非牛顿流体的流动解析
非牛顿流体的流变特性研究
非牛顿流体的流变特性研究流变学是物理学和工程学的一个重要分支,研究物质的流动和变形行为。
非牛顿流体是一类特殊的流体,其流变特性与牛顿流体有所不同。
本文将探讨非牛顿流体的流变特性以及相关研究进展。
一、非牛顿流体简介非牛顿流体是指在变形应力与变形速率不成比例关系的流体。
与牛顿流体不同,非牛顿流体的黏度会随着剪切速率或剪切应力的变化而变化。
根据剪切速率变化对黏度的影响,非牛顿流体可以分为剪切稀释流体和剪切增稠流体两类。
剪切稀释流体在剪切速率增加时,黏度会下降,即流体的流动性增加。
这种现象常见于高分子溶液、悬浊液等。
剪切增稠流体则在剪切速率增加时,黏度会增加。
其中最著名的例子是玉米淀粉和水混合后形成的液体,即所谓的“奇观物质”。
二、非牛顿流体的流变模型非牛顿流体的流变行为可以通过多种模型来描述,其中最常用的是幂律模型和卡门模型。
幂律模型基于幂律关系,即剪切应力与剪切速率的幂函数关系。
该模型形式如下:τ = K × (γ・)^n其中,τ表示剪切应力,K为比例常数,γ・为剪切速率,n为流变指数。
流变指数n的值可以用来刻画非牛顿流体的流变类型。
若n>1,表示为剪切增稠流体;若0<n<1,表示为剪切稀释流体;若n=1,表示为牛顿流体。
卡门模型则假设非牛顿流体的黏度与剪切应力呈指数关系。
该模型形式如下:η = A × e^(Bτ) + C其中,η表示黏度,A、B和C为常数,τ为剪切应力。
卡门模型适用于描述粘弹性较高的非牛顿流体。
三、非牛顿流体的研究进展随着科学技术的不断发展,非牛顿流体的研究也取得了丰富的进展。
研究人员通过实验和理论模拟,深入探讨了非牛顿流体的性质和应用。
在实验方面,研究人员通过流变仪等工具,对不同类型的非牛顿流体进行流变学特性测试。
例如,他们研究了聚合物溶液的剪切流变行为以及微乳液的流动性等。
实验结果揭示了非牛顿流体在不同温度、浓度和剪切条件下的特性,为相关领域的应用提供了理论基础。
一类非牛顿流体流动问题的变分原理和广义变分原理
一类非牛顿流体流动问题的变分原理和广义变分原理非牛顿流体是指在流动过程中,其粘度随着剪切速率的变化而变化的流体。
非牛顿流体的流动问题一直是流体力学研究的热点之一。
本文将介绍一类非牛顿流体流动问题的变分原理和广义变分原理。
一、变分原理变分原理是研究非牛顿流体流动问题的重要方法之一。
变分原理是指将流体力学问题转化为一个变分问题,通过求解变分问题得到流体力学问题的解。
对于一类非牛顿流体流动问题,其变分原理可以表示为:$$\delta \int_{t_1}^{t_2} \int_{\Omega} \mathcal{L}(u,\nabla u) dx dt =0$$其中,$\mathcal{L}(u,\nabla u)$是拉格朗日密度函数,$u$是速度场,$\nabla u$是速度场的梯度,$\Omega$是流体的空间域,$t_1$和$t_2$是时间区间,$\delta$表示变分操作。
二、广义变分原理广义变分原理是变分原理的推广,它可以用于求解更加复杂的非牛顿流体流动问题。
对于一类非牛顿流体流动问题,其广义变分原理可以表示为:$$\delta \int_{t_1}^{t_2} \int_{\Omega} \mathcal{L}(u,\nabla u) dx dt +\int_{t_1}^{t_2} \int_{\Omega} \mathcal{G}(u,\nabla u) \cdot \delta u dx dt = 0$$其中,$\mathcal{G}(u,\nabla u)$是广义力,$\delta u$是速度场的变分量。
广义变分原理可以看作是变分原理的推广,它将广义力考虑进去,使得求解非牛顿流体流动问题更加准确。
三、应用变分原理和广义变分原理在非牛顿流体流动问题的研究中得到了广泛的应用。
例如,在非牛顿流体的稳定性分析中,可以通过变分原理求解流体的稳定性条件;在非牛顿流体的流动控制中,可以通过广义变分原理求解流体的控制方程。
非牛顿流体的流动.ppt
x u y
2.3 应变速度分析
拉伸粘度定义为拉应力和线应变速度之比,即 e xx xx 对于牛顿流体,其拉伸粘度是切粘度的三倍,即拉伸粘度特 别大是非牛顿流体的重要特征之一。 e 3 流速梯度非对角线的六个分量,每一个分量均能分解为代表 纯变形运动和代表纯旋转运动的两项。
2.4 应力与应变速度
应力和应变速度的关系
u x u y xy yx ( ) y x u u yz zy ( y z ) z y u u zx xz ( z x ) x z
pxx p 2 p yy p 2 u x x u y
3.2 剪切稀化流体
表观粘度函数为幂律形式 =k n1 剪切稀化流体的本构关系式 k n
n与k是常数,对剪切稀化流体 n 1,反映了非牛顿流体性质 的强弱。 实际工程中都处于中等变形速度的范围,k没有明显的物理 意义,虽然还有许多其他的数学模型,都没有幂律公式使用 得广泛和简便。
= 0 + p
3.5 卡森流体
卡森流体是另一种具有屈服值的非牛顿流体。 1 = ( c ) 本构方程为
c
卡森流体的本构方程能较准确地反映血液的流变特性。卡 森流体的本构方程在较大的变形速度范围内与实验数据符 合得很好。
3.6 时变性非牛顿流体
