核磁共振氢谱和碳谱中各溶剂的化学位移

合集下载

核磁共振碳谱和氢谱中 化学位移产生的原因

核磁共振碳谱和氢谱中 化学位移产生的原因

核磁共振(NMR)技术是一种应用广泛的谱学技术,常用于分析有机物和生物分子的结构和性质。

在核磁共振谱中,化学位移是一个重要的参数,它与化合物中原子核周围的电子环境有关。

化学位移在碳谱和氢谱中都是十分常见的,在本文中,我们将探讨化学位移在核磁共振碳谱和氢谱中产生的原因。

1. 基本概念在核磁共振谱中,化学位移是指核磁共振信号的频率与参考物质(通常是三氯化甲烷或二甲基硅烷)信号频率之差。

化学位移通常用ppm (parts per million)表示,它是一个相对值,可以用来比较不同化合物中原子核的化学环境差异。

2. 碳谱中化学位移的影响因素碳谱中的化学位移受到多种因素的影响,其中主要包括化学环境、电子效应和磁场效应。

- 化学环境:不同化学环境下的碳原子核受到不同的化学位移影响。

芳香环上的碳原子与脂肪链上的碳原子所受的化学环境不同,因此它们的化学位移也会有所差异。

- 电子效应:分子中的电子密度分布会影响到周围原子核的化学位移。

含有电子丰富基团的碳原子通常会表现出较低的化学位移,而含有电子贫瘠基团的碳原子则会表现出较高的化学位移。

- 磁场效应:外加磁场对原子核周围的电子运动轨迹会产生影响,从而影响原子核的化学位移。

这种效应在核磁共振谱分析中是不可忽视的。

3. 氢谱中化学位移的影响因素类似于碳谱,氢谱中的化学位移也受到化学环境、电子效应和磁场效应的影响。

- 化学环境:不同化学环境下的氢原子核受到不同的化学位移影响。

α-位置上的氢原子与β-位置上的氢原子所受的化学环境不同,因此它们的化学位移也会有所差异。

- 电子效应:分子中的电子密度分布会影响到周围原子核的化学位移。

对甲苯中的甲基氢和对位氢受到的电子效应不同,因此它们的化学位移也会有所差异。

- 磁场效应:外加磁场对原子核周围的电子运动轨迹会产生影响,从而影响原子核的化学位移。

这种效应在氢谱分析中同样需要考虑。

4. 结语化学位移在核磁共振碳谱和氢谱中的产生是一个复杂而又精密的过程,受到多种因素的影响。

13CNMR 核磁共振碳谱化学位移总览表==

13CNMR 核磁共振碳谱化学位移总览表==
5.13C-15N的偶合常数
由于15N的天然丰度很小,只有14N的0.37%,因此13C与15N 直接相连的概率很低,偶合常数也很小。一般13C与15N的偶合常数 在1-15Hz。
4.5 核磁共振碳谱解析及应用 4.5.1 核磁共振碳谱谱图解析程序
13C NMR谱的解析并没有一个成熟、统一的程序,应该根 据具体情况,结合其他物理方法和化学方法测定的数据,综合 分析才能得到正确的结论。
by the broadband decoupler
34
4
3 21
56
1
2
5 6
谱图去偶作用对比
6.INEPT谱和DEPT谱
常规的13C NMR谱是指宽带质子去偶谱。在去偶的条件 下,失去了全部C-H偶合的信息,质子偶合引起的多重谱线合 并,每种碳原子只给出一条谱线。虽然用偏共振去偶技术可以 分辨CH3、CH2、CH及季C的归属,但由于偏共振去偶谱中偶合常 数分布不均匀,多重谱线变形和重叠,在复杂分子的研究中仍 然受到限制。随着现代脉冲技术的发展,产生了一些新的能确 定碳原子级数的新方法,如J调制法、APT法、INEPT法和DEPT 法等,其中INEPT法和DEPT法已被广泛应用。
(4)分析偏共振去偶谱和DEPT谱,了解与各种不同化学环境的碳直 接相连的质子数,确定分子中有多少个CH3、CH2、CH和季碳及其可 能的连接方式。比较各基团含H总数和分子式中H的数目,判断是否 存在一OH、一NH2、一C(X)H、一NH一等含活泼氢的基团。 (5)如果样品中不含F、P等原子,宽带质子去偶谱图中的每一条谱 线对应于一种化学环境的碳,对比偏共振去偶谱,全部偶合作用产 生的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑 分子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位 移规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他的双 共振技术及τ1测定,排除不合理者,得到正确的结构式。

