高考数学一轮复习椭圆专题检测(含答案)

合集下载

最新高三理科数学一轮复习试题精选21椭圆(含解析)

最新高三理科数学一轮复习试题精选21椭圆(含解析)

高三理科数学一轮复习试题选编21:椭圆一、选择题1 .(北京市海淀区 高三上学期期末考试数学理试题 )椭圆2222:1(0)x y C a b a b+=>>地 左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同地 点P ,使得12F F P ∆为等腰三角形,则椭圆C 地 离心率地 取值范围是 () A .12(,)33B .1(,1)2C .2(,1)3D .111(,)(,1)322U【答案】D解:当点P 位于椭圆地 两个短轴端点时,12F F P ∆为等腰三角形,此时有2个。

,若点不在短轴地 端点时,要使12F F P ∆为等腰三角形,则有1122PF F F c==或2122PF F F c==。

此时222PF a c=-。

所以有1122PF F F PF +>,即2222c c a c +>-,所以3c a >,即13c a >,又当点P 不在短轴上,所以11PF BF ≠,即2c a ≠,所以12c a ≠。

所以椭圆地 离心率满足113e <<且12e ≠,即111(,)(,1)322U ,所以选 D . 二、填空题2 .(北京市西城区 高三上学期期末考试数学理科试题)已知椭圆22142x y +=地 两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 地 面积是______.解:由椭圆地 方程可知2,a c ==,且12||||24PF PF a +==,所以解得12||3,||1PF PF ==,又12||2F F c ==,所以有2221212||||PF PF F F =+,即三角形21PF F 为直角三角形,所以△12PF F 地 面积12211122SF F PF ∆==⨯=3 .(北京东城区普通校 高三12月联考理科数学)椭圆22192x y +=地 焦点为12,F F ,点P 在椭圆上,若1||4PF =,12F PF ∠地 小大为_____________.【答案】120o【解析】椭圆22192x y +=地 29,3aa ==,22222,7b c a b ==-=,所以c =.因为14PF =,所以1226PF PF a +==,所以2642PF =-=.所以22222211121212421cos 22422PF PF F F F PF PF PF +-+-===-⨯⨯,所以12120F PF∠=o三、解答题4 .(北京东城区普通校 高三12月联考理科数学)(本小题满分14分) 已知椭圆:C 22221(0)x y a b a b+=>>地地 一个端点与两个焦点构成地 三角形地面积为3. (Ⅰ)求椭圆C 地 方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点地 横坐标为12-,求斜率k 地 值;②若点7(,0)3M -,求证:MA MB⋅u u u r u u u r 为定值.【答案】(本题满分14分)解:(Ⅰ)因为22221(0)x y a b a b+=>>满足222ab c =+,3ca =,1223b c ⨯⨯=解得2255,3a b ==,则椭圆方程为221553x y +=(Ⅱ)(1)将(1)y k x =+代入221553x y +=中得2222(13)6350k x k x k +++-=4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+因为AB 中点地 横坐标为12-,所以2261312k k -=-+,解得k =(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++u u u r u u u r2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++2222222357649(1)()()313319k k k k k k k -=+++-++++5 .(北京市朝阳区 高三上学期期末考试数学理试题 )已知点A 是椭圆()22:109x y C t t+=>地 左顶点,直线:1()l x my m =+∈R 与椭圆C 相交于,E F 两点,与x 轴相交于点B .且当0m =时,△AEF 地 面积为163. (Ⅰ)求椭圆C 地 方程;(Ⅱ)设直线AE ,AF 与直线3x =分别交于M ,N 两点,试判断以MN 为直径地 圆是否经过点B ?并请说明理由.【答案】解:(Ⅰ)当0m =时,直线l 地 方程为1x =,设点E 在x 轴上方, 由221,91x y t x ⎧+=⎪⎨⎪=⎩解得(1,E F,所以EF =因为△AEF 地面积为116423⨯=,解得2t =. 所以椭圆C地 方程为22192x y +=. …………………………………………………4分 (Ⅱ)由221,921x y x my ⎧+=⎪⎨⎪=+⎩得22(29)4160m y my ++-=,显然m ∈R.…………………5分设1122(,),(,)E x y F x y , 则121222416,2929m y y y y m m --+==++,………………………………………………6分111x my =+,221xmy =+.又直线AE 地 方程为11(3)3y y x x =++,由11(3),33y y x x x ⎧=+⎪+⎨⎪=⎩解得116(3,)3y M x +, 同理得226(3,)3y N x +.所以121266(2,),(2,)33y y BM BN x x ==++u u u u r u u u r ,……………………9分又因为121266(2,)(2,)33y y BM BN x x ⋅=⋅++u u u u r u u u r12121212363644(3)(3)(4)(4)y y y y x x my my =+=+++++1212212124(4)(4)364()16my my y y m y y m y y +++=+++2222216(436)164164(29)3216(29)m m m m m -+-⨯+⨯+=-++22264576641285769m m m ---++=0= (13)分所以BM BN⊥u u u u r u u u r ,所以以MN为直径地 圆过点B. …………………………………14分6 .( 北京海淀二模数学理科试题及答案)已知椭圆:M 22221(0)x y a b a b+=>>地 四个顶点恰好是一边长为2,一内角为60o地 菱形地 四个顶点.(I)求椭圆M 地 方程;(II)直线l 与椭圆M 交于A ,B 两点,且线段AB 地 垂直平分线经过点1(0,)2-,求AOB ∆ (O 为原点)面积地 最大值. 【答案】解:(I)因为椭圆:M 22221(0)x y a b a b +=>>地 四个顶点恰好是一边长为2,一内角为60o地 菱形地 四个顶点,所以1a b ==,椭圆M 地 方程为2213x y +=(II)设1122(,),(,),A x y B x y 因为AB 地 垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 地 斜率为0时,则AB 地 垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆====2211(3)322x x +-=,所以AOB S ∆≤当且仅当1||x =时,AOBS ∆当直线AB 地 斜率不为0时,则设AB 地 方程为y kx t =+所以2213y kx t xy =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330kx kt t +++-=当224(933)0k t ∆=+->, 即2231kt +>①方程有两个不同地 解又122631kt x x k -+=+,1223231x x ktk +-=+所以122231y y tk +=+,又1212112202y y x x k ++=-+-,化简得到2314kt+=②代入①,得到04t << 又原点到直线地距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆因为04t <<,所以当2t =时,即k =时,AOBS ∆取得最大综上,AOB ∆面积地7 .( 北京房山二模数学理科试题及答案)已知椭圆C :22221(0)x y a b a b +=>>地 离心率为22,且过点A .直线2y x m =+交椭圆C 于B ,D (不与点A 重合)两点.(Ⅰ)求椭圆C 地 方程;(Ⅱ)△ABD 地 面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 【答案】(Ⅰ)Θace ==22, 22211a b +=,222c b a+=∴2=a ,2=b ,2=c∴22142x y +=(Ⅱ)设11(,)B x y ,22(,)D x y,由22=+2142y x m x y ⎧⎪⎪⎨⎪+=⎪⎩2220x m ⇒++-=∴282m 0∆=-> 22m ⇒-<<,12,x x+= ① 2122x xm =-②12BD x =-=Q设d 为点A 到直线BD:=+2y x m 地 距离,∴d =∴12ABD S BD d ∆==≤当且仅当m =(2,2)∈-时等号成立∴当m =ABD ∆地 8 .( 北京昌平二模数学理科试题及答案)本小题满分13分) 如图,已知椭圆22221(0)x y a b a b+=>>地 长轴为AB ,过点B 地直线l 与x 轴垂直,椭圆地 离心率e =F 为椭圆地 左焦点,且1AF BF=g .(I)求此椭圆地 方程;(II)设P 是此椭圆上异于,A B 地 任意一点,PH x ⊥轴,H为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 地 中点,判定直线QN 与以AB 为直径地 圆O 地 位置关系.【答案】解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -,()()1AF BF a c a c =+-=g 2221ac b ∴-== 又e =22222222134c a b a e a a a --==== ,解得24a=所求椭圆方程为2214x y +=(Ⅱ)设0(,)P x y ,则0(,2)Q x y 00(2,2)xx ≠≠- 由(2,0),A -得0022AQy kx =+所以直线AQ 方程002(2)2y y x x =++由(2,0),B -得直线l 2,x =的方程为08(2,)2y M x ∴+ 004(2,)2y N x ∴+由 0000200422224NQy y x x y k x x -+==--又点P 地 坐标满足椭圆方程得到:2200+44xy = ,所以220044x y -=-000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 地 方程:0002()2x y yx x y -=--化简整理得到:22000244x x yyx y +=+= 即024x x yy+= 所以点O 到直线NQ 地距离2d O ===圆的半径∴直线NQ 与AB 为直径地 圆O 相切9 .(北京市丰台区 高三上学期期末考试 数学理试题 )曲线12,C C 都是以原点O 为对称中心、离心率相等地 椭圆.点M 地 坐标是(0,1),线段MN 是1C 地 短轴,是2C 地 长轴.直线:(01)l y m m =<<与1C交于A ,D 两点(A 在D 地 左侧),与2C 交于B ,C 两点(B 在C 地 左侧).(Ⅰ)当m= 2, 54AC =时,求椭圆12,C C 地 方程; (Ⅱ)若OB ∥AN ,求离心率e 地 取值范围. 【答案】解:(Ⅰ)设C 1地 方程为2221x y a+=,C 2地 方程为2221x y b+=,其中1,01a b ><<...2分ΘC 1 ,C 2地 离心率相同,所以22211a b a -=-,所以1ab =,……………………….…3分∴C 2地 方程为2221a xy +=.当m=时,A(2a -,C 1(2a . (5)分 又Θ54AC =,所以,15224a a +=,解得a=2或a=12(舍), ………….…………..6分 ∴C 1 ,C 2地 方程分别为2214x y +=,2241x y +=.………………………………….7分(Ⅱ)A(-,m),B(-,m) . …………………………………………9分QOB ∥AN ,∴OBANkk =,∴1m =,∴211m a =- . …………………………………….11分2221a e a-=,∴2211a e =-,∴221e m e-=. ………………………………………12分Q01m <<,∴22101e e-<<,∴12e <<.........................................................13分10.( 北京西城高三二模数学理科)如图,椭圆22:1(01)y C x m m+=<<地 左顶点为A ,M 是椭圆C 上异于点A 地 任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 地 坐标为9(,55,求m 地 值; (Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 地 取值范围.【答案】(Ⅰ)解:依题意,M 是线段AP 地 中点,因为(1,0)A -,9(5P ,所以 点M 地 坐标为2(5由点M 在椭圆C 上,所以 41212525m+=, 解得 47m =(Ⅱ)解:设00(,)M x y ,则2201y x m +=,且011x-<<. ①因为 M 是线段AP 地 中点, 所以 00(21,2)P xy +因为 OP OM ⊥, 所以 200(21)20x xy ++=. ②由 ①,② 消去0y ,整理得 20020222x x m x +=-所以001116242(2)82m x x =+≤-++-+,当且仅当2x=-.所以 m 地 取值范围是1(0,]24-11.( 北京丰台二模数学理科试题及答案)已知椭圆C:2214x y +=地 短轴地 端点分别为A ,B ,直线AM ,BM 分别与椭圆C 交于E ,F 两点,其中点M (m ,12) 满足0m ≠,且3m ≠±. (Ⅰ)求椭圆C 地 离心率e; (Ⅱ)用m 表示点E ,F 地 坐标;(Ⅲ)若∆BME 面积是∆AMF 面积地 5倍,求m 地 值.【答案】解:(Ⅰ)依题意知2a =,3=c ,23=∴e ; (Ⅱ)Θ)1,0(),1,0(-B A ,M (m ,12),且0m ≠, ∴直线AM 地 斜率为k 1=m 21-,直线BM 斜率为k 2=m 23,∴直线AM 地 方程为y=121+-x m ,直线BM 地 方程为y=123-x m , 由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m xmx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()012922=-+mx xm ,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; (Ⅲ)Θ1||||sin 2AMFSMA MF AMF ∆=∠,1||||sin 2BMESMB ME BME ∆=∠,AMF BME ∠=∠,5AMF BMES S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ∴225,41219m mm mm m m m =--++Θ0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0mm --=,又Θm ≠∴230m-≠, 12=∴m,1m ∴=±为所求12.( 北京顺义二模数学理科试题及答案)已知椭圆()01:2222>>=+b a by a x C 地 两个焦点分别为21,F F ,且221=F F ,点P 在椭圆上,且21F PF ∆地 周长为6.(I)求椭圆C 地 方程;(II)若点P 地 坐标为()1,2,不过原点O 地 直线l 与椭圆C 相交于B A ,两点,设线段AB 地 中点为M ,点P 到直线l 地 距离为d ,且P O M ,,三点共线.求2216131312d AB+地 最大值.【答案】解:(I)由已知得22=c 且622=+c a ,解得1,2==c a ,又3222=-=c a b,所以椭圆C 地 方程为13422=+y x(II)设()()2211,,,y x B y x A .当直线l 与x 轴垂直时,由椭圆地 对称性可知,点M 在x 轴上,且与O 点不重合,显然P O M ,,三点不共线,不符合题设条件.故可设直线l 地 方程为()0≠+=m m kx y . 由⎩⎨⎧=++=1243,22y x m kx y 消去y 整理得()0124843222=-+++m kmx xk .①则()()124434642222>-+-=∆m k mk ,⎪⎪⎩⎪⎪⎨⎧+-=+-=+222122143124,438k m x x k km x x 所以点M 地 坐标为⎪⎭⎫⎝⎛++-22433,434k m kkm.因为P O M ,,三点共线,所以22432433,k kmk m k kOP OM+-=+=,因为≠m ,所以23-=k , 此时方程①为33322=-+-m mx x ,则()1232>-=∆m ,⎪⎩⎪⎨⎧-==+33,22121m x x m x x所以()()2122122y y x x AB -+-=()()[]21221241x x x x k -++=()2121213m -=,又1342232822-=+-=m m d ,所以()()352344344121613131222222+⎪⎭⎫ ⎝⎛+-=-+-=+m m m d AB ,故当()0,3234-∈-=m 时,2216131312d AB+地 最大值为352 13.( 北京东城高三二模数学理科)已知椭圆C:22221x y a b+=(0)a b >>地 离心率e =,原点到过点(,0)A a ,(0,)B b -地 直线地 距离是5.(Ⅰ)求椭圆C 地 方程; (Ⅱ)若椭圆C 上一动点P ()00,y x 关于直线x y 2=地 对称点为()111,y x P ,求2211xy +地 取值范围.