2019年河北中考数学专题复习(一)数学思想方法

合集下载

2019-2020年中考数学专题复习题:数学思想方法

2019-2020年中考数学专题复习题:数学思想方法

2019-2020年中考数学专题复习题:数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一整体思想例1 (xx·内江)已知+=3,则代数式的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题.【解答】方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(xx·安徽)已知x2-2x-3=0,则2x2-4x的值为( )A.-6B.6C.-2或6D.-2或302.(xx·乐山)若a=2,a-2b=3,则2a2-4ab的值为 .3.(xx·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( xx·菏泽)已知x2-4x+1=0,求-的值.类型之二分类思想例2 (xx·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(xx·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()A.2cmB.4cmC.2cm或4cmD.2cm或4cm2.(xx·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3, -3)是一平行四边形的顶点,则D点的坐标为 .4.(xx·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点P为圆心, cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).6.(xx·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(xx·襄阳)在□ABCD中,BC边上的高为4,AB=5,AC=2,则□ABCD的周长等于 .类型之三转化思想例3 (xx·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D点在圆上,连接OD,证明OD与CD垂直即可;(2)连接OD,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差.【解答】方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(xx·泰安)如图,半径为2 cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( )A.(-1)cm2B.(+1)cm2C.1 cm2D. cm22.(xx·潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[]=5,则x的取值可以是( )A.40B.45C.51D.563.(xx·菏泽调考)将4个数a、b、c、d排成两行、两列,两边各加一条竖线段记成,定义=ad-bc,上述记号就叫做二阶行列式,若 =8,则x= .4.(xx·白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(xx·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.6.(xx·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B的最短距离为 cm.类型之四数形结合思想例4 (xx·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= t2;③直线NH 的解析式为y=-t+27;④若△ABE与△QBP相似,则t=秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(xx·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(xx·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(xx·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.7B.6C.5D.45.(xx·枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a2+4B.2a2+4aC.3a2-4a-4D.4a2-a-2类型之五方程、函数思想例5 (xx·泰安调考)将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r,圆柱的侧面积为S,建立S与r之间的函数关系式,利用函数的性质确定S取最大值时r的值.【解答】方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(xx·安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A. B. C.4 D.52.(xx·武汉)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(xx·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(xx·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .。

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。

解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。

所以a 的取值范围是全体实数。

点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。

2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。

例2、化简526-分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现526-可以写成2)15(1525-=+-,从而使题目得到化简。

解:1 5 )1 5 ( 1 52 ) 5 ( 1 5 2 5 5 2 6 2 2 2 - = - = + - = + - = - 点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。

3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。

例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。

分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。

解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x , ∴02)1(2<---x 。

因此,无论x 取什么实数,322-+-x x 的值是个负数。

中考数学复习 数学思想方法专题 优质课件

中考数学复习 数学思想方法专题 优质课件

例3 抛物线y=ax2+bx+c图象如图所示,则一次函数
y=-bx-4ac+b2与反比例函数y= a b c在同一坐标系内
的图象大致为( )
x
【解析】 从抛物线的图象可知:开口向上,∴a>0, 当x=1时,抛物线的图象在x轴的下方, ∴∴a由+ab++bc+<c0<,又0,由得x=反比2a例b >函0数及ya=>a0可bx 得c 的b图<象0,在第二、 四象限,由b<0即-b>0可知一次函数y=-bx-4ac+b2的图 象过第一、三象限,综上就应选D.
❖例4、已知△ABC内接于⊙ O,∠OBC=400 , 则∠A=__5_0_或_1_3_0度
A
500
●O
1000
400
C
B
1300
A
❖ 例3、在⊙O中弦AB平行于弦CD,AB=6,
CD=8,圆半径为5,则AB、CD之间的距离是 _____1_或_7_.
A C
E
B

●O D
F
❖ 例题4. 相交两圆的半径分别是8cm和5cm,公共弦长为
专题考点一 整体思想
• 整体思想:整体是与局部相对应的,按常规不易求某一个 或多个未知量时,可打破常规,根据题目的结构特征,把 一组数或一个代数式看作一个整体,从而使问题得到解决。
2a-3b=13
a=8.3
【例1】(2020淮北模拟)若方程
的解是

3a+5b=30.9
b=1.2

2(x+2)-3(y-1)=13
∵b>0,x>0,∴2bx>0.
∴a 2 +b 2 <c 2.
专题考点三 数形结合思想

中考数学复习《数学思想方法》

中考数学复习《数学思想方法》

数学思想方法(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 若a-2b=3,则2a-4b-5= .对应训练1.已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

例2如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).对应训练2.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为.考点三:分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

