高考数学一轮复习椭圆专题检测(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15-16高考数学一轮复习椭圆专题检测(含

答案)

在数学中,椭圆是平面上到两个固定点的距离之和是常数的轨迹,以下是椭圆专题检测,请考生及时练习。

一、选择题

2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆

C:x2+y2-2x-15=0的半径,则椭圆的标准方程是()

(A)+=1 (B)+=1

(C)+y2=1 (D)+=1

二、填空题

7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.

8.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为-4,则△PF1F2的面积是.

9.分别过椭圆+=1(a0)的左、右焦点F1,F2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.

三、解答题

10.(2019西安模拟)在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.

(1)求曲线C的方程.

(2)设过(0,-2)的直线l与曲线C交于A,B两点,以线段AB为直径作圆.

试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.

11.(2019渭南模拟)已知椭圆C:+=1(a0)的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为.

(1)求椭圆C的方程.

(2)过点(0,)且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ 的中点横坐标是-,求直线l的方程.

12.(能力挑战题)已知点P是圆F1:(x+)2+y2=16上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.

(1)求点M的轨迹C的方程.

(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KHx轴,H为垂足,延长HK到点Q使得|HK|=|KQ|,连接AQ并延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

答案解析

2.【解析】选A.圆C的方程可化为(x-1)2+y2=16.

知其半径r=4,长轴长2a=4,a=2.

又e==,

c=1,b2=a2-c2=4-1=3,

椭圆的标准方程为+=1.

7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a0).

∵e=,=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程

为+=1.

答案:+=1

8.【解析】由已知F1(-3,0),F2(3,0),所以直线PF2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x3,故舍去),

又点P(x,y)在椭圆上,且在x轴上方,得16()2+25y2=400,

解得y=2,

=|F1F2|y=62=6.

答案:6

9.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c间的关系,进而求得离心率e的取值范围.

【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上.

又点P在椭圆内部,所以有c20,k2,②

则x1+x2=,x1x2=,代入①,得

(1+k2)-2k+4=0.即k2=4,

k=2或k=-2,满足②式.

所以,存在直线l,其方程为y=2x-2或y=-2x-2.

11.【解析】(1)抛物线y2=8x的焦点为A(2,0),依题意可知a=2.

因为离心率e==,所以c=.

故b2=a2-c2=1,

所以椭圆C的方程为:+y2=1.

(2)直线l:y=kx+,

消去y可得(4k2+1)x2+

8kx+4=0,

因为直线l与椭圆C相交于P,Q,

所以=(8k)2-4(4k2+1)0,

解得|k|.

又x1+x2=,x1x2=,

设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),

因为线段PQ的中点横坐标是-,

所以x0===-,

解得k=1或k=,

因为|k|,所以k=1,

因此所求直线l:y=x+.

12.【解析】(1)由题意得,F1(-,0),F2(,0),

圆F1的半径为4,且|MF2|=|MP|,

从而|MF1|+|MF2|=|MF1|+|MP|=4|F1F2|=2,

点M的轨迹是以F1,F2为焦点的椭圆,其中长轴2a=4,焦距2c=2,

则短半轴b===1,

椭圆方程为:+ y2=1.

(2)设K(x0,y0),则+=1.

∵|HK|=|KQ|,Q(x0,2y0),OQ==2,

Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.

又A(-2,0),直线AQ的方程为y=(x+2).

令x=2,得D(2,).

又B(2,0),N为DB的中点,N(2,).

=(x0,2y0),=(x0-2,).

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。=x0(x0-2)+2y0=x0(x0-2)+=x0(x0-2)+

=x0(x0-2)+x0(2-x0)=0,

一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。,直线QN与以AB为直径的圆O相切.

要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练

相关文档
最新文档