前面所讨论的非时变性非牛顿流体,其表观粘度只是变形 速度的函数,而与时间无关,这就是说在变形速度改变后, 流体内部结构的调整是瞬时完成的。改变变形速度后,可以 立即得到与变形速度相对应的切应力与表观粘度。结构调整 的时间很短,致使现有的测定技术对这种突变的时间过程无 法灵敏反映,这就是非时变性的含义。 (1) 触变性流体和震凝性流体 有些流体的表观粘度不仅是剪切速率的函数,而且还与其 受剪切作用的时间有关。这类物质体系的结构对剪切作用十 分敏感,其结构的调整却相当缓慢。由于流体的力学性质受 系统结构变化的影响,因此,在结构调整的时段内,流变性 质也随时间而变化,直到新的平衡结构形成为止。
流体力学中的非牛顿流体
流体力学中的非牛顿流体流体力学是研究物质在流动状态下力的作用和运动规律的学科。
在流体力学中,我们通常将流体分为牛顿流体和非牛顿流体。
本文将重点介绍非牛顿流体的特性、流动行为以及其在工程和科学领域中的应用。
一、非牛顿流体的特性非牛顿流体是指其粘度随着应力或剪切速率的改变而变化的流体。
与牛顿流体相比,非牛顿流体表现出更复杂的流动行为。
根据其流变特性,非牛顿流体可以分为剪切变稀型和剪切变稠型。
剪切变稀型的非牛顿流体是指其粘度随剪切速率的增加而减小的流体。
常见的剪切变稀型非牛顿流体包括血液、糊状物和溶胶等。
这些流体在流动过程中,随着剪切力的增加,粒子之间的相互作用减弱,从而导致粘度的降低。
剪切变稀型流体的特性使其在工程领域中得到广泛应用,如石油钻井、医疗器械以及食品加工等。
剪切变稠型的非牛顿流体是指其粘度随剪切速率的增加而增加的流体。
常见的剪切变稠型非牛顿流体有浆料、高聚物溶液和胶体等。
这些流体在流动过程中,由于粒子之间的相互作用增强,导致粘度的增加。
剪切变稠型流体广泛应用于涂料、油漆和火箭发动机燃料等领域。
二、非牛顿流体的流动行为非牛顿流体的流动行为与牛顿流体有所不同。
牛顿流体遵循牛顿流体模型,其粘度独立于剪切速率,流动行为符合牛顿第二定律。
而非牛顿流体则不满足牛顿流体模型,其剪切应力和剪切速率之间的关系是非线性的。
非牛顿流体的流动行为通常由流变学进行描述。
流变学是研究物质应力-应变关系的科学,其中应力指流体内部单位面积上的力,应变指流体的变形程度。
通过流变学可以确定非牛顿流体的粘度与剪切速率之间的关系。
在非牛顿流体的流动过程中,通常存在剪切层滞后和剪切变薄等现象。
剪切层滞后是指在流动过程中,不同位置处的流体粘度不同,形成剪切层。
而剪切变薄是指在流动过程中,流体的某一部分变得更稀薄。
三、非牛顿流体的应用非牛顿流体的特性使其在工程和科学领域中得到广泛应用。
以下列举了一些常见的应用领域:1. 医学领域:血液作为一种剪切变稀型的非牛顿流体,在心血管系统中的流动行为对于疾病诊断和治疗具有重要意义。
非牛顿型流体的流动
2、机械能衡算式(柏努利方程)及其应用
2 u12 p1 u 2 p2 gz1 he gz 2 hf 2 2
3、直管摩擦损失的通用算式—Fanning 公式
6、层流与湍流的区别
7、流体静力学方程及其应用
1.7 非牛顿型流体的流动
一、非牛顿型流体的特性
du dy
du n k( ) dy
牛顿流体 非牛顿流体
〈1〉假塑性流体:速度梯度增大,粘度降低—大多数流体特征 〈2〉涨塑性流体: 速度梯度增大,粘度增大—多为浓悬浆液 流体: 〈4〉牛顿流体
〈3〉塑性流体:剪应力达临界值时,出现屈服现象—多为高固悬浆液
非牛顿流体的几个特征 1、依时性: 一些非牛顿流体的粘度与剪切力的作用时间有关。
即剪应力作用足够长的时间后,粘度才能达到定态值。—— 触变性。 涂料、圆珠笔水。
2、粘弹性: 一些非牛顿流体具有不仅具有粘性,而且具有明显的弹性。 爬杆现象;挤出胀大现象;无管虹吸现象。
本章重点与难点
1、 连续性方程:
l u 2 Δpf d 2 Δpf l u2 hf d 2 Δpf l u2 Hf g d 2g
4、局部阻力损失计算
l e u 2 Δ p f u 2 2 d 2
5、管内总阻力损失计算
l Σ le u 2 l u2 h f ( Σ ) ( ) d 2 d 2
《非牛顿流体的流动》课件
实验演示
演示剪切稀化流体的流变学特性,揭示其奇特行为。
应用
工业应用
非牛顿流体在润滑剂、涂料、胶粘剂等工业领域有 广泛应用。
生活中的应用
某些食品、护肤品和医疗药剂中也使用了非牛顿流 体。
实验演示
1
ቤተ መጻሕፍቲ ባይዱ
塑性流体流动实验
演示塑性流体的流动行为,了解其特性和流变学参数。
2
粘弹性流体流动实验
通过实验展示粘弹性流体的弹性回复和粘性瞬时流动。
《非牛顿流体的流动》 PPT课件
非牛顿流体是指其粘度随着应力变化而发生非线性变化的流体。本课件将介 绍非牛顿流体的特点、分类、流动行为、应用以及实验演示。
什么是非牛顿流体
非牛顿流体是指其粘度与应力不是线性关系的流体。它们可以根据其流变学 性质进一步分类为塑性流体、粘弹性流体和剪切稀化流体。
非牛顿流体的特点
变形率依赖性
非牛顿流体的粘度取决于应变速率。
时间依赖性
非牛顿流体的粘度可以随时间变化。
剪切薄弱性
非牛顿流体在高剪切速率下可能表现出稀化现象。
塑性流体
具有固体特性
塑性流体具有一定的流动阈值,需要足够的剪切力 才能使其流动。
实验演示
展示塑性流体的流动实验,探索其特性。
粘弹性流体
粘弹性流体具有介于固体与液体之间的特性。其流动行为可能包括弹性回复和粘性瞬时流动。
粘弹性流体的流动行为
1
剪切应力与剪切速率关系
粘弹性流体的流动特性与剪切速率相关,可能表现出剪切应力随剪切速率增加而 增加的非线性关系。
2
流变学模型
通过建立流变学模型来描述粘弹性流体的流动行为。
3
实验演示
演示粘弹性流体的流动行为,以帮助理解其复杂性。