中考复习课件:专题一数学思想方法

中考复习课件:专题一数学思想方法

OG AO AG 3 9 3 . 44
M点在第三象限,M( 3, 9). 44
②若△AOM∽△ACB,则 AO AM, AC AB
即 3 AM,AM 3 4 2 2,
32 4
32
AG MG AM2 2
OG=AO-AG=3-2=1.
2
2
2
【解析】选C.延长CD交AB于点G, 则CG⊥AB,AG=BG=2, ∴AE2-FE2=EG2+AG2-(EG2+FG2) =4-FG2=4-(2-x)2 =-x2+4x, ∴y=-x2+4x.且根据题意知x≥0,y≥0.故选C.
3.(2010·成都中考)如图,在△ABC中, ∠B=90°,AB=12 mm,BC=24 mm,动点P从 点A开始沿边AB向B以2 mm/s的速度移动 (不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s的速度 移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经 过______秒,四边形APQC的面积最小.
AC OA2 OC2 (1)2 12 5 .
2
2
在△BOC中,
BC OB2 OC2 22 12 5.
AB OA OB 1 2 5 , 22
AC2 BC2 5 5 25 AB2,
4
4
∴△ABC是直角三角形.
(2)点D的坐标为( 3,1). 2
数学思想方法是指现实世界的空间形式和 数量关系反映到人的意识中,经过思维活动产生的结果,是 对数学事实与数学理论的本质认识.
数学思想:是对数学内容的进一步提炼和概括,是对数 学知识的本质认识,是对数学规律的理性认识,带有普遍的 指导意义,是建立数学模型和用数学解决问题的指导思想.

中考复习课件:专题一数学思想方法

中考复习课件:专题一数学思想方法
分类讨论思想是指当数学问题不宜统一方法处理时,我们常 常根据研究对象性质的差异,按照一定的分类方法或标准,将 问题分为全而不重,广而不漏的若干类,然后逐类分别进行 讨论,再把结论汇总,得出问题的答案的思想.
分类原则: (1)分类中的每一部分都是相互独立的; (2)一次分类必须是同一个标准; (3)分类讨论应逐级进行.分类思想有利于完整地考虑问题,化 整为零地解决问题. 分类讨论问题常与开放探索型问题综合在一起,贯穿于代数、 几何的各个数学知识板块,不论是在分类中探究,还是在探究 中分类,都需有扎实的基础知识和灵活的思维方式,对问题进 行全面衡量、统筹兼顾,切忌以偏概全.
∴△CPM∽△CBA.

CP CB

CM ,即 CA
4 5

CM 25
,
所以CM=5.
∴m=-1.
4
②如图2,当PC=PO时,点P在OC垂
直平分线上,所以PC=PO=PB,所以
PC= 1×BC=2.5. 2
由△CPM∽△CBA,得
CP CM ,所以CM 25 .
CB CA
8
m 4 25 7 . ③当OC=OP8时,8M点不在线段AC上.
OG AO AG 3 9 3 . 44
M点在第三象限,M( 3, 9). 44
②若△AOM∽△ACB,则 AO AM, AC AB
即 3 AM,AM 3 4 2 2,
32 4
32
AG MG AM2 2
OG=AO-AG=3-2=1.
2
2
2
【解析】(1)根据题意,将A(- 1 ,0),B(2,0)代入 2
y=-x2+ax+b中,

中考数学专题复习:数学思想方法

中考数学专题复习:数学思想方法

专题01 数学思想方法【要点提炼】一、【分类讨论的思想方法】有些问题包含的对象比较复杂,很难用一种情况概括它的全貌,这时往往按照一种标准把问题分成几类,分别进行讨论,再综合起来进行说明,这种思想方法称为分类讨论思想。

二、【数形结合思想】数形结合思想就是数学问题的题设与结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决。

在进行二次根式的化简时,可以利用数轴确定字母的取值范围,然后对式子进行化简。

三、【整体思想】整体思想是一种重要的思想方法,它把研究对象的一部分(或全部)视为整体,在解题时,则把注意力和着眼点放在问题整体结构上,从而触及问题的本质,避开不必要的计算,使问题得以简化。

