
,
“
”
完后 由图 直 接 可 以 观 察 出结 果
二
。
几 何体 化 散 为 聚 化难 为易
, ,
“ ” “
。
它 反 映 了我 国传 统 数
,
补 长 方体
.
( 2 ) 正 四 面 体 的外 接 球 就 是 补 后 正 方 体 的 外 接
,
AP E Q/ /
,
PB QM / /
,
c QQ ∥尸
’
。
球 的 直径 为 正 方 体 的 对 角 线
,
。
所 以 正 四 面 体外接
\ l ‰ ≥ ? 扩 r 萄 一 >\
.
.
j
将它 补 成 长 方 体 QE
’
’
QE F M
用补形法解立体几何题的常用策略
用补形法解立体几何题的常用策略罗建中一、棱锥补成棱柱例1 一个四面体的所有棱长都为2,四个顶点在同一球面上,则球的表面积为 A. π3 B. π4 C. π33D. π6分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD 1111D C B A -,则四面体D BC A 11-就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积2234S ⎪⎪⎭⎫ ⎝⎛π=π=3。
评注:对棱长全相等的正四面体通常把它补成正方体。
若是相对棱长相等的四面体,则可考虑把它补成长方体。
例2 如图1,在底面是直角梯形的四棱锥ABCD S -中,∠ABC=︒90,SA ⊥面ABCD ,SA=AB=BC=1,AD=21。
(1)求四棱锥ABCD S -的体积;(2)求面SCD 与面SBA 所成的二面角的正切值。
解:(1)解答略。
(2)以SA 为棱,构造正方体AECB-SFGH ,如图2,分别取棱SF 、HG 中点M 、N ,连结DM 、MN 、SN 、ND ,设ND 与SC 相交于O ,连接MO 。
则有面MDN ∥面SAB ,且SM ⊥面MDN ,所以所求的二面角等于二面角S-DN-M 。
在正方体AECB-SFGH 中,△NSD 与△NMD 都是等腰三角形,所以SO ⊥DN ,MO ⊥DN ,所以∠SOM 是二面角S-DN-M 的平面角。
又MO 21=SB=22,SM=21,所以22MO SM SOM tan ==∠,故所求二面角的正切值是22。
评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。
二、三棱柱可补成四棱柱例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=︒90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。
解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以3D A 1=,又∠ABC=︒90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=︒90,所以DE ∥BC ,D 为AC 中点,且1BC 21DE ==,故2DE D A E A 2211=+=,而d S D A S V 11ABB A 1ABMC ⋅=⋅=平行六面体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用补形法解立体几何题的常用策略
罗建中
一、棱锥补成棱柱
例1 一个四面体的所有棱长都为
2,四个顶点在同一球面上,则球的表面积为
A. π3
B. π
4 C. π3
3 D. π
6
分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1
1
1
1
D
C
B
A
-,则四面体D
BC
A
1
1
-就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积
2
2
3
4
S⎪⎪
⎭
⎫
⎝
⎛
π
=
π
=3。
评注:对棱长全相等的正四面体通常把它补成正方体。
若是相对棱长相等的四面体,则可考虑把它补成长方体。
例2 如图1,在底面是直角梯形的四棱锥ABCD
S-中,∠ABC=︒
90,SA⊥面ABCD,SA=AB=BC=1,AD=2
1。
(1)求四棱锥ABCD
S-的体积;
(2)求面SCD与面SBA所成的二面角的正切值。
解:(1)解答略。
(2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。
则有面MDN∥面SAB,且SM⊥面MDN,
所以所求的二面角等于二面角S-DN-M。
在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN,
MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。
又MO2
1
=
SB=2
2
,SM=2
1
,所以2
2
MO
SM
SOM
tan=
=
∠
,故所求二面角的正切值是2
2。
评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。
二、三棱柱可补成四棱柱
例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=︒90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。
解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面
11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以
3
D A 1=,又∠ABC=︒90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以
AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=︒90,所以DE ∥BC ,D 为AC 中点,且
1BC 21
DE ==
,
故
2
DE D A E A 2211=+=,而
d
S D A S V 11ABB A 1ABMC ⋅=⋅=平行六面体。
所以
3
2
3
2S D A S d 11ABB A 1ABMC ==⋅=。
评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目
的。
三、棱台补成棱锥
例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2
V 的两部分,那么21V :V 等于多少?
解:延长A A 1到2A ,B B 1到2B ,C C 1到2C ,且21AA A A =,21BB B B =,21CC C C =,则得三棱柱
222C B A ABC -,且111C B A ABC V -222C B A ABC V -=,延长E B 1、F C 1,则211A F C E B =⋂即有三棱锥1112C B A A -。
因为2:1A A :A A 122=,所以11122C B A A AEF A V 81V --=,又31
41V 41V ABC A AEF A 22⨯
==-- 111222C B A ABC C B A ABC V 121
V --=。
所以
1112111C B A ABC AEF A C B A AEF V 127
V 7V ---=
=。
故()5:7712:7V :V 21=-=。
评注:本题通过把棱台补成棱锥,以棱锥AEF
A 2-为辅助几何体,利用它与棱柱ABC
2
22C B A -及棱台
1
11C B A AEF -的关系进行变换。
四、补相同几何体
例5 长方体1111D C B A ABCD -中,AB=21
,AD=1,2AA 1=,求异面直线11C A 与1BD 所成的角。
解:如图5,补一个与原长方体全等的并与原长方体有公共面1BC 的长方体F B 1,连结BF ,则∠BF D 1为异面直
线11C A 与1BD 所成的角,而
21
AB =
,AD=1,2AA 1=。
连结F D 1,在△BF D 1中,BF=25,221BD 1=,5F D 1=,由余弦定理得35105
BF D cos 1=
∠,故11C A 与1
BD 所成角为
35105
arccos。
评注:补相同几何体之目的在于平移相关直线。
五、不规则几何体补成规则几何体
例6 如图6,多面体的底面是边长为l 的正方形,上面的棱平行于底面,其长为l 2,其余棱均为l ,求这个多面体的体积。
解:如图7,作以l 2为棱长的正四面体ABCD ,连结AC 、AD 、BC 、BD 中点组成的四边形为正方形即为多面体的底面(因正四面体的对棱互相垂直),这个正方形所在平面把四面体分成两个全等的多面体,故
21V 21V ==
正四面体多面体()32
l
32l 236l 24
331=⋅⋅⋅⋅⋅。
从上述各例可看出,几何体的补形要围绕着已知条件来进行,通常策略是把棱锥补成棱柱,把台体补成锥体,把三棱锥补成四棱锥,把三棱柱补成四棱柱,把不规则几何体补成规则几何体,补同样几何体等。