课件:非牛顿流体流动
4. 粘弹性非牛顿流体
剪切应力同时依赖于剪切速率和变形程度的非牛顿流体。
• 既具有与时间有关的非牛顿流体的全部流变性质; • 又具有部分弹性恢复效应的物料的性质。 • 豆荚植物胶、田菁粉、聚丙烯酰胺等。
既具有粘性,又具有弹性,表现为:
• 自漏斗流出后,流束变粗,发生膨胀(挤出胀大现象); • 搅拌时,停止搅动表现有弹性反转(回弹现象); • 爬杆现象,同心套管轴向流动现象,无管虹吸现象,次级流现象等。 • 其粘度用一般粘度计无法测定。
• 高含蜡或沥青质的易凝原油、 • 钻井用的钻井液、 • 采油用的增粘液或降粘液, • 各种高分子溶液。
剪切变形规律、流动规律都与牛顿流体有别。
4
定义
流变特性:流体在温度一定及没有湍流的情况下,所承受的 剪切应力与产生的垂直于剪切面的剪切速率之间的关系,即 流体变形与外加应力之间的关系。
这种关系可用流变曲线或流变方程来表示。
• 一受外力就开始流动; • 在一定温度下,剪切应力与剪切速率的比值是常数,不随剪切速率而
变化。动力粘性系数 co,ns剪t 应力与变形速率满足线性关系。
• 气体、水、轻质成品油和高温时的原油等。
3
不满足牛顿内摩擦定律的流体称为非牛顿流体,即剪应 力与变形速率不满足线性关系。
在工业中广泛存在着非牛顿流体,如:
• 开始流动后,其流变曲线的斜率随剪切速率的增大而减小;
• 呈现触变性,在一定剪切速率下,其剪切应力随外力作用时间的延续 而下降,最后达到平衡。
流变方程:
0
K
du dy
n
(n 1)
流变曲线5
17
(2)反触变性流体(震凝性非牛顿流体)
• 在恒定的剪切速率下,其剪切应力随剪切时间的延续而 增大到一个最大值,静止一段时间后又下降,甚至恢复其 初始值; • 例如,某些浓淀粉溶液、鸡蛋白。
非牛顿流体的原理
非牛顿流体的原理
非牛顿流体是指在流动过程中其流动性质会随着应力或剪切速率的变化而变化的流体。
其原理可以通过以下几个方面来解释:
1. 流变性:非牛顿流体的流动特性与牛顿流体不同,在受到剪切力时,其黏度呈现非线性变化。
剪切力越大,黏度越大,流动越困难;剪切力越小,黏度越小,流动越容易。
这是因为非牛顿流体中含有高分子聚合物或颗粒等物质,这些物质之间的相互作用会影响流体的流动性。
2. 颗粒悬浮:非牛顿流体中可能存在颗粒悬浮,这些颗粒会增加流体的黏度并导致流动特性的改变。
当流体受到剪切力时,颗粒间的相互作用会改变颗粒的排列方式,从而影响流体的流动性质。
3. 高分子聚合物:非牛顿流体中含有高分子聚合物,这些聚合物在静止时将形成网络结构并增加流体的黏度。
当流体受到剪切力时,聚合物链会发生伸展,从而减小流体的黏度。
这种特性导致了非牛顿流体的剪切变稀或变稠效应。
4. 温度和压力:非牛顿流体的流动特性还受到温度和压力的影响。
在不同温度和压力下,非牛顿流体的黏度会发生变化,进而影响流体的流动性。
总之,非牛顿流体的流动性质由多种因素决定,包括颗粒悬浮、高分子聚合物、温度和压力等。
这些因素会影响流体的黏度,并导致流体呈现剪切变稀或变稠的特性。
《非牛顿流体的流动》课件
地描述非牛顿流体的流动行为。
深入研究非牛顿流体的微观机制
02
通过先进的实验技术和计算机模拟,深入了解非牛顿流体的微
观结构和流变特性。
探索非牛顿流体的应用
03
发掘非牛顿流体的潜在应用价值,如生物医学、石油工业、食
品加工等领域。
非牛顿流体的发展前景
推动相关领域的发展
随着对非牛顿流体研究的深入,将推动流变学、物理、工程等领 域的进步。
屈服值
在流动曲线上,非牛顿流体从静止状态开始流动所需的最小应力。屈服值是非牛 顿流体的一个重要特性,它反映了流体抵抗外力作用的能力。
流动行为与流变模型
流动行为
描述非牛顿流体在受到外力作用时如何响应和流动。不同的非牛顿流体具有不同的流动行为,如触变性、震凝性 、假塑性和胀流性等。
流变模型
为了更好地描述非牛顿流体的流动特性,根据其流动行为和流变特性建立的数学模型。常见的流变模型包括幂律 模型、卡森模型、伯格斯模型和柯西模型等。这些模型可以用来预测非牛顿流体的流变性质和流动行为,为工程 应用提供重要的参考依据。
材料。
石油加工
非牛顿流体在石油加工过程中也 有应用,如用于制作润滑油、燃 料油和添加剂等。通过调整非牛 顿流体的性质,可以提高石油产
品的性能和质量。
04
非牛顿流体的研究方法
实验研究
实验研究是通过实际操作和观察来研究非牛顿流体的流动特性。这种方法可以提供 直接、真实的数据,有助于深入了解非牛顿流体的流动行为。
生物医学研究
非牛顿流体在生物医学研究中也有应用,如模拟生物组织 的流动行为,为研究提供更接近实际的模型。
石油工业
油田开采
非牛顿流体在石油工业中用于油 田开采,通过调整采出液体的流 变性质,可以提高油田的采收率
非牛顿流体的本质与流动特性
非牛顿流体的本质与流动特性引言在流体力学领域中,牛顿流体是最常见的一种流体类型。
牛顿流体按照牛顿第二运动定律的描述可以简化为线性关系,流体的黏度不随剪切速率的改变而改变。
然而,在实际应用中,我们经常会遇到一些黏度随剪切速率变化的情况,这些流体被称为非牛顿流体。
非牛顿流体的本质与流动特性是流体力学中一个重要的课题。
本文将从非牛顿流体的定义、分类、流动特性以及应用等方面进行综述,以加深对非牛顿流体的理解。
非牛顿流体的定义非牛顿流体是指其黏度随剪切速率或剪切应力的改变而改变的流体。
与牛顿流体相比,非牛顿流体在应变速率较大时显示出了明显的非线性特征。
非牛顿流体的变形行为分为弹性变形和粘性变形两种。