(Ⅲ)如果直线1(0)y kx k =+≠交椭圆C 于不同地 两点E,F ,且E ,F 都在以B 为圆心地 圆上,求k 地 值.【答案】(共13分)解: (Ⅰ)因为c a =,222a b c -=,所以 2a b =.因为原点到直线AB :1x ya b-=地 距离d ==,解得4a =,2b =. 故所求椭圆C 地 方程为221164x y +=.(Ⅱ)因为点()0,P x y 关于直线x y 2=地 对称点为()111,y x P ,所以0101010121,2.22y y x x y y x x -⎧⨯=-⎪-⎪⎨++⎪=⨯⎪⎩ 解得 01435y xx -=,01345yx y +=.所以22221100xy x y +=+. 因为点()00,P x y 在椭圆C:221164x y +=上,所以22222011344x x y x y +=+=+.因为044x-≤≤, 所以2211416xy ≤+≤.所以2211xy +地 取值范围为[]4,16. (Ⅲ)由题意221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得22(14)8120k xkx ++-=.可知0∆>.设22(,)E x y ,33(,)F x y ,EF 地 中点是(,)MM M xy ,则2324214Mx x kxk +-==+,21114MM ykx k =+=+.所以21M BMM y kx k+==-. 所以20MM xky k ++=.即 224201414kkk kk -++=++. 又因为0k ≠,所以218k=.所以4k =±14.(北京市石景山区 高三一模数学理试题)设椭圆C:2222x y a b +=1(a>b>0)地 左、右焦点分别为F 1、F 2,上顶点为A ,在x 轴负半轴上有一点B ,满足112BF F F =u u u r u u u u r ,且AB ⊥AF 2.(I)求椭圆C 地 离心率;(II)若过A 、B 、F 2三点地 圆与直线l:x 3-=0相切,求椭圆C 地 方程;(Ⅲ)在(II)地条件下,过右焦点F作斜率为k地2直线l与椭圆C交于M、N两点,线段MN地中垂线与x轴相交于点P(m,O),求实数m地取值范围.【答案】15.(北京市顺义区 高三第一次统练数学理科试卷(解析))已知椭圆()11:222>=+a y ax C 地 上顶点为A ,左焦点为F ,直线AF 与圆0726:22=+-++y x y xM 相切.过点⎪⎭⎫⎝⎛-21,0地 直线与椭圆C 交于Q P ,两点. (I)求椭圆C 地 方程;(II)当APQ ∆地 面积达到最大时,求直线地 方程. 【答案】解:(I)将圆M 地 一般方程072622=+-++y x y x 化为标准方程()()31322=-++y x ,则圆M 地 圆心()1,3-M ,半径3=r .由()()()10,,1,02-=-a c c F A 得直线AF 地 方程为=+-c cy x .由直线AF 与圆M 相切,得3132=++--cc c ,所以2=c 或2-=c (舍去).当2=c 时,3122=+=c a,故椭圆C 地 方程为1322=+y x(II)由题意可知,直线地 斜率存在,设直线地 斜率为k ,则直线地 方程为21-=kx y . 因为点⎪⎭⎫ ⎝⎛-21,0在椭圆内, 所以对任意R ∈k ,直线都与椭圆C 交于不同地 两点. 由⎪⎪⎩⎪⎪⎨⎧=+-=13,2122y x kx y 得()04933122=--+kx xk .设点Q P ,地 坐标分别为()()2211,,,y x y x ,则()22122122113149,313,21,21k x x k k x x kx y kx y +-=+=+-=-=,所以()()212212y y x x PQ -+-=()()[]21221241x x x xk -++=()()222314113k k k +++=.又因为点()1,0A 到直线21-=kx y 地 距离1232+=k d ,所以APQ ∆地 面积为()2231441921k k d PQ S ++=⋅=设2311kt +=,则10≤<t 且31312-=t k , ()34231493344931344922+--=-=-⋅=t t t t t S .因为10≤<t ,所以当1=t 时,APQ ∆地 面积S 达到最大, 此时13112=+k,即0=k .故当APQ ∆地 面积达到最大时,直线地 方程为21-=y 16.( 北京高考数学(理))已知A 、B 、C 是椭圆W :2214x y +=上地 三个点,O 是坐标原点.(I)当点B 是W 地 右顶点,且四边形OABC 为菱形时,求此菱形地 面积;(II)当点B 不是W 地 顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【答案】解:(I)椭圆W :2214x y +=地 右顶点B 地 坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m+=,即m =. 所以菱形OABC 地 面积是11||||22||22OB AC m ⋅=⨯⨯=(II)假设四边形OABC 为菱形. 因为点B 不是W 地 顶点,且直线AC 不过原点,所以可设AC 地 方程为(0,0)y kx m k m =+≠≠. 由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k xkmx m +++-=.设A 1,1()x y ,C 2,2()xy ,则1224214x xkm k +=-+,121222214y yx x mk m k ++=⋅+=+.所以AC 地 中点为M(2414km k -+,214mk+). 因为M 为AC 和OB 地 交点,所以直线OB 地 斜率为14k -.因为1()14k k ⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 地 顶点时,四边形OABC 不可能是菱形.17.( 年高考(北京理))已知椭圆G:2214x y +=.过点(,0)m 作圆221xy +=地 切线l 交椭圆G 于A ,B 两点.(Ⅰ)求椭圆G 地 焦点坐标和离心率;(Ⅱ)将|AB|表示为m 地 函数,并求|AB|地 最大值.【答案】【命题立意】本题考查椭圆地 标准方程和性质以及直线被椭圆截得地 弦长地 求法,运用基本不等式求解函数地 最值问题.考查学生地 运算能力和综合解答问题地 能力. 【解析】(Ⅰ)由已知得2,1a b ==,c =所以椭圆G 地 焦点坐标为(,,离心率为2c e a ==(Ⅱ)由题意知,||1m ≥.当1m =时,切线l 地 方程为1x =,点A ,B 地 坐标分别为,(1,,此时||AB =当1m =-时,同理可得||AB =当||1m >时,设切线l 地 方程为()y k x m =-,由22()14y k x m xy =-⎧⎪⎨+=⎪⎩,得22222(14)8440k xk mx k m +-+-=设A 、B 两点地 坐标分别为11(,)x y ,22(,)x y ,则2221212228441414k m k m x x x x k k -+=⋅=++又由l 与圆221x y +=1=,即2221k mk =+所以||AB=由于当1m =±时,||AB =||(,1][1,)AB m ∈-∞-+∞U因为||2||||AB m m =≤+,当且仅当m =||2AB =所以||AB 地 最大值是218.( 北京朝阳二模数学理科试题)已知椭圆2222:1x y C a b+=(0)a b >>地 右焦点为F (1,0),短轴地 端点分别为12,B B ,且12FB FB a⋅=-u u u r u u u u r.(Ⅰ)求椭圆C 地 方程;(Ⅱ)过点F 且斜率为k (0)k ≠地 直线l 交椭圆于,M N 两点,弦MN 地 垂直平分线与x 轴相交于点D .设弦MN地 中点为P ,试求DPMN 地 取值范围.【答案】解:(Ⅰ)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--u u u r,2(1,)FB b =-u u u u r.由12FB FB a⋅=-u u u r u u u u r,得21ba-=-.又因为221ab -=,解得2,a b ==. 所以椭圆C 地 方程为22143x y +=(Ⅱ)依题直线l 地 方程为(1)y k x =-. 由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k xk x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+所以弦MN 地 中点为22243(,)3434k k P k k -++所以MN ===2212(1)43k k +=+直线PD 地 方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =所以224312(1)43DP k k MN k +==++=又因为211k +>,所以21011k <<+.所以104<<.所以DP MN地 取值范围是1(0,)419.(北京市海淀区北师特学校 高三第四次月考理科数学)已知椭圆C :)0(12222>>=+b a by a x ,左焦点)0,3(-F ,且离心率23=e(Ⅰ)求椭圆C 地 方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆C 交于不同地 两点NM ,(N M ,不是左、右顶点),且以MN 为直径地 圆经过椭圆C 地 右顶点A. 求证:直线l 过定点,并求出定点地 坐标.【答案】解:(Ⅰ)由题意可知:⎪⎪⎩⎪⎪⎨⎧+====222233c b a a c e c (1)分解得 1,2==b a ………2分 所以椭圆地方程为:1422=+y x ……3分(II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 1422448)k 41222=-+++m kmx x 得(…4分 0)44)(41(4)8(222>-+-=∆m k km 整理得1422>+-m k (5)分设),(),,(2221y x N x x M则22212214144,418k m x x k km x x +-=+-=+ …….6分由已知,ANAM ⊥且椭圆地 右顶点为)0,2(A ………7分)2)(2(2121=+--∴y y x x (8)分2212122121)())((m x x km x x k m kx m kx y y +++=++=即04))(2()1(221212=+++-++m x x km x x k也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k …… 10分整理得:1216522=++k mk m (1)1分 解得562km k m -=-=或均满足1422>+-m k ……12分当km 2-=时,直线地 l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去……13分当56k m -=时,直线地 l 方程为)56(-=x k y ,过定点)0,56( 故直线l过定点,且定点地 坐标为)0,56( …….14分20.(北京市东城区普通高中示范校 高三12月综合练习(一)数学理试题)椭圆T 地 中心为坐标原,,OM ON OP地 斜率之和为0,求证.【答案】解:(1)设椭圆T地由题意知:左焦点为'(2,0)F -2b =. 故椭圆T 地 方法2、待定系数法)(2)设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)M s t N s t P s t ,由:221128xy +=,28x y +=,两式相减,得到12121212()()2()()0x x x x y y y y -++-+=,,OM ON OP 地 斜率之和为0,方法2:设直线AB :111()y t k x s -=-,代入椭圆2228xy +=,得到22211111111(12)4()2()80k x t k s k x t k s ++-+--=以下同21.(北京市东城区普通校 高三3月联考数学(理)试题 )已知椭圆)0(12222>>=+b a b y a x 地 离心率为.36(I )若原点到直线0=-+b y x 地 距离为,2求椭圆地方程;(II )设过椭圆地 右焦点且倾斜角为︒45地 直线和椭圆交于A ,B 两点. (i )当3||=AB ,求b 地 值;(ii )对于椭圆上任一点M ,若μλ+=,求实数μλ,满足地 关系式.【答案】解:(I )222=∴==b b d Θ323622=∴==ac a c e Θ22222324a a c b a =-∴=-Θ 解得.4,1222==b a椭圆地 方程为.141222=+y x (4)分(II )(i )∵e .232,3,36222222b a c b a c===∴=Θ椭圆地 方程可化为:22233b y x =+ ①易知右焦点)0,2(b F ,据题意有AB :bx y 2-= ②由①,②有:0326422=+-b bx x③设),(),,(2211y x B y x A ,33424244872)11()()(||222222212212==⋅=-+=-+-=b b b b y y x x AB1=∴b ………………………8分(2)(ii )显然OA 与OB 可作为平面向量地 一组基底,由平面向量基本定理,对于这一平面内地 向量OM ,有且只有一对实数λ,μ,使得等OM μλ+=成立. 设M (x ,y ),,,),,(),(),(21212211y y y x x x y x y x y x μλμλμλ+=+=∴+=Θ又点M 在椭圆上,22212213)(3)(b y y x x =+++∴μλμλ ④由③有:43,22322121b x x b x x ==+则22121212121216)(234)2)(2(33b x x b x x b x b x x x y y xx ++-=--+=+693222=+-b b b ⑤又A ,B 在椭圆上,故有222222212133,33b y x b y x =+=+ ⑥ 将⑥,⑤代入④可得:.122=+μλ ……………………14分22.(北京市海淀区 高三5月查缺补漏数学(理))已知椭圆22:143x y C +=地 左右两个顶点分别为A B ,,点M 是直线:4l x =上任意一点,直线MA ,MB 分别与椭圆交于不同于A B ,两点地 点P ,点Q . (Ⅰ)求椭圆地 离心率和右焦点F 地 坐标; (Ⅱ)(i)证明,,P F Q 三点共线; (Ⅱ)求PQB ∆面积地 最大值. 【答案】解:(Ⅰ)24a=,23b=,所以,2221ca b =-=.所以,椭圆地 离心率12c e a ==. 右焦点()1,0F .(Ⅱ)(i)()2,0A -,()2,0B .设()4,M m ,显然0m ≠.则():26m MA y x =+,():22m MB y x =-. 由()222,6143m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩解得222542,2718.27P P m x m m y m ⎧-=⎪⎪+⎨⎪=⎪+⎩由()222,2143m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩解得22226,36.3Q Q m x m m y m ⎧-=⎪⎪+⎨-⎪=⎪+⎩当29m =时,1PQ x x ==,,,P Q F 三点共线.当29m≠时,22018612739P FPP y m mkx m m -===---,22066199Q FQ Q y m mk x m m --===---,所以,FPPQkk =,所以,,,P Q F 三点共线.综上,,,P Q F 三点共线.(Ⅱ)因为,,P Q F 三点共线,所以,△PQB 地 面积()()()22212912327P Q m m S FB y y m m +=⨯⨯-=++2912912m m m m ⎛⎫+ ⎪⎝⎭=⎛⎫++ ⎪⎝⎭设9u m m =+,则21212uS u =+ 因为()()22246'12u S u-=+,且96u m m =+≥,所以,'0S ≤,且仅当6u =时,'0S =,所以,21212uS u =+在[6,)+∞上单调递减. 所以,212636122S ⨯≤=+,等号当且仅当6u =,即3m =±时取得. 所以,△PQB 地 面积地 最大值为32.23.(北京市海淀区 高三5月查缺补漏数学(理))已知椭圆:C 22221(0)x y a b a b+=>>地 离心率为12,且经过点3(1,)2A .(Ⅰ)求椭圆C 地 方程;(Ⅱ)设,M N 为椭圆C 上地 两个动点,线段MN 地 垂直平分线交y 轴于点0(0,)P y ,求0y 地 取值范围.【答案】解: (Ⅰ)椭圆C 地 方程为:221.43x y +=(Ⅱ)设1122(,),(,)M x y N x y ,则2211143x y +=,2222143x y +=. 依题意有||||PM PN ==,整理得 22221212012()()2()0x x y y y y y -+---=.将2211443y x =-,2222443y x =-代入上式,消去2212,x x ,得 2212012()6()0yy y y y -+-=.依题意有 12y y-≠,所以126y y y+=-.注意到1||y ≤,2||y≤,且,M N 两点不重合,从而12y y -+<所以(y ∈.24.(北京市石景山区 高三上学期期末考试数学理试题 )已知椭圆地 中心在原点,焦点在x 轴上,(4,1)M ,直线:=+l y x m 交椭圆于不同地 两点A B 、. (Ⅰ)求椭圆地 方程; (Ⅱ)求m 地 取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、地 斜率互为相反数.【答案】(Ⅰ)设椭圆地 方程为22221x y a b +=,因为e =所以224ab =,又因为(4,1)M ,所以221611a b+=,解得225,20ba ==,故椭圆方程为221205x y +=. …………………4分(Ⅱ)将y x m =+代入221205x y +=并整理得22584200xmx m ++-=,22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分(Ⅲ)设直线,MA MB 地 斜率分别为1k 和2k ,只要证明120k k +=.。