四、【转化的思想方法】如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a >0),那么x=a或-a.【专题训练】一、单选题(共10小题)1.将一元二次方程x2+4x+2=0配方后可得到方程()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=6 D.(x+2)2=6【答案】B【解答】解:x2+4x+2=0,x2+4x=﹣2,x2+4x+4=2,(x+2)2=2.故选:B.【知识点】解一元二次方程-配方法2.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<4【答案】D【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.【知识点】配方法的应用3.已知a,b,c为有理数,当a+b+c=0,abc<0,求的值为()A.1或﹣3 B.1,﹣1或﹣3 C.﹣1或3 D.1,﹣1,3或﹣3【答案】A【解答】解:∵a+b+c=0,∴b+c=﹣a、a+c=﹣b、a+b=﹣c,∵abc<0,∴a、b、c三数中有2个正数、1个负数,则原式=+﹣=﹣1﹣1﹣1=﹣3或1﹣1+1=1或﹣1+1+1=1.故选:A.【知识点】绝对值、代数式求值4.若a﹣b=3,ab=1,则a3b﹣2a2b2+ab3的值为()A.3 B.4 C.9 D.12【答案】C【解答】解:a3b﹣2a3b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2将a﹣b=3,ab=1代入,原式=1×32=9,故选:C.【知识点】整式的混合运算—化简求值5.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【答案】A【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴6.若一个正比例函数的图象经过点A(1,﹣2),B(m,4)两点,则m的值为()A.2 B.﹣2 C.8 D.﹣8【答案】B【解答】解:设正比例函数的解析式为y=kx(k≠0),将A(1,﹣2)代入y=kx,得:﹣2=k,∴正比例函数解析式为y=﹣2x.当y=4时,﹣2m=4,解得:m=﹣2.故选:B.【知识点】待定系数法求正比例函数解析式7.下列分式方程无解的是()A.B.C.D.【答案】B【解答】解:∵方程A去分母,得2x=3(x﹣3),解得x=9,当x=9时,x(x﹣3)≠0,所以原方程的解为x=9;方程B去分母,得x2﹣1=2x﹣2,解得x=1,当x=1时,(x﹣1)(x2﹣1)=0,所以原方程无解;方程C去分母,得x+3﹣4x=0,解得x=1,当x=1时,2x(x+3)≠0,所以原方程的解为x=1;方程D去分母,得3x=2x+3x+3,解得x=﹣,当x=﹣时,3x+3≠0,所以原方程的解为x=﹣.故选:B.【知识点】分式方程的解8.当时,x+y的值为()A.2 B.5 C.D.【答案】D【解答】解:∵+=﹣,∴两边平方得出x+y+2=8﹣2,∵=﹣,∴两边同乘2,得2=2﹣2,∴x+y+2﹣2=8﹣2,则x+y=8﹣4+2.故选:D.【知识点】二次根式的化简求值9.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()x…﹣2 ﹣10 1 2 …y…4 3 2 1 0…A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【答案】C【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.【知识点】待定系数法求一次函数解析式10.如图,在平面直角坐标系xOy中,已知点A(﹣9,7),B(﹣3,0),点P在x轴的正半轴上运动,将线段AB沿直线AP翻折到AC,当点C恰好落在y轴上时,直线AP对应的函数表达式可以是()A.y=x+8 B.y=﹣C.y=﹣x+1 D.y=﹣x+4【答案】B【解答】解:连接BC,交P A于Q,由题意可知,P A垂直平分BC,设直线P A的解析式为y=kx+b,把A(﹣9,7)代入得,7=﹣9k+b,∴b=9k+7,∴直线P A的解析式为y=kx+9k+7,设直线BC的解析式为y=﹣x+n,把B(﹣3,0)代入得0=+n,∴n=﹣,∴C(0,﹣),∴Q(﹣,﹣),∵Q在直线P A上,∴﹣=﹣k+9k+7,整理得,15k2+14k+3=0,解得k1=﹣,k2=﹣,∴直线P A的解析式为y=﹣x+,或y=﹣x+4,故选:B.【知识点】待定系数法求一次函数解析式二、填空题(共8小题)11.用配方法解方程x2﹣2x﹣6=0,原方程可化为﹣.【答案】(x-1)2=7【解答】解:方程变形得:x2﹣2x=6,配方得:x2﹣2x+1=7,即(x﹣1)2=7.故答案为:(x﹣1)2=7.【知识点】解一元二次方程-配方法12.如图,字母b的取值如图所示,化简:|b﹣1|+=.【答案】4【解答】解:由数轴得2<b<5,所以原式=|b﹣1|+=|b﹣1|+|b﹣5|=b﹣1+5﹣b=4.故答案为4.【知识点】实数与数轴、二次根式的性质与化简13.若关于x的方程﹣1=有无解,则m=﹣﹣.【解答】解:去分母得:2mx+x2﹣x2+3x=2x﹣6,整理得:(2m+1)x=﹣6,当2m+1=0,即m=﹣时,整式方程无解,即分式方程无解;当2m+1≠0,即m≠﹣时,x=﹣,由分式方程无解,得到x=0或x=3,把x=0代入整式方程无解;把x=3代入整式方程得:m=﹣,综上,m=﹣或﹣,故答案为:﹣或﹣【知识点】分式方程的解14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.