弹性变形指的是流体在受力后恢复原状的能力,而粘性变形则是指流体在受力后无法完全恢复原状的现象。
非牛顿流体的分类根据非牛顿流体的流动性质和黏度变化规律,可以将其分为多种类型,下面介绍几种常见的非牛顿流体分类。
塑性流体塑性流体是一种在低应力下表现为固体,而在较高应力下才表现为流体的非牛顿流体。
当外力大于一定临界值时,塑性流体才能发生流动。
塑性流体的流动规律可由卡塞格伦模型描述,该模型将塑性流体视为一种存在阻力的弹簧系统。
粘弹性流体粘弹性流体是指既具有弹性固体的特性,又具有粘性流体的特性的一类材料,其黏度随变形速率和时间的改变而改变。
粘弹性流体可用弹簧和粘滞器并联的模型进行表征,其流变行为介于弹性固体和牛顿液体之间。
纳米流体纳米流体是指在普通流体中加入纳米颗粒后形成的流体,纳米颗粒的添加使得流体具有了新的特性。
纳米流体的黏度和流变行为与纳米颗粒的浓度和形状密切相关。
纳米流体具有优异的热导性和力学性能,在热传导和润滑方面具有广泛的应用前景。
非牛顿流体的流动特性非牛顿流体的流动特性主要表现在其剪切应力与剪切速率之间的非线性关系上。
剪切稀释效应剪切稀释效应是非牛顿流体的一种典型的非线性特征,指的是黏度随剪切速率的增加而降低的现象。
非牛顿流体的流动特性研究
非牛顿流体的流动特性研究非牛顿流体是一类具有特殊流动行为的流体,其黏度不是恒定的,而是随着剪切力的大小而改变。
这些流体在许多重要的工程和科学领域中都有广泛的应用,例如生物医学、油田开发和食品加工等。
本文将对非牛顿流体的流动特性进行研究,探讨其流变学行为以及在不同应用领域的实际应用。
一、非牛顿流体的流变学行为非牛顿流体的流变学行为与牛顿流体有所不同。
牛顿流体的黏度是恒定的,无论剪切力大小如何,流体的黏性都不会改变。
而非牛顿流体根据黏度-剪切率关系可分为切变稀释型与切变增稠型两类。
1. 切变稀释型切变稀释型的非牛顿流体,其黏度随剪切率的增加而减小。
这种流体在应力作用下会发生流动,并且黏度会随着流动过程中剪切作用的加大而减小。
常见的切变稀释型非牛顿流体有血液、某些聚合物溶液等。
血液的黏度随着剪切作用减小,可以保证血液在人体内正常循环。
2. 切变增稠型切变增稠型的非牛顿流体,其黏度随剪切率的增加而增加。
这种流体在受到外力时,其黏度会随着剪切作用的加大而增加。
常见的切变增稠型非牛顿流体有某些胶体溶液和混凝土等。
某些胶体溶液,如打印墨水,其黏度随着剪切作用的增加而增加,可以防止墨水在印刷过程中的扩散。
二、非牛顿流体的实际应用非牛顿流体在工程和科学领域中有广泛的应用,下面将主要介绍其中几个方面的应用。
1. 生物医学应用非牛顿流体在生物医学领域中有着重要的应用。
例如,血液作为切变稀释型非牛顿流体,在心脑血管疾病诊断和治疗中扮演着重要的角色。
另外,人体关节内的关节液也是一种非牛顿流体,对于关节的润滑和保护具有重要作用。
2. 油田开发应用非牛顿流体在油田开发中具有广泛的应用。
例如,油井钻进液作为一种切变增稠型非牛顿流体,可以用于控制井孔稳定和冷却井壁。
另外,聚丙烯酰胺溶液也常用于油井水泥浆增稠剂,以提高水泥浆的悬浮性和稳定性。
3. 食品加工应用非牛顿流体在食品加工过程中有重要的应用。
例如,面团在搅拌过程中会变得越来越粘稠,这是因为面粉中的蛋白质在剪切作用下发生凝聚所致。
高粘性非牛顿流体的输运与传热分析
高粘性非牛顿流体的输运与传热分析非牛顿流体是指在流动过程中其粘度会随着应力的变化而发生改变的流体,其输运和传热特性与牛顿流体存在不同之处。
本文将对高粘性非牛顿流体的输运与传热进行详细分析。
首先,我们需要了解高粘性非牛顿流体的特性。
在高粘性非牛顿流体中,粘度与流体的剪切速率和应力密切相关。
常见的高粘性非牛顿流体包括聚合物、蛋白质溶液和浆液等。
这些流体在输运和传热过程中表现出与牛顿流体不同的复杂行为,导致需要采用不同的研究方法和模型来描述。
在输运方面,高粘性非牛顿流体的输运行为主要受到流变性质的影响。
流变学是研究物质在外力作用下流动和变形的学科。
对于高粘性非牛顿流体,我们需要建立适当的流变学模型来描述其输运特性。
常用的流变学模型包括Bingham模型、卡默-布雷尔模型和Maxwell模型等。
这些模型可以通过实验数据拟合得到流体的流变参数,从而预测流体在输运过程中的行为。
在实际应用中,通过流变学模型可以优化流体在管道和装置中的输送性能,提高生产效率。
对于高粘性非牛顿流体的传热分析,需要考虑流体的热传导、对流和辐射等传热机制。
热传导是指通过分子间碰撞传递热量的过程,对于高粘性非牛顿流体的热传导分析,可以采用传热方程和流体的热导率等参数进行计算。
在对流传热方面,高粘性非牛顿流体常常表现出流动阻力大的特点,需要考虑流体流动对传热效果的影响。
辐射传热是指通过电磁波辐射传递热量的过程,对于高粘性非牛顿流体的传热分析,需要考虑辐射传热的影响。
在高粘性非牛顿流体输运和传热分析的实际应用中,有许多工程和科学领域会遇到类似问题。
例如,化工工艺中的高粘性聚合物溶液的输送和加热过程,食品加工中高粘度浆液的搅拌和加热过程,以及生物医学领域中蛋白质溶液的运输和冷却过程等。
在这些应用中,正确理解高粘性非牛顿流体的输运和传热特性对于优化生产工艺、提高产品质量、节约能源等具有重要意义。
总结起来,高粘性非牛顿流体的输运与传热分析是一个复杂的课题,需要考虑流变学和传热学等多个学科的知识。
6非牛顿流体ppt课件
7
7
工程流体力学
六、非牛顿流体的流动
• 如图示:表观粘度 随速
度梯度的增大而减小。