高考数学一轮复习考点题型课下层级训练46椭圆——椭圆的概念及其性质(含解析)

高考数学一轮复习考点题型课下层级训练46椭圆——椭圆的概念及其性质(含解析)

课下层级训练(四十六) 椭圆的概念及其性质[A 级 基础强化训练]1.(2019·山东滨州模拟)若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12 B .33 C .22D .24【答案】C [依题意可知,c =b ,又a =b 2+c 2=2c , ∴椭圆的离心率e =c a =22.] 2.(2018·广东惠州调研)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】C [把椭圆方程化成x 21m+y 21n=1.若m >n >0,则1n >1m>0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m>0即有m >n >0.故为充要条件.]3.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2D .5【答案】A [由题意知|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.]4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( ) A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 【答案】A [由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.] 5.(2019·山东烟台模拟)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6D .8【答案】C [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]6.焦距是8,离心率等于0.8的椭圆的标准方程为____________________.【答案】x 225+y 29=1或y 225+x 29=1 [由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆方程为x 225+y 29=1,当焦点在y 轴上时,椭圆方程为y 225+x 29=1.]7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________________.【答案】(-5,0) [∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).]8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为____________.【答案】7 [由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.]9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.【答案】解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.【答案】解 椭圆方程可化为x 2m +y 2mm +3=1,m >0.∵m -mm +3=m m +m +3>0,∴m >mm +3,∴a 2=m ,b 2=mm +3,c =a 2-b 2= m m +m +3.由e =32,得 m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长和短轴长分别为2a =2和2b =1,焦点坐标为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0,四个顶点的坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12. [B 级 能力提升训练]11.(2019·山东德州模拟)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →的值等于( ) A .-12 B .12 C .-9D .9【答案】D [由题意易知A (0,-2),B (0,2)为椭圆x 212+y 216=1的两焦点,∴|AP →|+|BP →|=2×4=8.又|A P →|-|BP →|=2,∴|A P →|=5,|B P →|=3. ∵|A B →|=4∴△ABP 为直角三角形,∴A P →·B P →=(AB →+BP →)·BP →=|BP →|2=9.]12.(2019·山东临沂月考)过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( ) A .14 B .16 C .18D .20【答案】C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]13.(2019·山东东营检测)已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B=____________.【答案】3 [由椭圆方程x 225+y 216=1,得长轴长2a =10,短轴长2b =8,焦距2c =6,则顶点A ,B 为椭圆的两个焦点.在△ABC 中,|AB |=6,|BC |+|AC |=10,由正弦正理可得,5sin C sin A +sin B =5|AB ||BC |+|AC |=5×610=3.]14.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是______________.【答案】⎝ ⎛⎭⎪⎫12,23 [如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a ,∴k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c =a -ca=1-e .又∵13<k <12,∴13<1-e <12,解得12<e <23.]15.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.【答案】解 (1)设椭圆半焦距为C .由题意AF ,AB 的中垂线方程分别为x =a -c2,y -b 2=a b (x -a2), 于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2.所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c2=1,设M (x ,y ),则-2c ≤x ≤2c ,所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2;当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72,解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1..。

高考数学一轮复习课时过关检测五十椭圆的定义标准方程及简单几何性质含解析

高考数学一轮复习课时过关检测五十椭圆的定义标准方程及简单几何性质含解析

课时过关检测(五十) 椭圆的定义、标准方程及简单几何性质A 级——基础达标1.与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是( ) A .x 225+y 220=1 B .x 220+y 225=1 C .x 220+y 245=1 D .x 280+y 285=1 解析:B 由9x 2+4y 2=36可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b =25,a 2=25,所以所求椭圆方程为x 220+y 225=1.2.“(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆”的一个充分不必要条件是( )A .0<a <bB .1<a <bC .2<a <bD .1<b <a解析:C 若(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆,则需⎩⎪⎨⎪⎧ log a 2>0,log b 2>0,log a 2>log b 2,即⎩⎪⎨⎪⎧a >1,b >1,a <b ,所以1<a <b ,所以“(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆”的一个充分不必要条件是2<a <b ,故选C .3.如图,P 是椭圆x 29+y 24=1上的一点,F 是椭圆的左焦点且PQ ―→=-FQ ―→,|OQ ―→|=2,则|PF |=( )A .2B . 5C .3D .4解析:A 由x 29+y 24=1可得a =3.因为PQ ―→=-FQ ―→,所以点Q 是线段PF 的中点,设椭圆的右焦点为F ′,则O 是FF ′的中点,所以|PF ′|=2|OQ |=4,由椭圆的定义可知:|PF |+|PF ′|=2a =6,所以|PF |=2,故选A .4.已知椭圆C :x 225+y 29=1的左、右焦点分别为F 1,F 2,点M 在椭圆C 上,当△MF 1F 2的面积最大时,△MF 1F 2内切圆半径为( )A .3B .2C .53D .43解析:D 因为椭圆为x 225+y 29=1,所以a =5,b =3,c =a 2-b 2=4.当△MF 1F 2的面积最大时,点M 为椭圆C 短轴的顶点,不妨设点M 为椭圆C 的上顶点,点O 为坐标原点,△MF 1F 2内切圆半径为r ,则|MF 1|=|MF 2|=a =5,|F 1F 2|=2c =8,|OM |=b =3,S △MF 1F 2=12(|MF 1|+|MF 2|+|F 1F 2|)·r =12|F 1F 2|·|OM |,所以r =43,故选D .5.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是( )A .⎝ ⎛⎦⎥⎤0,55 B .⎣⎢⎡⎭⎪⎫55,1 C .⎝⎛⎦⎥⎤0,22 D .⎣⎢⎡⎭⎪⎫22,1 解析:A 由题设知,直线l :x -c +yb=1,即bx -cy +bc =0,以AB 为直径的圆的圆心为(c,0),根据题意,将x =c 代入椭圆C 的方程,得y =±b 2a ,即圆的半径r =b 2a .又圆与直线l 有公共点,所以2bcb 2+c 2≤b 2a,化简得2c ≤b ,平方整理得a 2≥5c 2,所以e =c a ≤55.又0<e <1,所以0<e ≤55.故选A . 6.(多选)对于曲线C :x 24-k +y 2k -1=1,下面四个说法正确的是( )A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件解析:CD 对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,所以A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,所以B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧4-k >0,k -1>0,k -1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,所以C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,则⎩⎪⎨⎪⎧k -1>0,4-k >0,4-k >k -1,解得1<k <2.5,所以D 正确.7.(多选)如图,两个椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,下列四个说法正确的为( )A .P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值B .曲线C 关于直线y =x ,y =-x 均对称 C .曲线C 所围区域面积必小于36D .曲线C 总长度不大于6π解析:BC 易知F 1(-4,0),F 2(4,0)分别为椭圆x 225+y 29=1的两个焦点,E 1(0,-4),E 2(0,4)分别为椭圆y 225+x 29=1的两个焦点.若点P 仅在椭圆x 225+y 29=1上,则P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故A 错误;两个椭圆关于直线y =x ,y =-x 均对称,则曲线C 关于直线y =x ,y =-x 均对称,故B 正确;曲线C 所围区域在边长为6的正方形内部,所以面积必小于36,故C 正确;曲线C 所围区域在半径为3的圆外部,所以曲线的总长度大于圆的周长6π,故D 错误.故选B 、C .8.若椭圆x 2m +y 22=1的离心率为22,则该椭圆的长轴长为________.解析:由椭圆x 2m +y 22=1的离心率为22,当m >2时,椭圆焦点在x 轴上,c a =22=m -2m,解得m =4,所以椭圆的长轴长为4,当0<m <2时,椭圆焦点在y 轴上,ca=22=2-m 2,得m =1,所以椭圆的长轴长为22.答案:4或2 29.设F 1,F 2分别为椭圆C :x 2a 2+y 2a 2-1=1(a >1)的左、右焦点,P (1,1)为C 内一点,Q为C 上任意一点.现有四个结论:①C 的焦距为2;②C 的长轴长可能为10; ③|QF 2|的最大值为a +1;④若|PQ |+|QF 1|的最小值为3,则a =2. 其中所有正确结论的编号是________.解析:对于①:因为c 2=a 2-(a 2-1)=1,所以椭圆C 的焦距为2c =2,故①正确;对于②:若椭圆C 的长轴长为10,则a 2=52,所以椭圆C 的方程为x 252+y 232=1,则152+132>1,从而点P 在C 的外部,这与P 在C 内矛盾,所以②不正确;对于③:因为c =1,Q 为C 上任意一点,由椭圆的几何性质可知,|QF 2|的最大值为a +c =a +1,故③正确;对于④:由椭圆定义可知,|PQ |+|QF 1|=|PQ |-|QF 2|+2a ,因为||PQ |-|QF 2||≤|PF 2|=1,所以|PQ |-|QF 2|≥-1,所以|PQ |-|QF 2|+2a ≥2a -1=3,此时a =2,故④正确.答案:①③④10.(2019·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解:(1)连接PF 1(图略).由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥42. 当b =4,a ≥42时,存在满足条件的点P .所以b =4,a 的取值范围为[42,+∞).B 级——综合应用11.如图是5号篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A .13B .12C .22D .32解析:B 由图可得,椭圆的短轴长2b =22⇒b =11,长轴长2a =22sin 60°=2232⇒a =223,∴e =ca =⎝ ⎛⎭⎪⎫2232-112223=1-34=12.故选B .12.明朝的一个葡萄纹椭圆盘如图①所示,清朝的一个青花山水楼阁纹饰椭圆盘如图②所示,北宋的一个汝窑椭圆盘如图③所示,这三个椭圆盘的外轮廊均为椭圆.已知图①、②、③中椭圆的长轴长与短轴长的比值分别为139,5645,107,设图①、②、③中椭圆的离心率分别为e 1,e 2,e 3,则( )A .e 1>e 3>e 2B .e 2>e 3>e 1C .e 1>e 2>e 3D .e 2>e 1>e 3解析:A 因为椭圆的离心率e =ca =c 2a 2=a 2-b 2a 2=1-b 2a2= 1-⎝ ⎛⎭⎪⎫2b 2a 2,所以椭圆的长轴长与短轴长的比值越大,离心率越大.因为139≈1.44,5645≈1.24,107≈1.43,则139>107>5645,所以e 1>e 3>e 2.故选A .13.(多选)数学家称5-12为黄金比,记为ω,定义:若椭圆的短轴与长轴之比为黄金比ω,则称该椭圆为“黄金椭圆”,以椭圆中心为圆心,半焦距长为半径的圆称为焦点圆.若黄金椭圆x 2a 2+y 2b2=1(a >b >0)与它的焦点圆在第一象限的交点为Q ,则下列结论正确的有( )A .ω2+ω=1B .黄金椭圆的离心率e =ωC .设直线OQ 的倾斜角为θ,则sin θ=ωD .交点Q 的坐标为(b ,ωb )解析:AC 方程ω2+ω-1=0的根为ω=-1±52,故A 正确;由题意可知,b a =5-12=ω,则e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-ω2=ω≠ω,故B 错误;易知QF 1⊥QF 2,且∠QF 1F 2=θ2,则|QF 2|=2c ·sin θ2,|QF 1|=2c ·cos θ2,所以|QF 1|+|QF 2|=2c ⎝⎛⎭⎪⎫sin θ2+cos θ2=2a ,即sin θ2+cos θ2=a c =1ω,两边平方,可得sin θ+1=1ω=25-1=5+12,即sin θ=5+12-1=5-12=ω,故C 正确;由C 知,sin θ=ω,所以tan θ≠ω,即D 错误.故选A 、C .14.(2021·浙江高考)已知椭圆x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆的第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.解析:设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c ,所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,得e =55.答案:255 5515.已知直线x -3y +3=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点和上顶点.(1)求椭圆C 的方程;(2)若A ,B 为椭圆上除上下顶点之外的关于原点对称的两个点,已知直线y =3-x 上存在一点P ,使得三角形PAB 为正三角形,求AB 所在直线的方程.解:(1)因为直线x -3y +3=0与x 轴交于点(-3,0),与y 轴交于点(0,1),又直线x -3y +3=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点和上顶点,可得a =3,b =1,所以椭圆C 的方程为x 23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1), 由题意知直线AB 的斜率存在,当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),因为|AB |=23,PO =3可得∠PAO =60°,以△PAB 为等边三角形,故得直线AB 的方程为y =0.当直线AB 的斜率不为0时, 设AB 的方程为y =kx ,代入椭圆方程消去y ,得(3k 2+1)x 2=3, 所以|x 1|=33k 2+1,则|AO |=1+k 2·33k 2+1=3k 2+33k 2+1, 设AB 的垂直平分线为y =-1kx ,设它与直线l :x +y -3=0的交点为P (x 0,y 0),则x 0=3k k -1,y 0=-3k -1,所以|PO |=9k 2+9k -12,因为△PAB 为正角形,所以应有|PO |=3|AO |, 可得9k 2+9k -12=3·3k 2+33k 2+1,解得k =0(舍)或k =-1, 故直线AB 的方程为y =0或x +y =0.。