【解答】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.【知识点】解直角三角形的应用-方向角问题15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【知识点】勾股定理、含30度角的直角三角形16.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.【答案】x<3【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【知识点】一次函数与一元一次不等式、一次函数的图象17.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.若劣弧的长为,则图中阴影部分的面积为.【解答】解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧的长为,∴=,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=OA=2,∴图中阴影部分的面积=S△AOD﹣S扇形AOC=×2×2﹣=2﹣π.故答案为2﹣π.【知识点】弧长的计算、扇形面积的计算、圆周角定理18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.【答案】y=-x2-2x+3【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【知识点】抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质三、解答题(共8小题)19.解不等式组:并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.(1)解方程:.(2)关于x的分式方程无解,求a的值.【解答】解:(1)方程整理得:+=+,即=,当2x+8=0,即x=﹣4时,方程成立;当2x+8≠0,即x≠﹣4时,方程无解,经检验x=﹣4是分式方程的解;(2)去分母得:x2﹣ax﹣3x+3=x2﹣x,即﹣ax﹣3x+3=﹣x,由分式方程无解,得到x=0或x﹣1=0,解得:x=0或x=1,把x=0代入整式方程得:无解;把x=1代入整式方程得:a=0,则a的值为1.【知识点】分式方程的解、解分式方程21.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边AB的长为x 米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.【知识点】一元二次方程的应用、二次函数的应用、配方法的应用22.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.【解答】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【知识点】等边三角形的性质、矩形的判定与性质、平行四边形的性质23.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.【解答】解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.【知识点】等腰三角形的性质、相似三角形的判定与性质24.四边形ABCD内接于⊙O,AC为其中一条对角线.(Ⅰ)如图①,若∠BAD=70°,BC=CD.求∠CAD的大小;(Ⅱ)如图②,若AD经过圆心O,连接OC,AB=BC,OC∥AB,求∠ACO的大小.【解答】解:(1)∵BC=CD,∴=,∴∠CAD=∠CAB=∠BAD=35°;(2)连接BD,∵AB=BC,∴∠BAC=∠BCA,∵OC∥AB,∴∠BAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BAC=∠BCA=∠OAC,由圆周角定理得,∠BCA=∠BDA,∴∠BAC=∠BDA=∠OAC,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ACO=30°.【知识点】圆心角、弧、弦的关系、圆内接四边形的性质、圆周角定理25.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=.(1)求OD的长;(2)计算阴影部分的面积.【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=AB=,∵点C为OD的中点,∴OC=OB,∵cos∠COB==,∴∠COB=60°,∴OC=BC=×=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=﹣××1=π﹣.【知识点】勾股定理、垂径定理、扇形面积的计算26.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM 的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【解答】解:(1)∵抛物线经过点B(1,0),C(0,﹣3),代入得:,解得:,∴抛物线表达式为:y=x2+2x﹣3=(x+1)2﹣4,∴顶点P的坐标为(﹣1,﹣4);(2)∵直线PE为抛物线对称轴,∴E(﹣1,0),∵B(1,0),∴A(﹣3,0),∴AP==,∵MN垂直平分AP,∴AN=NP=,∠PNM=90°,∵∠APE=∠MPN,∴△PMN∽△P AE,∴,即,解得:PM=,∴EM=PE﹣PM=4﹣=,故答案为:.【知识点】二次函数图象与系数的关系、线段垂直平分线的性质、待定系数法求二次函数解析式、抛物线与x轴的交点、二次函数图象上点的坐标特征。