• 而塑性粘度 和动切应力 0
相对为常数。故该两参数为 反映塑性流体流变性能的重 要参数,即特性参数。
• 和 0 可用毛细管粘
度计和旋转粘度计测定。
0 1
0
dy du
du
工程流体力学
六、非牛顿流体的流动
第六章、非牛顿流体的流动
本章将介绍几种常见的非牛顿流体,重 点研究塑性流体运动的基本规律,并讨论塑 性流体压力损失计算方法及幂律流体的运动 规律。
1
1
工程流体力学
六、非牛顿流体的流动
按照流体流动时的切应力和速度梯度之间的
关系,将流体分为牛顿流体和非牛顿流体。
1、牛顿流体
即粘度为常数;
dy
(3)流变曲线是通过原点的直线,其斜率为 动力粘度的倒数,即 tan 1
5
5
工程流体力学
三、非牛顿流体的流变性
六、非牛顿流体的流动
1、塑性流体
特征:由液体及悬浮在其中的固体微粒所组成的胶状体。
如含蜡原油、牙膏、泥浆、润滑脂等。
当塑性流体速度达到一定程度时,其流变方程可用宾 汉公式表示(也称宾汉流体)。
0
du dy
( 0
dy du
)
du dy
极限动 切应力
6
塑性粘度
表观粘度
(视粘度)
6
工程流体力学
六、非牛顿流体的流动
塑性流体特点:
(1)塑性流体的流变性与牛顿流体不同,受力后,不能立 即变形流动。
(2)流动初期切应力与速度梯度之间呈曲线关系,粘度随 切应力增大而降低,随速度梯度的增大,切应力逐渐减弱, 最后接近牛顿流体,成直线关系,流体的粘度不再随切应 力的增加而变化,称为塑性粘度。
简短非牛顿流体的原理
简短非牛顿流体的原理
非牛顿流体的原理是指在外力的作用下,其流动性质会发生变化的流体。
与牛顿流体不同,非牛顿流体的粘度随着应力的改变而发生变化。
其原理主要有两个方面:
1. 剪切变稀原理:在剪切应力作用下,非牛顿流体的粘度会降低,流动性增强。
这是因为剪切应力破坏了流体内部的聚集结构,使得分子或颗粒之间的相互作用减弱,从而流体的流动变得更加容易。
2. 剪切变稠原理:在剪切应力达到一定程度后,非牛顿流体的粘度会增加,流动性减弱。
这是由于剪切应力增大使得流体内部的聚集结构重新形成,分子或颗粒之间的相互作用增强,从而阻碍了流体的流动。
非牛顿流体的这种特性使得它在实际应用中具有很大的灵活性和适应性。
例如,在润滑油、膏霜、墨水、泥浆等物质中常常存在非牛顿流体的特性,这些物质的流动性能能够根据实际应力条件的改变来进行调节。
非牛顿流体的流动
8 非牛顿流体的流动
8 非牛顿流体的流动
水、空气和润滑油等是化学结构比较简单的低分子流 体,其运动遵循牛顿内摩擦定律,即剪切应力τ与流速梯 du 度 成线性关系,如下式所示: dy du = (1) dy 这一类流体称为牛顿流体。上式中的 μ是在任意给 定温度、压强条件下牛顿流体流动的特征性比例常数,此 比例常数即所谓流体粘度(动力粘性系数)。
8.1 非牛顿流体的分类及其流变方程
表1 粘性流体的分类
牛顿流体
纯 粘 性 流 体
与 时 间 无 关 的
假塑性流体 膨胀性流体
宾汉流体 ( 塑性流体 )
屈服-假塑性流体 屈服-膨胀性流体
与时 间有 关的
触变性流体 震凝性流体
非 牛 顿 流 体
粘弹性 流体
多种类型
(a) 纯粘性流体在 撤除剪切应力后,它 们在受剪切应力作用 期间的任何形变都不 会回复; (b) 而粘弹性流体 在撤除剪切应力后, 它们在受剪切应力作 用期间所产生的形变 会完全或部分地得到 回复。
8 非牛顿流体的流动
8.1 非牛顿流体的分类及其流变方程
8.2 非牛顿流体的结构流 8.3 塑性流体的流动规律
8.4 幂律流体的流动规律
8.5 卡森流体在圆管中的结构流
8.6 管流研究的特性参数法
8.7 非牛顿流体流变性参数的测定
8.1 非牛顿流体的分类及其流变方程
8.1.1 非牛顿流体的分类
非牛顿流体力学的研究对象主要是流体,它要研究的 是流体的流动与变形,因此,非牛顿流体力学就是研究流 体流变学的科学,也可称为流体流变学。
8.1 非牛顿流体的分类及其流变方程
本构方程是描述物质对所受力的力学响应的 方程,也称为流变方程。 描述流体剪切应力和流速梯度之间关系的方 程,称为流体的本构方程,它只决定于流体本身 的性质,是研究流动问题的前提条件,对流动问 题的解具有实质性的影响。 由于影响非牛顿流体性质的因素比较复杂, 通常采用实验方法建立剪切应力与流速梯度之间 的关系曲线,称为流变曲线。
非牛顿流体简单原理
非牛顿流体简单原理
非牛顿流体是指在流动过程中不符合牛顿流体流动定律的流体。
牛顿流体的流动速率仅取决于施加的剪切力,并且粘度(黏度)保持不变,而非牛顿流体的粘度随剪切速率的改变而变化。
非牛顿流体的流动特性可以归因于流体中存在的微观结构。
一种常见的非牛顿流体是塑性流体,如黏土或浆糊。
这类流体在低剪切速率下表现为固体般的行为,当施加的剪切力超过一定的临界值时,流体才开始流动。
在这种情况下,剪切速率越大,粘度越低,流动性越好。
另一种类型的非牛顿流体是假塑性流体,如牙膏或润滑油。
这类流体在受到剪切力时会变得更加黏稠,粘度增加,而在没有外力作用时则呈现流动性。
这是因为流体中的微观颗粒或分子会在剪切力的作用下重新排列或形成聚集结构,从而增加了流体的黏度。
还有一种非牛顿流体是剪切稀释流体,如血液或聚合物溶液。
这类流体在剪切力作用下,流动速率增大,粘度减小。
这是由于流体中分子构型的改变导致了流动的改变,从而使流体呈现出非牛顿性质。
总而言之,非牛顿流体的流动特性不仅仅取决于施加的剪切力,还取决于流体中微观结构的变化。