高考数学(理科)一轮复习椭圆学案带答案

高考数学(理科)一轮复习椭圆学案带答案

高考数学(理科)一轮复习椭圆学案带答案学案1椭圆导学目标:1了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用2掌握椭圆的定义,几何图形、标准方程及其简单几何性质.自主梳理1.椭圆的概念在平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫________.集合P={||F1|+|F2|=2a},|F1F2|=2,其中a&gt;0,&gt;0,且a,为常数:(1)若________,则集合P为椭圆;(2)若________,则集合P为线段;(3)若________,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+2b2=1(a&gt;b&gt;0)2a2+x2b2=1(a&gt;b&gt;0)图形性质范围-a≤x≤a-b≤≤b-b≤x≤b-a≤≤a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2离心率e=a∈(0,1)a,b,的关系2=a2-b2自我检测1.已知△AB的顶点B、在椭圆x23+2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在B边上,则△AB的周长是() A.23 B.6 .43 D.122.(2011&#8226;揭阳调研)“&gt;n&gt;0”是方程“x2+n2=1表示焦点在轴上的椭圆”的()A.充分而不必要条B.必要而不充分条.充要条D.既不充分也不必要条3.已知椭圆x2sin α-2s α=1 (0≤α&lt;2π)的焦点在轴上,则α的取值范围是()A3π4,π Bπ4,3π4π2,π Dπ2,3π44.椭圆x212+23=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在轴上,那么|PF1|是|PF2|的()A.7倍B.倍.4倍D.3倍.(2011&#8226;开封模拟)椭圆x2+2=的一个焦点是(0,2),那么等于()A.-1 B.1 D.-探究点一椭圆的定义及应用例1 (教材改编)一动圆与已知圆1:(x+3)2+2=1外切,与圆2:(x-3)2+2=81内切,试求动圆圆心的轨迹方程.变式迁移1求过点A(2,0)且与圆x2+4x+2-32=0内切的圆的圆心的轨迹方程.探究点二求椭圆的标准方程例2 求满足下列各条的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)经过两点A(0,2)和B12,3变式迁移2(1)已知椭圆过(3,0),离心率e=63,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(-3,-2),求椭圆的标准方程.探究点三椭圆的几何性质例3 (2011&#8226;安阳模拟)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.变式迁移3已知椭圆x2a2+2b2=1(a&gt;b&gt;0)的长、短轴端点分别为A、B,从此椭圆上一点(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,AB∥(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.方程思想的应用例(12分)(2011&#8226;北京朝阳区模拟)已知中心在原点,焦点在x轴上的椭圆的离心率为12,且经过点(1,32),过点P(2,1)的直线l 与椭圆相交于不同的两点A,B(1)求椭圆的方程;(2)是否存在直线l,满足PA→&#8226;PB→=P→2?若存在,求出直线l的方程;若不存在,请说明理由.【答题模板】解(1)设椭圆的方程为x2a2+2b2=1(a&gt;b&gt;0),由题意得1a2+94b2=1,a=12,a2=b2+2解得a2=4,b2=3故椭圆的方程为x24+23=1[4分](2)若存在直线l满足条,由题意可设直线l的方程为=(x-2)+1,由x24+23=1,=&#61480;x-2&#61481;+1,得(3+42)x2-8(2-1)x+162-16-8=0[6分]因为直线l与椭圆相交于不同的两点A,B,设A,B两点的坐标分别为(x1,1),(x2,2),所以Δ=[-8(2-1)]2-4&#8226;(3+42)&#8226;(162-16-8)&gt;0 整理得32(6+3)&gt;0,解得&gt;-12[7分]又x1+x2=8&#61480;2-1&#61481;3+42,x1x2=162-16-83+42,且PA→&#8226;PB→=P→2,即(x1-2)(x2-2)+(1-1)(2-1)=4,所以(x1-2)(x2-2)(1+2)=4,即[x1x2-2(x1+x2)+4](1+2)=4[9分]所以[162-16-83+42-2×8&#61480;2-1&#61481;3+42+4](1+2)=4+423+42=4,解得=±12[11分]所以=12于是存在直线l满足条,其方程为=12x[12分]【突破思维障碍】直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题.反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大于零这一隐含条,它可以用检验所求参数的值是否有意义,也可通过该不等式求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.1.求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为x2+2n=1 (&gt;0,n&gt;0且≠n),可以避免讨论和繁杂的计算,也可以设为Ax2+B2=1 (A&gt;0,B&gt;0且A≠B),这种形式在解题中更简便.2.椭圆的几何性质分为两类:一是与坐标轴无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;另一类是与坐标系有关的性质,如:顶点坐标,焦点坐标等.第一类性质是常数,不因坐标系的变化而变化,第二类性质是随坐标系变化而相应改变.3.直线与椭圆的位置关系问题.它是高考的热点,通常涉及椭圆的性质、最值的求法和直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决.(满分:7分)一、选择题(每小题分,共2分)1.(2011&#8226;温州模拟)若△AB的两个顶点坐标分别为A(-4,0)、B(4,0),△AB的周长为18,则顶点的轨迹方程为()Ax22+29=1 (≠0) B22+x29=1 (≠0)x216+29=1 (≠0) D216+x29=1 (≠0)2.已知椭圆x210-+2-2=1,长轴在轴上,若焦距为4,则等于() A.4 B..7 D.83.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A32 B22 2-1 D24.(2011&#8226;天门期末)已知圆(x+2)2+2=36的圆心为,设A为圆上任一点,N(2,0),线段AN的垂直平分线交A于点P,则动点P 的轨迹是()A.圆B.椭圆.双曲线D.抛物线.椭圆x22+29=1上一点到焦点F1的距离为2,N是F1的中点,则|N|等于()A.2 B.4 .8 D32二、填空题(每小题4分,共12分)6.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.7.(2011&#8226;唐调研)椭圆x29+22=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________;∠F1PF2的大小为________.8如图,已知点P是以F1、F2为焦点的椭圆x2a2+2b2=1 (a&gt;b&gt;0)上一点,若PF1⊥PF2,tan∠PF1F2=12,则此椭圆的离心率是______.三、解答题(共38分)9.(12分)已知方向向量为v=(1,3)的直线l过点(0,-23)和椭圆:x2a2+2b2=1(a&gt;b&gt;0)的右焦点,且椭圆的离心率为63(1)求椭圆的方程;(2)若已知点D(3,0),点,N是椭圆上不重合的两点,且D→=λDN→,求实数λ的取值范围.10.(12分)(2011&#8226;烟台模拟)椭圆ax2+b2=1与直线x+-1=0相交于A,B两点,是AB的中点,若|AB|=22,的斜率为22,求椭圆的方程.11.(14分)(2010&#8226;福建)已知中心在坐标原点的椭圆经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆的方程.(2)是否存在平行于A的直线l,使得直线l与椭圆有公共点,且直线A与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.学案1椭圆自主梳理1.椭圆焦点焦距(1)a&gt;(2)a=(3)a&lt;自我检测1.23D4A B堂活动区例1 解如图所示,设动圆的圆心为,半径为r则由圆相切的性质知,|1|=1+r,|2|=9-r,∴|1|+|2|=10,而|12|=6,∴点的轨迹是以1、2为焦点的椭圆,其中2a=10,2=6,b=4∴动圆圆心的轨迹方程为x22+216=1变式迁移1解将圆的方程化为标准形式为:(x+2)2+2=62,圆心B(-2,0),r=6设动圆圆心的坐标为(x,),动圆与已知圆的切点为则|B|-||=|B|,而|B|=6,∴|B|+||=6又||=|A|,∴|B|+|A|=6&gt;|AB|=4∴点的轨迹是以点B(-2,0)、A(2,0)为焦点、线段AB中点(0,0)为中心的椭圆.a=3,=2,b=∴所求轨迹方程为x29+2=1例 2 解题导引确定一个椭圆的标准方程,必须要有一个定位条(即确定焦点的位置)和两个定形条(即确定a,b的大小).当焦点的位置不确定时,应设椭圆的标准方程为x2a2+2b2=1 (a&gt;b&gt;0)或2a2+x2b2=1 (a&gt;b&gt;0),或者不必考虑焦点位置,直接设椭圆的方程为x2+n2=1 (&gt;0,n&gt;0,且≠n).解(1)若椭圆的焦点在x轴上,设方程为x2a2+2b2=1 (a&gt;b&gt;0).∵椭圆过点A(3,0),∴9a2=1,∴a=3,又2a=3&#8226;2b,∴b=1,∴方程为x29+2=1若椭圆的焦点在轴上,设方程为2a2+x2b2=1 (a&gt;b&gt;0).∵椭圆过点A(3,0),∴9b2=1,∴b=3,又2a=3&#8226;2b,∴a=9,∴方程为281+x29=1综上可知椭圆的方程为x29+2=1或281+x29=1。