2019中考数学专题复习(一) 数学思想方法

2019中考数学专题复习(一) 数学思想方法

专题复习(一) 数学思想方法类型1 整体思想整体思想是一种解题思想,它主要渗透在解题步骤当中.常见的有:1.求代数式的值时,不是求出代数式中每个字母的值,而是求代数式中整体某一个部分的值.2.求零散图形的面积时,利用它们的结构特点或全等变换进行整体求出.这种思想可以应用到各种类型的题之中.(2017·北京)如果a 2+2a -1=0,那么代数式(a -4a )·a 2a -2的值是(C ) A .-3 B .-1 C .1 D .3【思路点拨】 先化简所求代数式,然后把方程变形成a 2+2a =1,利用整体代入的方法求代数式的值.1.(2018·孝感)已知x +y =43,x -y =3,则式子(x -y +4xy x -y )(x +y -4xy x +y )的值是(D ) A .48 B .12 3 C .16 D .122.(2018·南充)已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是(D ) A .-72 B .-112 C .92 D .343.(2018·云南)已知x +1x =6,则x 2+1x 2=(C ) A .38 B .36 C .34 D .324.(2018·玉林)已知ab =a +b +1,则(a -1)(b -1)=2.5.(2018·菏泽)若a +b =2,ab =-3,则代数式a 3b +2a 2b 2+ab 3的值为-12.6.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎨⎧a =32b =-12.7.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.类型2 分类思想分类讨论思想常见的六种类型:1.方程:若含有字母系数的方程有实数根,要考虑二次项系数是否等于0,进行分类讨论.2.等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角进行分类解决.3.直角三角形:在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解.4.相似三角形:若题目中出现两个三角形相似,则需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论.5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交坐标轴于正半轴和负半轴两种情况讨论;确定反比例函数与一次函数交点个数,常分第一、三象限或第二、四象限两种情况讨论.6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论.(2017·孝感)已知半径为2的⊙O 中,弦AC =2,弦AD =22,则∠COD 的度数为30°或150°.【思路点拨】 先根据等边三角形的性质与判定、勾股定理的逆定理分别求出∠AOC 和∠AOD 的度数,再根据点D 位置的不确定性进行分类讨论,求出∠COD 的度数.1.(2018·乐山)已知实数a ,b 满足a +b =2,ab =34,则a -b =(C ) A .1 B .-52 C .±1 D .±522.(2018·安顺)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是(A )A .12B .9C .13D .12或93.(2018·潍坊)如图,菱形ABCD 的边长是4厘米,∠B =60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P ,Q 同时出发运动了t 秒,记△BPQ 的面积为S 平方厘米,下面图象中能表示S 与t 之间的函数关系的是(D )A B C D4.(2018·安顺)若x 2+2(m -3)x +16是关于x 的完全平方式,则m =-1或7.5.(2018·齐齐哈尔)若关于x 的方程1x -4+m x +4=m +3x 2-16无解,则m 的值为-1或5或-13. 6.(2017·随州)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =53或125时,以A ,D ,E 为顶点的三角形与△ABC 相似.7.(2017·兰州)如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A(3,0),B(0,2),动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐32类型3 化归思想化归的思想是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”,将“陌生”转化为“熟悉”,将“复杂”转化为“简单”的解题方法.化归思想常见的六种类型:1.在解方程和方程组中的应用:通过消元将二元一次方程组转化为一元一次方程;通过降次把一元二次方程转化为一元一次方程;通过去分母把分式方程转化为整式方程.2.多边形化为三角形:解决平行四边形、正多边形的问题通过添加辅助线转化为全等三角形、等腰三角形、直角三角形去解决.3.立体图形转化为平面图形:立体图形的展开与折叠、立体图形的三视图体现了立体图形与平面图形之间的相互转化.4.一般三角形转化为直角三角形:通过作已知三角形的高,将问题转化为直角三角形问题.5.化不规则图形为规则图形:根据图形的特点进行平移、旋转、割补等方法将不规则图形的面积转化为规则图形(如三角形、矩形、扇形等)面积的和或差进行求解.6.转化和化归在圆中的应用:圆中圆心角与圆周角、等弧与等弦、等弧与等弧所对的圆周角都是可以相互转化的.如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E.若OA =4,∠AOB =120°3(结果保留π)【思路点拨】 连接OD ,根据点C 为OA 的中点可得∠CDO =30°,继而可得∠DOC =60°,求出扇形AOD 的面积,最后用S 阴影=S 扇形AOB -S 扇形COE -(S 扇形AOD -S △COD )即可求出阴影部分的面积.1.(2017·山西)如图是某商品标志的图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD.若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为(B )A .5π cm 2B .10π cm 2C .15π cm 2D .20π cm 22.(2018·东营)如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是(C )A .31+πB .3 2C .34+π22 D .31+π23.(2018·宁波)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为(B )图1 图2A .2aB .2bC .2a -2bD .-2b4.(2017·福建)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于108度.类型4 数形结合思想数形结合思想常见的四种类型:1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了.2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题更直观、形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解.3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法.4.在几何中的应用:对于几何问题,我们常通过图形找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等.(2017·十堰)如图,直线y =3x -6分别交x 轴,y 轴于A ,B ,M 是反比例函数y =k x(x>0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于点C ,MD ⊥MC 交AB 于点D ,AC·BD =43,则k 的值为(A )A .-3B .-4C .-5D .-6【思路点拨】 分别过点C ,D 作CE ⊥x 轴于点E ,DF ⊥y 轴于点F.由已知条件可求出点A ,点B 的坐标,再由tan ∠OBA =OA OB即可求出∠OBA 的度数.设M(x ,y),在Rt △BDF 和Rt △CEA 中,分别用含x ,y 的代数式表示出BD ,CA 的长,再由AC·BD =43,可求出xy 的值 ,则k 值即可求出.1.(2018·枣庄)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是(B )A .|a|>|b|B .|ac|=acC .b <dD .c +d >02.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2C .-2<m <3D .-6<m <-2 3.(2018·河南)如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm /s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s )变化的关系图象,则a 的值为(C )图1 图2A . 5B .2C .52D .2 54.(2018·白银)如图,一次函数y =-x -2与y =2x +m 的图象相交于点P(n ,-4),则关于x 的不等式组⎩⎪⎨⎪⎧2x +m <-x -2,-x -2<0的解集为-2<x <2.类型5 方程、函数思想方程与函数思想是一种重要的数学思想:(1)在某些图形的折叠问题中,求线段长时,通常利用勾股定理建立方程模型来解决问题;(2)在运动中求最大值或最小值时,通常可以考虑将问题转化为函数的最值讨论问题,利用二次函数的顶点坐标或函数取值范围解决.如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm .点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm /s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是(C )A .20 cmB .18 cmC .2 5 cmD .3 2 cm【思路点拨】 根据P ,Q 两点的运动方向和运动速度用含t 的式子表示出PC ,CQ 的长度,进而用勾股定理表示出PQ 2,根据二次函数的性质在0≤t ≤2的范围内求出PQ 2的最小值,则PQ 的最小值即可求出.1.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于(B )A .35B .53C .73D .542.(2017·泰安)如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1 cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为(C )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2。