这些微观结构可以通过剪切力的作用而重新排列或形成,从而影响流体的流动性质。
非牛顿流体科学原理
非牛顿流体科学原理概述非牛顿流体是指在受到外部力作用时,其流动性质不符合牛顿流体的流动规律的一类流体。
与牛顿流体不同,非牛顿流体的粘度是一个变量,它可以随流动剪切应力的增加或减小而发生改变。
非牛顿流体在众多领域中都有广泛的应用,例如食品工业、石油工业和药物制造业等。
本文介绍了非牛顿流体的科学原理,包括其基本概念、流变学和流动性质。
基本概念牛顿流体首先,我们先了解一下牛顿流体的概念。
牛顿流体是最简单的一类流体,其粘度是常数,不随剪切应力的变化而改变。
牛顿流体的流动规律符合牛顿流体力学定律,即流体的切应力与剪切速率成正比。
例如,水和空气就是典型的牛顿流体。
非牛顿流体非牛顿流体与牛顿流体相比,其粘度是一个变数,取决于流动中的剪切应力。
非牛顿流体的流动规律不再满足牛顿流体力学定律。
根据流变学的定义,非牛顿流体可以分为剪切变稀(剪切应力增加而粘度降低)和剪切变稠(剪切应力增加而粘度增加)两种类型。
流变学流变学研究的是流体的流变性质,即流体随剪切应力的变化而产生的变形和应力关系。
对于非牛顿流体,流变学是研究其流动规律的基础。
剪切应力剪切应力是非牛顿流体流动过程中产生的应力。
在非牛顿流体中,剪切应力与变形速率之间的关系不再是线性的。
根据非牛顿流体的性质,剪切应力可以使流体发生变稀或变稠的现象。
流变曲线流变曲线是描述非牛顿流体剪切应力与剪切速率关系的图形。
通过测量不同剪切速率下的剪切应力,可以得到流变曲线。
根据流变曲线的形状,可以对非牛顿流体进行分类和分析。
流变模型流变模型是对非牛顿流体流变性质的数学描述。
根据不同的流变模型,可以预测非牛顿流体在不同剪切应力下的流动规律。
常见的流变模型包括幂律模型、卡塞格伦模型和本氏模型等。
流动性质非牛顿流体的流动性质与剪切应力有密切关系。
在不同的剪切应力下,非牛顿流体表现出不同的流动特性。
剪切稀化剪切稀化是指非牛顿流体在剪切应力增加时粘度降低的现象。
在剪切稀化流动中,非牛顿流体表现出流动性增强的特性。
第二章 非牛顿流体在管道中的流动
Bingham,Herschel-Bulkley:
Q r u u 2rdr
2 0 0 r0
R
第二节 非牛顿流体管流的流态判断
Flow regimes of non-Newtonian Pipe flow
一、Metzner-Reed雷诺数(广义雷诺数)
Metzenr-Reed/generalized Reynolds Number
n 1 n
对牛顿流体:
u u max r 1 R
2
3.Bingham塑性体
y R r p R 2 r 2 p 4 pl
duz y dr p
y
y y 1 pr p 1 2 u r dr r r c p p 2l p 2 pl 2
16 故,牛顿流体层流时,有 f Re 64 Re
16e 对非牛顿流体层流,定义 f Re MR
又
f
V 2 / 2
w
w 16 Re MR V 2 /8
8V (下一章证明之) 对非牛顿流体管流 w K D
'
n'
整理可得 Re MR
D n ' V 2-n '
1
Power law
或
n 4lK 3n 1 8V 8 3 n 1 Q P 4 lK n D3n1 D 4n D n n
n=1时
Q P ∝ 3 n 1 D Q P ∝ 4 D
n
n 1时,P对Q、D的依赖性减小。 物理解释:剪切稀释性
8V 32Q 4 3 3 D D w 4
非牛顿流体的原理
非牛顿流体的原理非牛顿流体是指在受力作用下,流体黏度随着剪切速率的变化而变化的流体。
与牛顿流体不同,非牛顿流体的黏度不是一个恒定值,而是和流体的流动状态有关。
非牛顿流体的原理可以通过以下几个方面来解释。
首先,非牛顿流体的原理与分子结构有关。
在非牛顿流体中,分子之间的相互作用会随着流体受力而发生变化,从而导致流体的黏度随着剪切速率的变化而变化。
这种分子结构导致了非牛顿流体在流动过程中表现出不同的黏度特性,如剪切稀化和剪切增稠等现象。
其次,非牛顿流体的原理与流体微观结构有关。
在非牛顿流体中,流体微观结构的变化会导致流体的黏度发生变化。
例如,在受力作用下,流体中的微观结构会发生重新排列,从而导致流体的黏度发生变化。
这种微观结构的变化是非牛顿流体表现出不同流动特性的重要原因之一。
另外,非牛顿流体的原理与流体的流动状态有关。
在非牛顿流体中,流体的流动状态会影响流体的黏度特性。
当流体处于不同的流动状态时,流体的黏度会呈现出不同的变化规律。
例如,在非牛顿流体中,当流体受到较大的剪切力时,流体的黏度会随着剪切速率的增加而减小,这种现象被称为剪切稀化;而当流体受到较小的剪切力时,流体的黏度会随着剪切速率的增加而增大,这种现象被称为剪切增稠。
总的来说,非牛顿流体的原理是由流体的分子结构、流体的微观结构和流体的流动状态共同决定的。
这些因素相互作用,导致了非牛顿流体表现出不同的流动特性。
了解非牛顿流体的原理对于工程应用具有重要意义,可以为相关领域的工程设计和工艺控制提供理论依据。
在实际工程中,非牛顿流体的原理被广泛应用于液体的输送、搅拌、混合等工艺中。
通过对非牛顿流体的特性和原理进行深入研究,可以更好地指导工程实践,提高工艺的效率和质量。
总之,非牛顿流体的原理是一个复杂而又有趣的科学问题,它的研究不仅有助于我们更好地理解流体的行为,还可以为工程应用提供理论支持。