高考数学椭圆测试题及答案

高考数学椭圆测试题及答案

高考数学椭圆测试题及答案高考数学椭圆专项考试及答案一、选择题2.已知焦点在X轴上的椭圆的偏心率为,其长轴长度等于圆的半径c 3360 x2 y2-2x-15=0,那么椭圆的标准方程为()(甲)=1(乙)=1(C) y2=1 (D)=1第二,填空7.在平面直角坐标系xOy中,椭圆C的xx为原点,焦点F1、F2在X轴上,偏心率为。

穿过F1的直线L在A点和B点与C相交,ABF2的周长为16,那么C 的方程如下。

8.已知点P是椭圆16x2 25y2=400上的点,在X轴上方,F1和F2分别是椭圆的左右焦点,直线PF2的斜率为-4,那么F1,F2的面积为。

9.如果通过椭圆=1(a0)的左右焦点F1和F2的两条相互垂直的直线L1 l1、l2的交点在该椭圆内,则该椭圆的偏心率的取值范围为。

第三,回答问题10.(2013 Xi安模拟)在平面直角坐标系中,已知曲线C上任意点P到两个固定点F1(-,0)和F2(,0)的距离之和为4。

(1)求曲线c的方程.(2)让通过(0,-2)的直线L和曲线C在A点和B点相交,以线段AB为直径做一个圆。

:圆能通过坐标原点吗?如果是,请写出此时直线L的方程,证明你的结论;如果没有,请说明原因。

1.(2013渭南模拟)已知椭圆C:=1(a0)的右顶点A为抛物线y2=8x。

焦点、上顶点B和偏心率为。

(1)求椭圆c的方程.(2)通过点(0)的直线L,斜率为k,在点P和q与椭圆C相交,若直线PQ中点的横坐标为-,求解直线L的方程.12.(能力挑战)已知点P是圆F1:(x )2 y2=16上的任意一点,点F2和点F1关于原点对称。

线段PF2和PF1的中线相交于点m .(1)求m点的轨迹c的方程.(2)设轨迹C和X轴的左右交点分别为A和B,点K为轨迹C上不同于A和B的任意点,KHx轴和H为垂足,延伸HK到点Q使|HK|=|KQ|,连接AQ并延伸与B相交且垂直于X轴的直线L到点D,n为d B的中点。

2024全国高考真题数学汇编:椭圆(1)精选全文完整版

2024全国高考真题数学汇编:椭圆(1)精选全文完整版

2024全国高考真题数学汇编椭圆一、单选题1.(2024全国高考真题)已知曲线C :2216x y (0y ),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A .221164x y(0y )B .221168x y (0y )C .221164y x (0y )D .221168y x (0y )二、解答题2.(2024天津高考真题)已知椭圆22221(0)x y a b a b椭圆的离心率12e .左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △(1)求椭圆方程.(2)过点30,2的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.3.(2024北京高考真题)已知椭圆E : 222210x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点 0,t t 且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和 0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.4.(2024全国高考真题)已知(0,3)A 和33,2P 为椭圆2222:1(0)x yC a b a b上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.5.(2024全国高考真题)已知椭圆2222:1(0)x y C a b a b的右焦点为F ,点31,2M 在C 上,且MF x 轴.(1)求C 的方程;(2)过点 4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y 轴.参考答案1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ,因为M 为PP 的中点,所以02y y ,即(,2)P x y ,又P 在圆2216(0)x y y 上,所以22416(0)x y y ,即221(0)164x y y ,即点M 的轨迹方程为221(0)164x y y .故选:A2.(1)221129x y (2)存在 30,32T t t,使得0TP TQ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx, 1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ,再根据0TP TQ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e,故2a c,b ,其中c 为半焦距,所以2,0,0,,0,2A c B C,故122ABC S c △故ca ,3b ,故椭圆方程为:221129x y .(2)若过点30,2的动直线的斜率存在,则可设该直线方程为:32y kx ,设 1122,,,,0,P x y Q x y T t ,由22343632x y y kx可得223412270k x kx ,故 222Δ144108343245760k k k 且1212221227,,3434k x x x x k k而 1122,,,TP x y t TQ x y t,故121212123322TP TQ x x y t y t x x kx t kx t22121233122kx x k t x x t22222731231342342k k k t t kk2222222327271812332234k k k t t t k k22223321245327234t t k t k,因为0TP TQ 恒成立,故 223212450332702t t t,解得332t .若过点30,2的动直线的斜率不存在,则 0,3,0,3P Q 或 0,3,0,3P Q ,此时需33t ,两者结合可得332t.综上,存在 30,32T t t,使得0TP TQ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.3.(1)221,422x y e(2)2t 【分析】(1)由题意得b c a ,由此即可得解;(2)设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k ,而 121112:y y AD y x x y x x ,令0x ,即可得解.【详解】(1)由题意b c,从而2a ,所以椭圆方程为22142x y,离心率为e;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立22142x y y kx t,化简并整理得222124240k x ktx t ,由题意 222222Δ1682128420k t k t k t ,即,k t 应满足22420k t ,所以2121222424,1221kt t x x x x k k ,若直线BD 斜率为0,由椭圆的对称性可设 22,D x y ,所以 121112:y y AD y x x y x x,在直线AD 方程中令0x ,得 2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt ,所以2t ,此时k 应满足222424200k t k k,即k应满足2k或2k ,综上所述,2t满足题意,此时2k或2k .4.(1)12(2)直线l 的方程为3260x y 或20x y .【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设 00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx ,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得2239941b a b,解得22912b a ,所以12e .(2)法一:3312032APk,则直线AP 的方程为132y x ,即260x y ,AP 1)知22:1129x y C ,设点B 到直线AP 的距离为d,则d则将直线AP 沿着与AP 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ,6C 或18C ,当6C 时,联立221129260x y x y,解得03x y 或332x y ,即 0,3B 或33,2,当 0,3B 时,此时32l k,直线l 的方程为332y x ,即3260x y ,当33,2B时,此时12l k ,直线l 的方程为12y x ,即20x y ,当18C 时,联立2211292180x y x y得22271170y y ,227421172070 ,此时该直线与椭圆无交点.综上直线l 的方程为3260x y 或20x y .法二:同法一得到直线AP 的方程为260x y ,点B 到直线AP 的距离d设 00,B x y,则220012551129x y,解得00332x y 或0003x y ,即 0,3B 或33,2,以下同法一.法三:同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d设,3sin B ,其中 0,2联立22cos sin 1,解得cos 21sin 2或cos 0sin 1,即 0,3B 或33,2,以下同法一;法四:当直线AB 的斜率不存在时,此时 0,3B ,16392PAB S ,符合题意,此时32l k ,直线l 的方程为332y x ,即3260x y ,当线AB 的斜率存在时,设直线AB 的方程为3y kx ,联立椭圆方程有2231129y kx x y,则2243240k x kx ,其中AP k k ,即12k ,解得0x 或22443kx k,0k ,12k ,令22443k x k ,则2212943k y k ,则22224129,4343k k B k k同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d,解得32k =,此时33,2B,则得到此时12l k ,直线l 的方程为12y x ,即20x y ,综上直线l 的方程为3260x y 或20x y .法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x,令 1122,,,P x y B x y ,223(3)21129y k x x y,消y 可得 22224324123636270k x k k x k k ,2222Δ24124433636270k kk k k ,且AP k k ,即12k ,21222122241243,36362743k k x x k PB k k x x k,A 到直线PB距离192PAB d S,12k或32,均满足题意,1:2l y x 或332y x ,即3260x y 或20x y .法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当直线l 斜率存在时,设3:(2l y k x,设l 与y 轴的交点为Q ,令0x ,则30,32Q k,联立223323436y kx k x y,则有2223348336362702k x k k x k k ,2223348336362702k xk k x k k,其中22223Δ8343436362702k k k k k,且12k ,则2222363627121293,3434B B k k k k x x k k,则211312183922234P B k S AQ x x k k,解的12k 或32k =,经代入判别式验证均满足题意.则直线l 为12y x或332y x ,即3260x y 或20x y .5.(1)22143x y (2)证明见解析【分析】(1)设 ,0F c ,根据M 的坐标及MF x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x , 11,A x y , 22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y ,结合韦达定理化简前者可得10Q y y ,故可证AQ y 轴.【详解】(1)设 ,0F c ,由题设有1c 且232b a ,故2132a a ,故2a,故b ,故椭圆方程为22143x y .(2)直线AB 的斜率必定存在,设:(4)AB y k x , 11,A x y , 22,B x y,由223412(4)x y y k x 可得 2222343264120k x k x k ,故 422Δ102443464120k k k ,故1122k ,又22121222326412,3434k k x x x x k k ,而5,02N,故直线225:522y BN y x x ,故22223325252Qy y y x x,所以 1222112225332525Q y x y y y y y x x12224253425k x x k x x222212122264123225825834342525k k x x x x k k k kx x2222212824160243234025k k k k k x ,故1Q y y ,即AQ y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为 1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x 、12x x (或12y y 、12y y )的形式;(5)代入韦达定理求解.。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

高考数学一轮复习椭圆作业题 含答案

高考数学一轮复习椭圆作业题 含答案

基础题1. 若椭圆x 216+y 2b2=1过点(-2,3),则其焦距为________.答案 4 3解析 ∵点(-2,3)在椭圆上, ∴416+3b2=1,即b 2=4, ∴c 2=16-4=12,故2c =4 3.2. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是__________.答案 (0,1)解析 将椭圆方程化为x 22+y 22k=1,∵焦点在y 轴上,∴2k>2,即k <1,又k >0,∴0<k <1.3. 已知椭圆的焦点在y 轴上,若椭圆x 22+y 2m =1的离心率为12,则m 的值是( )A.23 B.43 C.53 D.83答案 D解析 由题意知a 2=m ,b 2=2,∴c 2=m -2. ∵e =12,∴c 2a 2=14,∴m -2m =14,∴m =83.4. 已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3答案 A解析 根据椭圆定义,知△AF 1B 的周长为4a =16, 故所求的第三边的长度为16-10=6.5. 椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,若直线y =2x 与椭圆的一个交点P 的横坐标恰为c ,则椭圆的离心率为( )A.2-22B.22-12C.3-1D.2-1答案 D解析 依题意有P (c,2c ),点P 在椭圆上,所以有c 2a 2+2c 2b 2=1,整理得b 2c 2+4a 2c 2=a 2b 2,又因为b 2=a 2-c 2,代入得c 4-6a 2c 2+a 4=0, 即e 4-6e 2+1=0,解得e 2=3-22(3+22舍去), 从而e =2-1.中档题1. (2012·江西)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2答案 B解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c , 且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |, 即4c 2=a 2-c 2,a 2=5c 2, 所以e 2=15,所以e =55.2. 已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为( )A .9B .1C .1或9D .以上都不对答案 C解析 ⎩⎪⎨⎪⎧b =3c a =45a 2=b 2+c2,解得a =5,b =3,c =4.∴椭圆C 的焦点F 到长轴的一个端点的距离为a +c =9或a -c =1.3. 已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1C.x 24+y 2=1 D.x 216+y 24=1 答案 A解析 由 x 2+y 2-2x -15=0,知r =4=2a ⇒a =2.又e =c a =12,c =1,则b 2=a 2-c 2=3.4. 已知椭圆x 24+y 2=1的左、右焦点分别为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到y 轴的距离为( )A.233B.263C.33D. 3答案 B解析 由题意,得F 1(-3,0),F 2(3,0).设M (x ,y ),则MF 1→·MF 2→=(-3-x ,-y )·(3-x ,-y )=0, 整理得x 2+y 2=3.①又因为点M 在椭圆上,故x 24+y 2=1,即y 2=1-x 24.②将②代入①,得34x 2=2,解得x =±263.故点M 到y 轴的距离为263.二、填空题(每小题5分,共15分)5. 已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为____________. 答案33解析 在三角形PF 1F 2中,由正弦定理得sin∠PF 2F 1=1,即∠PF 2F 1=π2,设|PF 2|=1,则|PF 1|=2,|F 2F 1|=3,所以离心率e =2c 2a =33.6. 已知椭圆x 216+y 225=1的焦点分别是F 1,F 2,P 是椭圆上一点,若连接F 1,F 2,P 三点恰好能构成直角三角形,则点P 到y 轴的距离是________. 答案165解析 F 1(0,-3),F 2(0,3),∵3<4, ∴∠F 1F 2P =90°或∠F 2F 1P =90°. 设P (x,3),代入椭圆方程得x =±165.即点P 到y 轴的距离是165.7. 如图所示,A ,B 是椭圆的两个顶点,C 是AB 的中点,F 为椭圆的右焦点,OC 的延长线交椭圆于点M ,且|OF |=2,若MF ⊥OA , 则椭圆的方程为__________. 答案x 24+y 22=1 解析 设所求的椭圆方程为x 2a 2+y 2b2=1 (a >b >0),则A (a,0),B (0,b ),C ⎝ ⎛⎭⎪⎫a 2,b2,F (a 2-b 2,0).依题意,得a 2-b 2=2,FM 的直线方程是x =2,所以M ⎝⎛⎭⎪⎫2,baa 2-2.由于O ,C ,M 三点共线,所以b a 2-2a 2=b 2a 2,即a 2-2=2,所以a 2=4,b 2=2. 所求方程是x 24+y 22=1.。