初中数学-中考复习(22):数学思想方法(一)

初中数学-中考复习(22):数学思想方法(一)

专题复习:数学思想方法(一)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

考点一:整体思想例1:若a-2b=3,则2a-4b-5= .练习:已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.考点二:转化思想例2:如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m (容器厚度忽略不计).练习:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB 于点E,连结DE,则DE的最小值为.考点三:分类讨论思想例3:某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?练习:某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B 型电脑每台进价2800元,A 型每台售价3000元,B 型每台售价3200元,预计销售额不低于123200元.设A 型电脑购进x 台、商场的总利润为y (元). (1)请你设计出进货方案;(2)求出总利润y (元)与购进A 型电脑x (台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A 型和B 型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A 型电脑、B 型电脑和帐篷的方案.【课堂训练】一、选择题1.若a+b=3,a-b=7,则ab=( ) A .-10 B .-40 C .10 D .402. 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .πB .4πC .π或4πD .2π或4π 3. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值是( ) A .2 B .3 C .4 D .54. CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB=10,CD=8,则BE 的长是( ) A .8 B .2 C .2或8 D .3或75. 已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) A .25 cmB .45cmC .25 cm 或45cmD .2cm 或43cm6. 等腰三角形的一个角是80°,则它顶角的度数是( ) A .80° B .80°或20° C .80°或50° D .20°7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .188. 如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( ) A .2πB .3π C .4π D .π9. 若a 2−b 2=16,a −b = 13,则a+b 的值为 .10. 若(a-1)2+|b-2|=0,则以a、b为边长的等腰三角形的周长为.11. 已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是.12. 如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.13. 若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14. 若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为.15. 在平面直角坐标系中,已知点A(-5,0),B(5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.16.直角三角形两直角边长是3c m和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是cm2.(结果保留π)17. 在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=3x上的点B重合,若点B的纵坐标是1,则点A的横坐标是.18. 如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).19. 如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为.20. 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.21. 在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C 的坐标为.22. 如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=43cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是.23. 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF-FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是.24. 如图,已知直线y=x+4与两坐���轴分别交于A、B两点,⊙C的圆心坐标为(2,O),半径为2,若D 是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.25. 已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .26. 如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE 的大小是.27. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.27. 为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度.如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)(2)在这段时间内,海监船航行了多少海里?(参数数据: 2≈1.414, 3≈1.732, 62.449.结果精确到0.1海里)28. 如图①,AB 是半圆O 的直径,以OA 为直径作半圆C ,P 是半圆C 上的一个动点(P 与点A ,O 不重合),AP 的延长线交半圆O 于点D ,其中OA=4.(1)判断线段AP 与PD 的大小关系,并说明理由; (2)连接OD ,当OD 与半圆C 相切时,求AP 的长;(3)过点D 作DE ⊥AB ,垂足为E (如图②),设AP=x ,OE=y ,求y 与x 之间的函数关系式,并写出x 的取值范围.【课堂训练】1.已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是( ) A .-2 B .0 C .2 D .42.一个几何体的三视图如图所示,这个几何体的侧面积为( ) A .2π2cm B .4π2cmC .8π2cmD .16π2cm3.如图,直线233+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO′B ,则点O ′的坐标是( ) A .33(,)B .33(,) C .3(2,2) D .3(2,4)4. 在平面直角坐标系中,函数22y x x =- (x≥0)的图象为1C ,1C 关于原点对称的图象为2C ,则直线y=a (a 为常数)与12C C 、 的交点共有()A .1个B .1个或2个C .1个或2个或3个D .1个或2个或3个或4个5. 