希望通过对非牛顿流体原理的深入研究,能够推动相关领域的发展,为工程实践和科学研究提供更多的启发和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非牛顿流体的研究性学习非牛顿流体科技名词定义中文名称:非牛顿流体英文名称: non-Newtonian fluid定义:黏度系数在剪切速率变化时不能保持为常数的流体。
所属学科:机械工程(一级学科);分析仪器(二级学科);物性分析仪器-物性分析仪器一般名词(三级学科)(本内容由全国科学技术名词审定委员会审定公布)牛顿1687年发表了以水为工作介质的一维剪切流动的实验结果。
实验是在两平行平板间充满水时进行的(图1),下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时附于上下平板的流体质点的速度分别为U和0,两平板间的速度呈线性分布。
由此得到了著名的牛顿粘性定律相关理论斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性、流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及现被广泛应用的纳维-斯托克斯方程。
后来人们在进一步的研究中知道,牛顿粘性实验定律(以及在此基础上建立的纳-斯方程)对于描述像水和空气这样低分子量的流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间已不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
人身上的血液、淋巴液、囊液等多种体液以及像细胞质那样的“半流体”都属于非牛顿流体。
现在去医院作血液测试的项目之一,已不再说是“血粘度检查”,而是“血液流变学检查”(简称血流变),这就是因为对血液而言,剪应力与剪切应变率之间不再是线性关系,已无法只给出一个斜率(即粘度)来说明血液的力学特性。
非牛顿流体及其奇妙特性现在去医院作血液测试的项目之一,己不再是“血黏度检查”,而是“血液流变学捡查”(简称血流变),为什么会有这样的变化呢?这就要从非牛顿流体谈起。
英国科学家牛顿于1687年,发表了以水为工作介质的一维剪切流动的实验结果。
实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是黏度系数。
由此得到了著名的牛顿黏性定律。
斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的纳维-斯托克斯方程(简称:纳斯方程)。
后来人们在进一步的研究中知道,牛顿黏性实验定律(以及在此基础上建立的纳斯方程),对于描述像水和空气这样低分子量的简单流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
因为对血液而言,剪应力与剪切应变率之间己不再是线性关系,己无法只给出一个斜率(即黏度)来说明血液的力学特性,只好作血流变学测试,给出二者间的非线性关系。
形形色色的非牛顿流体早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
人身上的血液、淋巴液、囊液等多种体液,以及像细胞质那样的“半流体”,都属于非牛顿流体。
近几十年来,促使非牛顿流体研究迅速开展的主要动力之一,是聚合物工业的发展。
聚乙烯、聚丙烯酰胺、聚氯乙烯、尼龙6、PVS、赛璐珞、涤纶、橡胶溶液、各种工程塑料、化纤的熔体、溶液等,都是非牛顿流体。
石油、泥浆、水煤浆、陶瓷浆、纸浆、油漆、油墨、牙膏、家蚕丝再生溶液、钻井用的洗井液和完井液、磁浆、某些感光材料的涂液、泡沫、液晶、高含沙水流、泥石流、地幔等也都是非牛顿流体。
非牛顿流体在食品工业中也很普遍,如番茄汁、淀粉液、蛋清、苹果浆、菜汤、浓糖水、酱油、果酱、炼乳、琼脂、土豆浆、熔化巧克力、面团、米粉团、以及鱼糜、肉糜等各种糜状食品物料。
综上所述,在日常生活和工业生产中,常遇到的各种高分子溶液、熔体、膏体、凝胶、交联体系、悬浮体系等复杂性质的流体,差不多都是非牛顿流体。
有时为了工业生产的目的,在某种牛顿流体中,加入一些聚合物,在改进其性能的同时,也将其变成为非牛顿流体,如为提高石油产量使用的压裂液、新型润滑剂等。
现在也有人将血液、果浆、蛋清、奶油等这些非常黏稠的液体,牙膏、石油、泥浆、油漆、各种聚合物(聚乙烯、尼龙、涤纶、橡胶等)溶液等非牛顿流体,称为软物质。
【研究目的】(1)初步了解非牛顿流体的制备方法与识别标准(2)初步认识非牛顿流体的特殊性质(3)非牛顿流体的创新应用【器材】淀粉,水,硬质小球,两容器,一表面光滑的长棍,一中空导管一碟一碗一杯一筷子【研究过程】1以淀粉:水=3:1的比例先加水后加淀粉混合两物质,搅拌的淀粉糊(非牛顿流体)2用一保鲜袋包着穿个洞再再用力挤.3再使其自由流下4在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,把实验杆插进流体中再旋转。
5把流体装进一杯中,微向侧倾致有流体留下,再立正.6用一重球从高处落下打到流体上。
【总结与思考】【本研究查的资料】(1)淀粉糊型非’的制法(2)非’的辨别标准(3)非牛顿流体特性及研究3.1 射流胀大(4)如果非牛顿流体被迫从一个大容器流进一根毛细管,再从毛细管流出时,可发现射流的直径比毛细管的直径大3.2爬杆效应在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。