2025年高考数学一轮知识点复习-8.5.1椭圆的定义、方程与性质-专项训练【含答案】

2025年高考数学一轮知识点复习-8.5.1椭圆的定义、方程与性质-专项训练【含答案】

第一章集合、常用逻辑用语与不等式第二节常用逻辑用语1.命题“∃x∈R,1<f(x)≤2”的否定形式是()A.∀x∈R,1<f(x)≤2B.∃x∈R,1<f(x)≤2C.∃x∈R,f(x)≤1或f(x)>2D.∀x∈R,f(x)≤1或f(x)>22.下列命题中是全称量词命题并且是真命题的是()A.∀x∈R,x2+2x+1>0B.对任意实数a,b,若a-b<0,则a<bC.若2x为偶数,则x∈ND.π是无理数3.已知向量a=(m2,-9),b=(1,-1),则“m=-3”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知p:方程x2-4x+4a=0有实根;q:函数f(x)=(2-a)x为增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2023·北京高考8题)若xy≠0,则“x+y=0”是“+=-2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(多选)使2≥1成立的一个充分不必要条件是()A.0<x<1B.0<x<2C.x<2D.0<x≤27.(多选)已知命题p:∃x∈R,x2-2x+a+6=0,q:∀x∈R,x2+mx+1>0,则下列说法正确的是()A.p的否定是“∀x∈R,x2-2x+a+6≠0”B.q的否定是“∃x∈R,x2+mx+1>0”C.若p为假命题,则a的取值范围是(-∞,-5)D.若q为真命题,则m的取值范围是(-2,2)8.命题p:若直线l与平面α内的所有直线都不平行,则直线l与平面α不平行.则命题p是命题(填“真”或“假”).9.能说明命题“∀x∈R且x≠0,x+1≥2”是假命题的x的值可以是(写出一个即可).10.已知命题p:∀x∈R,x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0.若命题p,q都是真命题,则实数a的取值范围为.11.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,都有n>x2C.∃x∈R,∃n∈N*,使得n>x2D.∃x∈R,∀n∈N*,都有n>x212.设计如图所示的四个电路图,则能表示“开关A闭合”是“灯泡B亮”的必要不充分条件的一个电路图是()13.(多选)下列四个条件中,能成为x>y的充分不必要条件的是()A.xc2>yc2B.1<1<0C.|x|>|y|D.ln x>ln y14.集合A={x|x>2},B={x|bx>1},其中b是实数.若A是B的充要条件,则b=;若A是B的充分不必要条件,则b的取值范围是.15.已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是.参考答案与解析1.D存在量词命题的否定是全称量词命题,原命题的否定形式为“∀x∈R,f(x)≤1或f(x)>2”.故选D.2.B对于A,∀x∈R,x2+2x+1=(x+1)2≥0,故A错误;对于B,含有全称量词“任意”,是全称量词命题且是真命题,故B正确;对于C,当x=-1时,2x=-2,为偶数,但x∉N,故C错误;对于D,π是无理数不是全称量词命题,故D错误.故选B.3.A若m=-3,则a=(9,-9)=9b,所以a∥b;若a∥b,则m2×(-1)-(-9)×1=0,解得m=±3,得不出m=-3.所以“m=-3”是“a∥b”的充分不必要条件.故选A.4.B方程x2-4x+4a=0有实根,故Δ=16-16a≥0,∴a∈(-∞,1],函数f(x)=(2-a)x 为增函数,故2-a>1,∴a∈(-∞,1).∵(-∞,1)⫋(-∞,1],∴p是q的必要不充分条件,故选B.5.C法一因为xy≠0,且+=-2⇔x2+y2=-2xy⇔x2+y2+2xy=0⇔(x+y)2=0⇔x+y=0.所以“x+y=0”是“+=-2”的充要条件.=-1-1=-2.法二充分性:因为xy≠0,且x+y=0,所以x=-y,所以+=-+-必要性:因为xy≠0,且+=-2,所以x2+y2=-2xy,即x2+y2+2xy=0,即(x+y)2=0,所以x+y=0.所以“x+y=0”是“+=-2”的充要条件.6.AB由2≥1得0<x≤2,依题意由选项组成的集合是(0,2]的真子集,故选A、B.7.AD A、B选项,p的否定是“∀x∈R,x2-2x+a+6≠0”,q的否定是“∃x∈R,x2+mx+1≤0”,所以A正确,B不正确;C选项,若p为假命题,则p的否定“∀x∈R,x2-2x+a+6≠0”是真命题,即方程x2-2x+a+6=0在实数范围内无解,Δ=4-4(a+6)<0,得a>-5,C不正确;D 选项,q为真命题,则Δ=m2-4<0,解得-2<m<2,D正确.故选A、D.8.假解析:若直线l与平面α内的所有直线都不平行,则直线l与平面α相交,所以直线l与平面α不平行,所以命题p为真命题,所以p为假命题.9.-1(答案不唯一)解析:由于当x>0时,x+1≥2,当且仅当x=1时等号成立,当x<0时,x +1≤-2,当且仅当x=-1时等号成立,所以x取负数,即可满足题意.例如x=-1时,x+1=-2.10.(-∞,-2]解析:由命题p为真,得a≤0;由命题q为真,得Δ=4a2-4(2-a)≥0,即a≤-2或a≥1,所以a≤-2.11.D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x∈R,∀n∈N*,都有n>x2”.12.C选项A:“开关A闭合”是“灯泡B亮”的充分不必要条件;选项B:“开关A闭合”是“灯泡B亮”的充要条件;选项C:“开关A闭合”是“灯泡B亮”的必要不充分条件;选项D:“开关A闭合”是“灯泡B亮”的既不充分也不必要条件.故选C.13.ABD对于A选项,若xc2>yc2,则c2≠0,则x>y,反之x>y,当c=0时得不出xc2>yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A正确;对于B选项,由1<1<0可得y<x<0,即能推出x>y;但x>y不能推出1<1<0(因为x,y的正负不确定),所以“1<1<0”是“x>y”的充分不必要条件,故B正确;对于C选项,由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x >y”的既不充分也不必要条件,故C错误;对于D选项,若ln x>ln y,则x>y,反之x>y得不出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件,故D正确.14.12(12,+∞)解析:若A是B的充要条件,则A=B,即x=2是方程bx=1的解,故b=12;若A是B的充分不必要条件,则A⫋B,易知b>0,则B={x|x>1},故1<2,即b>12,故b的取值范围是(12,+∞).15.(-∞,0)解析:由题意知,当x∈[1,4]时,f(x)min=f(1)=2,g(x)max=g(4)=2+m,则f(x)min>g(x)max,即2>2+m,解得m<0,故实数m的取值范围是(-∞,0).。