如图,已知扇形的圆心角为60°,半径为3 ,则图中弓形的面积为()A .4334π-B .34π- C .2334π- D .332π-6. 已知x 、y 是二元一次方程组23 245x y x y -⎧⎨+⎩==的解,则代数式224x y - 的值为为 .7. 如图,将四个圆两两相切拼接在一起,它们的半径均为1cm ,则中间阴影部分的面积为 .8. 若α、β是方程0322=--x x 的两个实数根,则22βα+ = .9. 若a <13<b ,且a ,b 为连续正整数,则22a b - = .10. 若函数121)2(2++++=m x m mx y 的图象与x 轴只有一个交点,那么m 的值为 . 11. 如图,∠AOB=45°,点1O 在OA 上,17OO = ,⊙1O 的半径为2,点2O 在射线OB 上运动,且⊙2O 始终与OA 相切,当⊙2O 和⊙1O 相切时,⊙2O 的半径等于 . 12. 如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数xky =在第一象限的图象经过点B .若2212OAAB -= ,则k 的值为 .==,M是AB上一动点,CM+DM 13. 在⊙O中,AB是⊙O的直径,AB=8cm,AC CD BD的最小值是cm.14. 某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.1. (2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.1对1出门考(_______年______月______日 周_____)学生姓名_____________ 学校_____________ 年级______________ 等第______________ 1. 已知m ,n 是方程x 2-x -1=0的两实数根,则nm 11+ 的值为( ) A .-1B .21-C .21 D .12. 如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB=6,BC=9,则BF 的长为( )A .4B .32C .4.5D .53. 如图,在等腰梯形ABCD 中,AD=2,∠BCD=60°,对角线AC 平分∠BCD ,E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA+PB 的最小值为 .4. 如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于 .5. 如图,在△ABC 中,点D ,E ,F 分别是AB ,BC ,CA 的中点,AH 是边BC 上的高.(1)求证:四边形ADEF 是平行四边形; (2)求证:∠DHF=∠DEF .评语:3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二轮 河北中考题型专题复习 专题复习(一) 数学思想方法类型1 整体思想整体思想是一种解题思想,它主要渗透在解题步骤当中.常见的有:1.求代数式的值时,不是求出代数式中每个字母的值,而是求代数式中整体某一个部分的值. 2.求零散图形的面积时,利用它们的结构特点或全等变换进行整体求出.这种思想可以应用到各种类型的题之中.(2017·北京)如果a 2+2a -1=0,那么代数式(a -4a )·a2a -2的值是(C)A .-3B .-1C .1D .3【思路点拨】 先化简所求代数式,然后把方程变形成a 2+2a =1,利用整体代入的方法求代数式的值.1.(2018·保定二模)若关于x 的一元二次方程ax 2+bx +6=0的一个根为x =-2,则代数式6a -3b +6的值为(D)A .9B .3C .0D .-32.(2018·唐山路南区一模)已知a -b =3,那么1-a +b =(A)A .-2B .4C .1D .-13.(2018·石家庄二模)已知a -b =1,则a 3-a 2b +b 2-2ab 的值为(C)A .-2B .-1C .1D .2 4.(2018·石家庄裕华区一模)若a 2-2a -3=0,则代数式a 2·2-a 3的值是(D)A .0B .-a23C .2D .-125.(2018·孝感)已知x +y =43,x -y =3,则式子(x -y +4xy x -y )(x +y -4xyx +y )的值是(D)A .48B .12 3C .16D .126.(2018·南充)已知1x -1y =3,则代数式2x +3xy -2yx -xy -y的值是(D)A .-72B .-112 C.92D.347.(2018·云南)已知x +1x =6,则x 2+1x2=(C)A .38B .36C .34D .328.(2018·菏泽)若a +b =2,ab =-3,则代数式a 3b +2a 2b 2+ab 3的值为-12.9.(2018·唐山丰南区二模)如图,点E 是矩形ABCD 内任一点.若AB =30,BC =40,则图中阴影部分的面积为600.10.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图).如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a ,较长的直角边为b ,那么(a+b)2的值为49.11.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎪⎨⎪⎧a =32b =-12. 类型2 分类思想分类讨论思想常见的六种类型:1.方程:若含有字母系数的方程有实数根,要考虑二次项系数是否等于0,进行分类讨论.2.等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角进行分类讨论.3.直角三角形:在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解.4.相似三角形:若题目中出现两个三角形相似,则需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论.5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交坐标轴于正半轴和负半轴两种情况讨论;确定反比例函数与一次函数交点个数,常分第一、三象限或第二、四象限两种情况讨论.6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论.(2017·孝感)已知半径为2的⊙O 中,弦AC =2,弦AD =22,则∠COD 的度数为30°或150°.【思路点拨】 先根据等边三角形的性质与判定、勾股定理的逆定理分别求出∠AOC 和∠AOD 的度数,再根据点D 位置的不确定性进行分类讨论,求出∠COD 的度数.1.(2018·冀卓二模)已知x 2+4mx +16是完全平方式,则m 的值为(C)A .2B .4C .±2D .±4 2.(2018·乐山)已知实数a ,b 满足a +b =2,ab =34,则a -b =(C)A .1B .-52C .±1D .±523.(2018·安顺)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是(A)A .12B .9C .13D .12或94.(2018·潍坊)如图,菱形ABCD 的边长是4厘米,∠B =60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P ,Q 同时出发运动了t 秒,记△BPQ 的面积为S 平方厘米,下面图象中能表示S 与t 之间的函数关系的是(D)A B C D5.(2018·齐齐哈尔)若关于x 的方程1x -4+m x +4=m +3x 2-16无解,则m 的值为-1或5或-13.6.(2017·随州)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =53或125时,以A ,D ,E 为顶点的三角形与△ABC 相似.7.