对于牛顿流体,由于离心力验的作用,液面将呈凹形;而对于粘弹性流体,却向杯中心运动,并沿杆向上爬,液面变成凸形。
甚至在实验杆的旋转速度很低时,也可以观察到这一现象。
3.3无管虹吸将管子慢慢地从容器里拔起时,可以看到虽然管子已不再插在流体里,流体仍源源不断地从杯中抽起,继续流进管里。
甚至更简单地,连虹吸管都不要,将装满该流体的烧杯微倾,使流体流下,这过程一旦开始,就不会中止,直到杯中流体都流光。
3.4连滴效应(其自由射流形成的小滴之间有液流小杆相连)3.5拔丝性(能拉伸成极细的细丝,可见笔者另一文“春蚕到死丝方尽”)3.6剪切变稀3.7液流反弹非牛顿流体的奇妙特性及应用射流胀大如果非牛顿流体被迫从一个大容器,流进一根毛细管,再从毛细管流出时,可发现射流的直径比毛细管的直径大。
射流的直径与毛细管直径之比,称为模片胀大率(或称为挤出物胀大比)。
对牛顿流体,它依赖于雷诺数,其值约在0.88~1.12之间。
而对于高分子熔体或浓溶液,其值大得多,甚至可超过10。
一般来说,模片胀大率是流动速率与毛细管长度的函数。
模片胀大现象,在口模设计中十分重要。
聚合物熔体从一根矩形截面的管口流出时,管截面长边处的胀大,比短边处的胀大更加显著。
尤其在管截面的长边中央胀得最大。
因此,如果要求生产出的产品的截面是矩形的,口模的形状就不能是矩形,而必须是四边中间都凹进去的形状。
这种射流胀大现象,也叫Barus效应,或Merrington效应。
图 1 奶酪生产情景:奶酪从管中流出后马上胀大爬杆效应1944年Weissenberg在英国伦敦帝国学院,公开表演了一个有趣的实验:在一只有黏弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。
对于牛顿流体,由于离心力的作用,液面将呈凹形;而对于黏弹性流体,却向杯中心流动,并沿杆向上爬,液面变成凸形,甚至在实验杆旋转速度很低时,也可以观察到这一现象。
爬杆效应也称为Weissenberg效应。
在设计混合器时,必须考虑爬杆效应的影响。
同样,在设计非牛顿流体的输运泵时,也应考虑和利用这一效应。
图 2 爬杆效应实验:左为牛顿流体,右为黏弹性流体无管虹吸对于牛顿流体来说,在虹吸实验时,如果将虹吸管提离液面,虹吸马上就会停止。
但对高分子液体,如聚异丁烯的汽油溶液和百分之一的POX水溶液,或聚醣在水中的轻微凝肢体系等,都很容易表演无管虹吸实验。
将管子慢慢地从容器拨起时,可以看到虽然管子己不再插在液体里,液体仍源源不断地从杯中抽出,继续流进管里。
甚至更简单些,连虹吸管都不要,将装满该液体的烧杯微倾,使液体流下,该过程一旦开始,就不会中止,直到杯中液体都流光。
这种无管虹吸的特性,是合成纤维具备可纺性的基础。
图 3 无管缸吸:对于化纤生产有重要意义湍流减阻非牛顿流体显示出的另一奇妙性质,是湍流减阻。
人们观察到,如果在牛顿流体中加入少量聚合物,则在给定的速率下,可以看到显著的压差降。
湍流一直是困扰理论物理和流体力学界未解决的难题。
然而在牛顿流体中加入少量高聚物添加剂,却出现了减阻效应。
有人报告:在加入高聚物添加剂后,测得猝发周期加大了,认为是高分子链的作用。
减阻效应也称为Toms效应,虽然其道理尚未弄得很清楚,却己有不错的应用。
在消防水中添加少量聚乙烯氧化物,可使消防车龙头喷出的水的扬程提高一倍以上。
应用高聚物添加剂,还能改善气蚀发生过程及其破坏作用。
图 4 湍流减阻:在同样动力下两幅消防水龙头喷水。
上图为未添加聚乙烯氧化物的情形,下图为添加聚乙烯氧化物后的情形非牛顿流体除具有以上几种有趣的性质外,还有其他一些受到人们重视的奇妙特性,如拔丝性(能拉伸成极细的细丝),剪切变稀,连滴效应(其自由射流形成的小滴之间有液流小杆相连),液流反弹等。
由于非牛顿流体涉及许多工业生产部门的工艺、设备、效率和产品质量,也涉及人本身的生活和健康,所以越来越受到科学工作者的重视。
1996年8月在日本京都国际会议中心,召开的第19届国际理论与应用力学大会(IUTAM )上,非牛顿流体流动是大会的6个重点主题之一,也是流体力学方面参与最踊跃的主题。
Grochet 邀请报告的观点是,高分子溶液和熔体的特性远异于牛顿流体,并认为对这些异常特性的研究,都是带有挑战性的课题。
(原刊登于《物理教学》2002年24卷3期)1、牛顿流体流体流动时切应力和速度梯度之间的关系符合牛顿内摩擦定律的流体。
dy duμτ±=2、非牛顿流体流体流动时切应力和速度梯度之间的关系不符合牛顿内摩擦定律的流体。
3、非牛顿流体的分类粘弹性流体动之中的、弹性变形寓于粘性流震凝性流体触变性流体流体、流变性与时间有关的膨胀性流体屈服假塑性流体屈服膨胀流体假塑性流体塑性流体流体、流变性与时间无关的非牛顿流体⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧--321二、流变性、流变方程和流变曲线 流变性:流体流动和变形的特性。
流变方程:描述切应力与速度梯度之间关系的方程式。
流变曲线:在直角坐标中表示流体切应力和速度梯度之间变化关系的实验曲线。
1、牛顿流体(A ) 流变方程:dy duμτ±=特点:(1)受到外力作用就流动;(2)在恒温恒压下,τ与dy du的比值为常数即粘度为常数;(3)流变曲线是通过原点的直线,其斜率为动力粘度的倒数,即μα1tan =2、塑性流体(B ) 流变方程(宾汉公式):)适用于流变曲线直线段(0dy dupηττ+=特点:(1)塑性流体的流变性与牛顿流体不同,受力后,不能立即变形流动。