高中椭圆测试题及答案

高中椭圆测试题及答案

高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。

7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。

8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。

2025年高考数学一轮复习-8.5.2-直线与椭圆的位置关系-专项训练【含解析】

2025年高考数学一轮复习-8.5.2-直线与椭圆的位置关系-专项训练【含解析】

2025年高考数学一轮复习-8.5.2-直线与椭圆的位置关系【原卷版】1.直线y =kx +1与焦点在x 轴上的椭圆x 29+y 2m =1总有公共点,则实数m 的取值范围是()A .12≤m <9B .9<m <10C .1≤m <9D .1<m <92.若直线mx +ny =9和圆x 2+y 2=9没有交点,则过点(m ,n )的直线与椭圆x 29+y 216=1的交点有()A .1个B .至多一个C .2个D .0个3.已知F 1,F 2是椭圆G :x 252+y 242=1的左、右焦点,过F 1作直线l 交G 于A ,B 两点,若|AB |=325,则△F 2AB 的面积为()A .245B .485C .965D .164154.已知点P (x ,y )是椭圆x 29+y 24=1上任意一点,则点P 到直线l :y =x +5的最大距离为()A .52+262B .52-262C .52+26D .52-265.国家体育场“鸟巢”的钢结构鸟瞰图如图①所示,内外两圈的钢骨架是离心率相同的椭圆.某校体育馆的钢结构与“鸟巢”相同,其平面图如图②所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于-58,则椭圆的离心率为()A .34B .58C .74D .646.(多选)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B 两点,则()A .|AF |+|BF |为定值B .△ABF 的周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为67.已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,|F 1F 2|=2,过椭圆左焦点且斜率为2的直线交椭圆于A ,B 两点,若S △ABF 2=4,则弦长|AB |=________.8.直线5x +4y -1=0交椭圆C :y 2a 2+x 2b 2=1(a >b >0)于M ,N 两点,设MN 中点为P ,直线OP 的斜率等于54,O 为坐标原点,则椭圆C 的离心率为________.9.已知直线y =kx -1与椭圆x 24+y 23=1交于点A ,B ,与y 轴交于点P ,若AP ―→=3PB ―→,则实数k 的值为________.10.已知点B 是圆C :(x -1)2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线l :y =2x +m 与E 交于点M ,N ,且|MN |=123019,求m 的值.11.(多选)已知P 是椭圆E :x 24+y 2m =1(m >0)上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|的最小值为1,则下列结论正确的是()A .椭圆E 的方程为x 24+y 2=1B .椭圆E 的离心率为12C .曲线y =log 3x -12经过E 的一个焦点D .直线2x -y -2=0与E 有两个公共点12.已知椭圆x 22+y 2=1的左、右焦点分别为F 1,F 2,过F 2的直线AB 与椭圆交于A ,B两点,则△F 1AB 的周长是________,△F 1AB 内切圆面积的最大值是________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左焦点为F 1(-1,0),经过点F 1的直线l 与圆F 2:(x -1)2+y 2=8相交于P ,Q 两点,M 是线段PF 2与C 的公共点,且|MF 1|=|MP |.(1)求椭圆C 的方程;(2)l 与C 的交点为A ,B ,且A 恰为线段PQ 的中点,求△ABF 2的面积.14.如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为()A .20B .10C .25D .4515.定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”相似,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C 1:x 24+y 2=1.(1)若椭圆C 2:x 216+y 241,试判断C 2与C 1是否相似?如果相似,求出C 2与C 1的相似比;如果不相似,请说明理由;(2)写出与椭圆C 1相似且短半轴长为b 的焦点在x 轴上的椭圆C b 的标准方程.若在椭圆C b 上存在两点M ,N 关于直线y =x +1对称,求实数b 的取值范围.2025年高考数学一轮复习-8.5.2-直线与椭圆的位置关系【解析版】1.直线y =kx +1与焦点在x 轴上的椭圆x 29+y 2m =1总有公共点,则实数m 的取值范围是()A .12≤m <9B .9<m <10C .1≤m <9D .1<m <9解析:C 直线y =kx +1恒过定点P (0,1),焦点在x 轴上的椭圆x 29+y 2m=1,可得0<m<9①,由直线y =kx +1与焦点在x 轴上的椭圆x 29+y 2m=1总有公共点,可得P 在椭圆上或椭圆内,即有09+1m≤1,解得m ≥1②,由①②可得1≤m <9.故选C .2.若直线mx +ny =9和圆x 2+y 2=9没有交点,则过点(m ,n )的直线与椭圆x 29+y 216=1的交点有()A .1个B .至多一个C .2个D .0个解析:C 因为直线mx +ny =9和圆x 2+y 2=9没有交点,所以9m 2+n2>3,即m 2+n 2<9,所以m 29+n 216≤m 29+n 29<1,即点(m ,n )在椭圆x 29+y 216=1内,所以过点(m ,n )的直线与椭圆x 29+y 216=1的交点有2个,故选C .3.已知F 1,F 2是椭圆G :x 252+y 242=1的左、右焦点,过F 1作直线l 交G 于A ,B 两点,若|AB |=325,则△F 2AB 的面积为()A .245B .485C .965D .16415解析:C由G :x 252+y 2421知c 2=52-42=32,所以F 1(-3,0),把x =-3代入椭圆方程可得y 2=4425,故y =±165,又|AB |=325,所以AB ⊥x 轴,则S △F 2AB =12|AB |×2c =12×325×6=965,故选C .4.已知点P (x ,y )是椭圆x 29+y 24=1上任意一点,则点P 到直线l :y =x +5的最大距离为()A .52+262B .52-262C .52+26D .52-26解析:A设直线y =x +m +y 24=1,x +m得13x 2+18mx +9m 2-36=0,∴Δ=(18m )2-4×13(9m 2-36)=0,解得m =±13,切线方程为y =x +13和y =x -13,与l 距离较远的是y =x -13,∴所求最大距离为d =|-13-5|2=52+262.故选A .5.国家体育场“鸟巢”的钢结构鸟瞰图如图①所示,内外两圈的钢骨架是离心率相同的椭圆.某校体育馆的钢结构与“鸟巢”相同,其平面图如图②所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于-58,则椭圆的离心率为()A .34B .58C .74D .64解析:D设内层椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵内外椭圆离心率相同,∴外层椭圆可设成x 2(ma )2+y 2(mb )2=1(m >1),设切线AC 的方程为y =k 1(x +ma ),与x 2a 2+y 2b 2=1联立得:(b 2+a 2k 21)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0,由Δ=0,则k 21=b 2a 2·1m 2-1,同理可得k 22=b 2a 2·(m 2-1),∴k 21·k 22=b 4a 4=则b 2a 2=58,因此,e =c a =1-b 2a 2=1-58=64.故选D .6.(多选)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B 两点,则()A .|AF |+|BF |为定值B .△ABF 的周长的取值范围是[6,12]C.当m=32时,△ABF为直角三角形D.当m=1时,△ABF的面积为6解析:ACD设椭圆的左焦点为F′,则|AF′|=|BF|,∴|AF|+|BF|=|AF|+|AF′|=6为定值,A正确;△ABF的周长为|AB|+|AF|+|BF|,∵|AF|+|BF|为定值6,且|AB|的取值范围是(0,6),∴△ABF的周长的取值范围是(6,12),B错误;设点A在点B的左侧,将y=3 2与椭圆方程联立,可解得-332,F(6,0),∴AF―→·BF―→==0.∴△ABF为直角三角形,C正确;将y=1与椭圆方程联立,解得A(-6,1),B(6,1),∴S△ABF=12×26×1=6,D正确.故选A、C、D.7.已知F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,|F1F2|=2,过椭圆左焦点且斜率为2的直线交椭圆于A,B两点,若S△ABF2=4,则弦长|AB|=________.解析:∵S△ABF2=4,∴12×2c×|y A-y B|=4,又∵|F1F2|=2,∴|y A-y B|=4,∵直线过椭圆左焦点且斜率为2,∴|AB|=1+1k2|y A-y B|4=25.答案:258.直线5x+4y-1=0交椭圆C:y2a2+x2b2=1(a>b>0)于M,N两点,设MN中点为P,直线OP的斜率等于54,O为坐标原点,则椭圆C的离心率为________.解析:设M(x1,y1),N(x2,y2),MN中点为P(x0,y0)+x21b2=1,+x22b2=1,两式相减得b2(y21-y22)+a2(x21-x22)=0,即y1-y2x1-x2=-k MN=-a2b2·1k OP,因为k MN=-54,k OP=54,所以b2a2=1625,所以e=ca=1-b2a2=35.答案:359.已知直线y=kx-1与椭圆x24+y23=1交于点A,B,与y轴交于点P,若AP―→=3PB―→,则实数k的值为________.解析:设A(x1,y1),B(x2,y2),因为直线y=kx-1与y轴交于点P,所以P(0,-1).联kx -1,+y 23=1,消去y 得(3+4k 2)x 2-8kx -8=0,Δ>0.由根与系数的关系得x 1+x 2=8k3+4k 2,x 1x 2=-83+4k 2.因为AP ―→=3PB ―→,所以(-x 1,-1-y 1)=3(x 2,y 2+1),所以x 1=-3x 2,将其代入x 1+x 2=8k3+4k 2,得x 2=-4k 3+4k 2.将x 1=-3x 2,x 2=-4k 3+4k2代入x 1x 2=-83+4k 2,可得-=-83+4k 2k 2=32,所以k =±62.答案:±6210.已知点B 是圆C :(x -1)2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线l :y =2x +m 与E 交于点M ,N ,且|MN |=123019,求m 的值.解:(1)由条件可得|PC |+|PF |=|PC |+|PB |=|BC |=4>|FC |=2,所以动点P 的轨迹E 是以F ,C 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0),所以2a =4,2c =2,所以a =2,c =1,b =3,所以动点P 的轨迹方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),+y 23=1,2x +m可得19x 2+16mx +4m 2-12=0,由Δ=256m 2-76(4m 2-12)>0,得m ∈(-19,19),由根与系数的关系得,x 1+x 2=-16m19,x 1x 2=4m 2-1219,因为|MN |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=123019,解得m =±1.11.(多选)已知P 是椭圆E :x 24+y 2m =1(m >0)上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|的最小值为1,则下列结论正确的是()A .椭圆E 的方程为x 24+y 2=1B .椭圆E 的离心率为12C .曲线y =log 3x -12经过E 的一个焦点D .直线2x -y -2=0与E 有两个公共点解析:ACD设P (x 0,y 0),M (x 1,y 1),x 0≠±x 1,y 0≠±y 1,则N (-x 1,-y 1),x 204+y 20m=1,x 214+y 21m =1,所以y 20=m -mx 204,y 21=m -mx 214,k 1k 2=y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=-m 4.于是|k 1|+|k 2|≥2|k 1|·|k 2|=2|k 1k 2|=2|-m 4|=m ,依题意,得m =1,解得m =1,故E 的方程为x 24+y 2=1,A 正确;离心率为32,B 错误;焦点坐标为(±3,0),曲线y =log 3x -12经过焦点(3,0),C 正确;又直线2x -y -2=0过点(1,0),且点(1,0)在E 内,故直线2x -y -2=0与E 有两个公共点,D 正确.故选A 、C 、D .12.已知椭圆x 22+y 2=1的左、右焦点分别为F 1,F 2,过F 2的直线AB 与椭圆交于A ,B两点,则△F 1AB 的周长是________,△F 1AB 内切圆面积的最大值是________.解析:根据椭圆定义可知△F 1AB 的周长C =4a =42;在△F 1AB 内,S =12Cr =22r ,问题转化为求△F 1AB 面积最大值,设AB :x =my +1,A (x 1,y 1),B (x 2,y 2),则(m 2+2)y 2+2my -1=01+y 2=-2mm 2+2,1y 2=-1m 2+2,于是S =12|F 1F 2|·|y 1-y 2|22m 2+1m 2+2=22m 2+1+1m 2+1≤222m 2+1·1m 2+1=2,则22r ≤2⇒r ≤12⇒πr 2≤π4,等号在m =0时取到.答案:42π413.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左焦点为F 1(-1,0),经过点F 1的直线l 与圆F 2:(x -1)2+y 2=8相交于P ,Q 两点,M 是线段PF 2与C 的公共点,且|MF 1|=|MP |.(1)求椭圆C 的方程;(2)l 与C 的交点为A ,B ,且A 恰为线段PQ 的中点,求△ABF 2的面积.解:(1)由圆F 2:(x -1)2+y 2=8可得|PF 2|=22,因为|MF 1|=|MP |,所以2a =|MF 1|+|MF 2|=|MP |+|MF 2|=|PF 2|=22,即a =2,又c =1,故b =1,所以椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),因为A 为线段PQ 的中点,则AF 1⊥AF 2,所以AF 1―→·AF 2―→=x 21+y 21-1=0,又x 212+y 21=1,解得x 1=0,y 1=±1,若y 1=1,则A (0,1),直线l 的方程为y =x +1,x +1,y 2=12=-43,2=-13,即-43,-所以△ABF 2的面积S =12|F 1F 2|·|y 1-y 2|=12×2×43=43,若y 1=-1,同理可求得△ABF 2的面积S =43,综上所述,△ABF 2的面积为43.14.如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为()A .20B .10C .25D .45解析:D由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N的横坐标为c c ,+y 24=1,得2c 点M 的坐标代入椭圆方程得4c 2a2+1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,得a 2=5,∴a =5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D .15.定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”相似,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C 1:x 24+y 2=1.(1)若椭圆C 2:x 216+y 241,试判断C 2与C 1是否相似?如果相似,求出C 2与C 1的相似比;如果不相似,请说明理由;(2)写出与椭圆C 1相似且短半轴长为b 的焦点在x 轴上的椭圆C b 的标准方程.若在椭圆C b 上存在两点M ,N 关于直线y =x +1对称,求实数b 的取值范围.解:(1)椭圆C 2与C 1相似.如图,在同一坐标系中作出C 1,C 2的图象.∵椭圆C 2的“特征三角形”是腰长为4,底边长为43的等腰三角形,而椭圆C 1的“特征三角形”是腰长为2,底边长为23的等腰三角形,∴两三角形的三边对应成比例,∴这两个等腰三角形相似,且相似比为2∶1,∴椭圆C 2和C 1相似,且相似比为2∶1.(2)椭圆C b 的方程为x 24b 2+y 2b2=1(b >0).由题意,可设l MN :y =-x +t ,M (x 1,y 1),N (x 2,y 2),MN 的中点为(x 0,y 0).x +t ,+y 2b 2=1,消去y ,整理得5x 2-8tx +4(t 2-b 2)=0,则x 0=x 1+x 22=45t ,y 0=t5.∵MN 的中点在直线y =x +1上,∴t 5=45t +1,解得t =-53.故直线l MN 的方程为y =-x -53.若M ,N 存在,则方程5x 2-8+-b 2=0有两个不同的实数解,∴Δ-4×5×40,解得b >53.。

高考数学专题《椭圆》习题含答案解析

高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( )ABC .D .【答案】B 【解析】,选B .2.(2019·北京高考真题)已知椭圆22221x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y +=B .22186x y +=C .22142x y +=D .22184x y +=22194x y +=2359e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=.故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则y x =由2AB c =,可知OA c ==c =,解得x =,所以1,3A c ⎫⎪⎪⎭把点A 代入椭圆方程得到22221331c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析.【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩,或1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =.则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+>,43-,∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ 【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围.【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b+(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-.从而()12n FP FP a c a c c -≤+--=.再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤.同理,当等差数列递减时,可解得1010d -≤<,故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,=∴10AM MF +≤+当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为10.9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>,且点A (2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解.【详解】(1)由e =得:12c b a ==,,又点(21)A ,在椭圆上,所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =,因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-,与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD =10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解.【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,所以2224c a b =-=,①又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>,由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△即12F PF △1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A .1,12⎡⎫⎪⎢⎣⎭B.C.⎫⎪⎪⎭D.⎫⎪⎭【答案】C练提升【分析】若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin b aα=求椭圆离心率的范围.【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 45b a α=≤︒=222a c ≤,∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎭.故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤ ⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠,∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立,在2AFF V 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF emn mn mn a +-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤.故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.1 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q为短轴的端点,故离心率πcos 4c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B = ,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.和5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________..【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >,因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c ,根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a ,在12F PF ∆中,由余弦定理,可得:2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a ,整理得2221243=+c a a ,所以22121134+=e e ,又2212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH(H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y,所以点0⎫⎪⎭H y 由λ=HQ PH ,所以λ=HQPH0⎛⎫=-- ⎪⎝⎭ HQ x y y,0,0⎫=⎪⎭PH x 又λ= HQ PH,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x所以00x y y==由220014x y +=221=y 则点Q221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥所以234e ≥,则e ≥,又1e <所以⎫∈⎪⎪⎭e故答案为:⎫⎪⎪⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得.【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围.【详解】22194x y +=的焦点为1(F、2F ,如图所示:A 、B 、C 、D 四点,此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角,所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==.因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y+=的两个焦点,P是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值.【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号,∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号,∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y +=,由已知,得12||||26PF PF a +==,∴12||6||PF PF =-,∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6+②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足MN = ,求直线n 的斜率.【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x,利用根与系数的关系,结合MN =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b ,所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C,原点O 到直线0bx cy bc +-=,所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c ==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++.因为MN =,所以))2121P x x y y ⎫--⎪⎪⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-,即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.练真题1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A.⎫⎪⎪⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝D .10,2⎛⎤ ⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A .B .C .D .【答案】D 【解析】因为为等腰三角形,,所以PF 2=F 1F 2=2c,由得,,1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 2312131412PF F △12120F F P ∠=︒AP 222tan sin cos PAF PAF PAF ∠=∴∠=∠=由正弦定理得,所以,故选D.3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若,,则C 的方程为( )A. B. C. D.【答案】B 【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B .法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B .4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上2222sin sin PF PAF AF APF ∠=∠22214,π54sin(3c a c e a c =∴==+121,01,0F F -(),()222AF F B =││││1AB BF =││││2212x y +=22132x y +=22143x y +=22154x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=1AF B △22214991cos 2233n n n F AB n n +-∠==⋅⋅12AF F △2214422243n n n n +-⋅⋅⋅=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=12AF F △12BF F △2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩2121,AF F BF F ∠∠2121cos cos 0AF F BF F ∴∠+∠=2121cos cos AF F BF F ∠∠,223611n n +=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=12F F ,22:+13620x y C =M C一点且在第一象限.若为等腰三角形,则的坐标为___________.【答案】【解析】由已知可得,.∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>(1)证明:a;(2)若点9,10M ⎛ ⎝在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立;(2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程.【详解】12MF F △M (2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△12014,42MF F S y =⨯=∴=△0y =20136x ∴=03x =03x =-M \((1)c e a =====b a ∴=a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝,可得b >设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-.【解析】(Ⅰ) 椭圆()222210x ya b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.。