(2017·兰州)如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A(3,0),B(0,2),动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为(0,0)或(23,1)或(3-5,9-352).类型3 数形结合思想数形结合思想常见的四种类型:1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了.2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题更直观、形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解.3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法.4.在几何中的应用:对于几何问题,我们常通过图形找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等.如图,抛物线y =-2x 2+4x 与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为C 1,将C 1以y 轴为对称轴作轴对称得到C 2,C 2与x 轴交于点B.若直线y =x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是(A)A .0<m <98B.98<m <258 C .0<m <258D .m <98或m <258【思路点拨】 首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y =x +m 与抛物线C 1相切时m 的值以及直线y =x +m 过原点时m 的值,结合图形即可得到答案.1.(2018·枣庄)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是(B)A .|a|>|b|B .|ac|=acC .b <dD .c +d >02.(2018·保定二模)已知一次函数y =kx -3,且y 随x 的增大而增大,那么它的图象不经过(B)A .第一象限B .第二象限C .第三象限D .第四象限3.(2018·河北联考)如图,数轴上表示2的数对应的点为A 点.若点B 为在数轴上到点A 的距离为1个单位长度的点,则点B 所表示的数是(D)A.2-1B.2+1C .1-2或1+ 2 D.2-1或2+14.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D)A .-254<m <3B .-254<m <2C .-2<m <3D .-6<m <-25.(2018·白银)如图,一次函数y =-x -2与y =2x +m 的图象相交于点P(n ,-4),则关于x 的不等式组⎩⎪⎨⎪⎧2x +m <-x -2,-x -2<0的解集为-2<x <2.类型4 转化思想化归的思想是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”,将“陌生”转化为“熟悉”,将“复杂”转化为“简单”的解题方法.化归思想常见的六种类型:1.在解方程和方程组中的应用:通过消元将二元一次方程组转化为一元一次方程;通过降次把一元二次方程转化为一元一次方程;通过去分母把分式方程转化为整式方程.2.多边形化为三角形:解决平行四边形、正多边形的问题通过添加辅助线转化为全等三角形、等腰三角形、直角三角形去解决.3.立体图形转化为平面图形:立体图形的展开与折叠、立体图形的三视图体现了立体图形与平面图形之间的相互转化.4.一般三角形转化为直角三角形:通过作已知三角形的高,将问题转化为直角三角形问题. 5.化不规则图形为规则图形:根据图形的特点进行平移、旋转、割补等方法将不规则图形的面积转化为规则图形(如三角形、矩形、扇形等)面积的和或差进行求解.6.转化和化归在圆中的应用:圆中圆心角与圆周角、等弧与等弦、等弧与等弧所对的圆周角都是可以相互转化的.如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E.若OA =4,∠AOB =120°,则图中阴影部分的面积为43π+23.(结果保留π)【思路点拨】 连接OD ,根据点C 为OA 的中点可得∠CDO =30°,继而可得∠DOC =60°,求出扇形AOD 的面积,最后用S 阴影=S 扇形AOB -S 扇形COE -(S 扇形AOD -S △COD )即可求出阴影部分的面积.1.(2018·张家口二模)三个全等三角形按如图的方式摆放,则∠1+∠2+∠3的度数是(D)A .90°B .120°C .135°D .180°2.(2018·保定竞秀区模拟)如图是某商品标志的图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD.若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为(B)A .5π cm 2B .10π cm 2C .15π cm 2D .20π cm23.(2018·河北中考预测)如图,点E 在边长为10的正方形ABCD 内,满足∠AEB =90°,则阴影部分的面积的最小值是(A)A .75B .100-2532C.2532D .254.(2018·河北一模)如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E.若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是(B)A .2-π4B.32-π4C .2-π8D.32-π85.(2018·东营)如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是(C)A .31+πB .3 2 C.34+π22D .31+π26.(2018·邢台二模)在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,则道路的宽为(C)A .5米B .3米C .2米D .2米或5米7.(2018·宁波)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为(B)图1 图2A .2aB .2bC .2a -2bD .-2b8.(2017·福建)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于108度.类型5 方程、函数思想方程与函数思想是一种重要的数学思想:1.在某些图形的折叠问题中,求线段长时,通常利用勾股定理建立方程模型来解决问题.2.在运动中求最大值或最小值时,通常可以考虑将问题转化为函数的最值讨论问题,利用二次函数的顶点坐标或函数取值范围解决.如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm.点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是(C)A .20 cmB .18 cmC .2 5 cmD .3 2 cm【思路点拨】根据P ,Q 两点的运动方向和运动速度,用含t 的式子表示出PC ,CQ 的长度,进而用勾股定理表示出PQ 2,根据二次函数的性质在0≤t ≤2的范围内求出PQ 2的最小值,则PQ 的最小值即可求出.1.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于(B)A.35B.53C.73D.542.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ面积的最小值为(C) A.19 cm2B.16 cm2C.15 cm2D.12 cm2。

相关文档
最新文档