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3B .6C .8D .125.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 17.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12 C .13 D .148.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( ) A .12B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( ) A .△ABF 2的周长为定值 B .AB 的长度最小值为1 C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠= 三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.20.(2019·江苏·高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=c e a ==22b ∴=,所以方程为4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3 B .6 C .8 D .12【答案】B【分析】根据椭圆中,,a b c 的关系即可求解. 【详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B.5.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 1290,PF ∠1,||PF =故选D.7.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.148.(2021·全国·高考真题(理))设B是椭圆2222:1(0)x yC a ba b+=>>的上顶点,若C上的任意一点P都满足||2PB b≤,则C的离心率的取值范围是()A.⎫⎪⎪⎣⎭B.1,12⎡⎫⎪⎢⎣⎭C.⎛⎝⎦D.10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( )A .12 B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( )A .△ABF 2的周长为定值B .AB 的长度最小值为1C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]【详解】因为11AF F B λ=,则A 三点共线,2ABF 周长21=≠,B 错.,则12AF AF ⊥,A 在上、下顶点处,不妨设A解得0x =⎧⎪⎨或,422,-12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤ ⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠=三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m+--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解 【详解】由于22670x my m +--=是圆,1m ∴= 即:圆22670x y x +--= 其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 称性将ADE 的周长转化为【详解】∵椭圆的离心率为2213y c =,即2a OF c =,两点,DE 为线段∴ADE 的周长等于24a a a +=四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.【答案】23由2AF FB =可得x 的坐标代入椭圆方程中化简可求出离心率 【详解】因为2AF FB =,设A 4⋅⋅⋅⋅⋅⋅①②①-②得:,1220y y +=,18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 【答案】(Ⅰ)32;(Ⅱ)221123x y +=.19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.5520.(2019·江苏·高考真题)如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.43因为BF2=2a,EF1+EF2=2a,所以EF1=EB,21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.的面积是BPQ 面积的23,x y y kx +=⎧⎨=⎩所以,k 的值为12-.。

2021届高考一轮复习之数学---平面解析几何专项测试 (4)椭圆 (含解析)

2021届高考一轮复习之数学---平面解析几何专项测试   (4)椭圆  (含解析)

2021届高考一轮复习之数学---平面解析几何专项测试(4)椭圆1.已知椭圆的两个焦点分别为,斜率不为0的直线l 过点,且交椭圆于两点,则的周长为( ) A .10 B .16C .20D .252.已知椭圆的离心率为且点在椭圆上,则该椭圆的短轴长为( )A.1B.C.2D.3.中心在坐标原点的椭圆,焦点在轴上,焦距为,离心率为,则该椭圆的方程为( )A. B.C. D.4.若直线经过椭圆的一个焦点,且椭圆的长轴长与短轴长的比值为,则该椭圆的方程为( )A. B.C. D.5.已知椭圆的左、右焦点分别为,且以线段为直径的圆与直线相切,则的离心率为( )A .B .C .D .6.已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,交轴于点,若是线段的三等分点,则椭圆的离心率为( )A. B. C. D.7.已知椭圆的左、右焦点分别为,点P 是椭圆C 上一点,且在第一象限,点Q 是点P 关于原点对称的点.当时,椭圆C 的离心率的取值范围是( )A.B.C.D.8.设为椭圆上的一点,是该椭圆的两个焦点,若,则的面积为( ) A. 2B. 3C. 4D. 59.设是椭圆的两焦点,P 为椭圆上的点,若,则的面积为( )A .8B .C .4D .10.椭圆的左、右焦点分别为,过焦点的直线交椭圆于两点,则的周长为__________;若两点的坐标分别为和,且,则的内切圆半径为____________.11.己知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于两点,直线与椭圆的另一个交点为,若,则椭圆的离心率为__________.12.椭圆的左、右焦点分别是,点是椭圆上一点,,直线交椭圆于另一点,且,则椭圆的离心率是_______.13.已知是椭圆上的点,分别是椭圆的左,4焦点,若的面积为3,则的值为______.14.已知椭圆的离心率为.点在椭圆上.(1)求椭圆的标准方程; (2)过点任作椭圆的两条相互垂直的弦,设分别是的中点,则直线是否过定点?若过,求出该定点坐标;若不过,请说明理由.此卷只装订不密封班级 姓名 准考证号 考场号 座位号15.已知椭圆过点,且.(1)求椭圆C的方程;(2)过点的直线交椭圆C于点,直线,分别交直线于点P,Q.求的值.答案以及解析1.答案:C解析:由题意得,周长:2.答案:C解析:因为,,所以,所以,选C .3.答案:D解析:依题意,,,,因此所求椭圆方程是,故选D.4.答案:B解析:由题意可知,椭圆)的一个焦点为,所以.因为椭圆的长轴长与短轴长的比值为,即,所以.又因为,所以,.故选B.5.答案:B解析:以线段为直径的圆的方程为与直线相切,所以即有,6.答案:D解析:由已知可知,点的坐标为,,易知点坐标,将其代入椭圆方程得,所以离心率为,故选D.7.答案:C解析:点P与点Q关于原点对称,且四边形是矩形,为直角三角形(为直角).设,则,,由,得.点P在第一象限,.选C.8.答案:C解析:∵,∴可设,由题意可知,∴,∴,∵,∴是直角三角形,其面积.故选C.9.答案:C解析:由椭圆,可知,可得,即,设,由椭圆的定义可知:,∵,得,由勾股定理可知:,∴,则解得:,∴.∴的面积.10.答案:解析:根据椭圆的定义知,的周长为8.易得,,设的内切圆的半径为r,则,的内切圆半径为.11.答案:解析:设椭圆的左、右焦点分别为,将代入椭圆方程可得,故可设,由,可得,既有,即,,可得,代入椭圆方程可得,,由,既有,解得,故.12.答案:解析:设,由,得,由,得,所以,又,即,化简得,即,根据,得,又,所以,所以椭圆的离心率.13.答案:10解析:由椭圆,可得,设,则,解得,把代入椭圆方程,得,解得,假设,.14.答案:(1)由已知得,解得,所以椭圆的方程为.(2)由题意知直线的斜率存在且不为0,设直线的方程为,由得,由得,且,所以,即,同理,所以,所以直线的方程为,由对称性可知定点必在轴上,令,得,所以直线过定点.15.答案:(1),上代入得,椭圆C的方程为(2)①当:时,不妨设:,,同理得,.②当:消x设,,或,,,:,当,,同理,,,,.综上①②所述:.。

2022年高考数学一轮复习专题 专题39 椭圆新高考中多项选择专练(解析版)

2022年高考数学一轮复习专题 专题39 椭圆新高考中多项选择专练(解析版)
【详解】
由已知可得 m2 m 1 1,解得 m 2 或 m 1(舍去)
a2 3, a 3,b 2 , c 1
∴长轴长为 2
3 ,短轴长为 2
2 ,离心率为 e
1 3
3, 3
故选:AB.
2.已知 m 为 3 与 5 的等差中项,n 为 4 与 16 的等比中项,则下列对曲线 C : x2 y2 1 mn
,则
a
2c

b
3c ,所以 b 3 ,B 正确; a2
根据椭圆的定义易知 C 正确;
设点 P x0 , y0 ,则
x02 a2
y02 b2
1,易知
A1 a,0 ,
A2 a, 0 ,所以直线 PA1 , PA2

斜率之积是 y0 y0
y02
b2
1
x02 a2
b2
,D
正确.
x0 a x0 a x02 a 2
即 2a2 7a 3 0 ,解得 a 3或 a 1 , 2
试卷第 6页,总 18页
当 a 3时,圆锥曲线 x2 y2 1 ,为中心在原点,焦点在 x 轴上的椭圆,离心率 3
e 31 6 , 33
当a
1
时,圆锥曲线
x2 1
y2
1 ,为中心在原点,焦点在
y
轴上的椭圆,
2
2
e
1 1 2
y
轴上, a
2,b
c
2.
对于 A 选项,该椭圆的长轴长为 2a 4 ,A 错误;
对于 B 选项,该椭圆的焦距为 2c 2 2 ,B 对;
对于 C 选项,该椭圆的离心率为 e c 2 ,C 对; a2
对于 D 选项,该椭圆的左顶点坐标为 2,0 ,D 对.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15-16高考数学一轮复习椭圆专题检测(含
答案)
在数学中,椭圆是平面上到两个固定点的距离之和是常数的轨迹,以下是椭圆专题检测,请考生及时练习。

一、选择题
2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆
C:x2+y2-2x-15=0的半径,则椭圆的标准方程是()
(A)+=1 (B)+=1
(C)+y2=1 (D)+=1
二、填空题
7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.
8.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为-4,则△PF1F2的面积是.
9.分别过椭圆+=1(a0)的左、右焦点F1,F2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.
三、解答题
10.(2019西安模拟)在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线C的方程.
(2)设过(0,-2)的直线l与曲线C交于A,B两点,以线段AB为直径作圆.
试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.
11.(2019渭南模拟)已知椭圆C:+=1(a0)的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为.
(1)求椭圆C的方程.
(2)过点(0,)且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ 的中点横坐标是-,求直线l的方程.
12.(能力挑战题)已知点P是圆F1:(x+)2+y2=16上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.
(1)求点M的轨迹C的方程.
(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KHx轴,H为垂足,延长HK到点Q使得|HK|=|KQ|,连接AQ并延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.
答案解析
2.【解析】选A.圆C的方程可化为(x-1)2+y2=16.
知其半径r=4,长轴长2a=4,a=2.
又e==,
c=1,b2=a2-c2=4-1=3,
椭圆的标准方程为+=1.
7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a0).
∵e=,=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程
为+=1.
答案:+=1
8.【解析】由已知F1(-3,0),F2(3,0),所以直线PF2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x3,故舍去),
又点P(x,y)在椭圆上,且在x轴上方,得16()2+25y2=400,
解得y=2,
=|F1F2|y=62=6.
答案:6
9.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c间的关系,进而求得离心率e的取值范围.
【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上.
又点P在椭圆内部,所以有c20,k2,②
则x1+x2=,x1x2=,代入①,得
(1+k2)-2k+4=0.即k2=4,
k=2或k=-2,满足②式.
所以,存在直线l,其方程为y=2x-2或y=-2x-2.
11.【解析】(1)抛物线y2=8x的焦点为A(2,0),依题意可知a=2.
因为离心率e==,所以c=.
故b2=a2-c2=1,
所以椭圆C的方程为:+y2=1.
(2)直线l:y=kx+,

消去y可得(4k2+1)x2+
8kx+4=0,
因为直线l与椭圆C相交于P,Q,
所以=(8k)2-4(4k2+1)0,
解得|k|.
又x1+x2=,x1x2=,
设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),
因为线段PQ的中点横坐标是-,
所以x0===-,
解得k=1或k=,
因为|k|,所以k=1,
因此所求直线l:y=x+.
12.【解析】(1)由题意得,F1(-,0),F2(,0),
圆F1的半径为4,且|MF2|=|MP|,
从而|MF1|+|MF2|=|MF1|+|MP|=4|F1F2|=2,
点M的轨迹是以F1,F2为焦点的椭圆,其中长轴2a=4,焦距2c=2,
则短半轴b===1,
椭圆方程为:+ y2=1.
(2)设K(x0,y0),则+=1.
∵|HK|=|KQ|,Q(x0,2y0),OQ==2,
Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.
又A(-2,0),直线AQ的方程为y=(x+2).
令x=2,得D(2,).
又B(2,0),N为DB的中点,N(2,).
=(x0,2y0),=(x0-2,).
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

=x0(x0-2)+2y0=x0(x0-2)+=x0(x0-2)+
=x0(x0-2)+x0(2-x0)=0,
一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

,直线QN与以AB为直径的圆O相切.
要练说,得练听。

听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。

我在教学中,注意听说结合,训练
幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。

当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。

平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

椭圆专题检测和答案的所有内容就是这些,查字典数学网祝愿更多的考生可以梦想成真。

相关文档
最新文档