CNMR核磁共振碳谱化学位移总览表医学知识课件

CNMR核磁共振碳谱化学位移总览表医学知识课件
不同环境的碳,受到的屏蔽作用不同,δ值不同,其共振频率 νC也不同。
4.3.2 影响 C化学位移的因素 13 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
1.碳杂化轨道
碳原子的杂化轨道状态(sp3、sp2、sp)很大程度上决定13C 化学位移。sp3杂化碳的共振信号在高场,sp2杂化碳的共振信号 在低场,sp杂化碳的共振信号介于前二者之间。以TMS为标准, 对于烃类化合物来说,sp3碳的δ值范围在0-60ppm;sp2杂化碳的 δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
20多年来核磁共振技术取得巨大发展目前13cnmr已广泛应用于有机化合物的分子结构测定反应机理研究异构体判别生物大分子研究等方面成为化学生物化学药物化学及其他相关领域的科学研究和生产部门不可缺少的分析测试手段对有关学科的发展起了极大的促进作用
4.1 核磁共振碳谱的特点 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先观察到
3.炔烃的化学位移值
炔基碳为sp杂化,其化学位移介于sp3与sp2杂化碳之间,为 67-92ppm。
4.芳环碳和杂芳环碳的δ 值 文档仅供参考,不能作为科C学依据,请勿模仿;如有不当之处,请联系本人改正。
芳环碳的化学位移值一般在120-160ppm范围内,峰往往出现
在较低场,这点与脂肪族季碳峰在较低场是类似的。
3
4
3 21
56
4
1 2
5 6
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons

氘代dmso化学位移

氘代dmso化学位移

氘代dmso化学位移
氘代DMSO(dimethylsulfoxide)是一种有机化合物,广泛应用于化学、生物学和材料科学等领域。

氘代DMSO的主要特点是其中一个氧原子被氘原子替换,这使得它在实验研究中具有独特的优势。

氘代DMSO在化学位移中的应用非常广泛。

由于氘原子与氢原子的相互作用,氘代DMSO可以作为一种氘代溶剂,用于研究溶剂效应、氢键和分子间相互作用等。

在核磁共振氢谱(1H-NMR)和核磁共振碳谱(13C-NMR)等实验中,氘代DMSO可以作为溶剂或添加剂,提高样品的溶解度,从而获得更好的信号。

氘代DMSO的优势在于其对许多化合物的溶解度较高,能够显著提高谱图质量。

此外,氘代DMSO可以减少氢氘交换反应,降低信号干扰。

然而,氘代DMSO也存在局限性,如对某些化合物的不稳定性、可能导致样品降解等问题。

因此,在实际应用中,需要根据具体研究目标和实验条件选择合适的氘代溶剂。

在实验中使用氘代DMSO时,应注意以下几点:
1.严格遵循实验规程,确保实验安全。

氘代DMSO具有一定的毒性,应避免直接接触皮肤和眼睛,并在通风良好的环境下操作。

2.选择合适的氘代DMSO浓度。

过高或过低的浓度都可能影响实验结果,因此需要根据具体实验需求调整氘代DMSO的用量。

3.注意氘代DMSO的保存条件。

氘代DMSO应在干燥、避光的环境中储存,并注意密封防潮。

4.考虑到氘代DMSO可能与某些化合物发生相互作用,实验前应对目标化合物进行充分了解,以避免不必要的麻烦。

总之,氘代DMSO作为一种重要的氘代溶剂,在化学位移研究中具有广泛的应用。

13CNMR核磁共振碳谱化学位移总览表

13CNMR核磁共振碳谱化学位移总览表

1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核 (如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统 中,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到 低灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可 使,13C信号强度增强4倍。

的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑分
子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位移 规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他 的双共振技术及τ 1测定,排除不合理者,得到正确的结构式。
δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
2.诱导效应
当电负性大的元素或基团与碳相连时,诱导效应使碳的核外 电子云密度降低,故具有去屏蔽作用。随着取代基电负性增强, 或取代基数目增大,去屏蔽作用也增强, δ值愈向低场位移。
3.共轭效应
共轭作用会引起电子云分布的变化,导致不同位置碳的共 振吸收峰向高场或低场移动。
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数
在化合物中,处于不同环境的13C核,它们的弛豫时间τ1数
值相差较大,可达2-3个数量级,通过τ1可以指认结构归属,
窥测体系运动状况等。
4.2.1
脉冲傅里叶变换法
原理同1H NMR。
4.2.2
核磁共振碳谱中几种去偶技术
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、

核磁共振氢谱和碳谱

核磁共振氢谱和碳谱

核磁共振氢谱核磁共振---NMR1945年美国斯坦福大学的 F. Block 和哈佛大学的 E. M. Purcell 同时发现了核磁共振现象,并因此荣获了1952年的 Nobel 物理奖。

核磁共振谱可为化合物鉴定提供下列信息:1.磁核的类型:由化学位移来判别,如在1HNMR 中,可判别甲基氢、芳氢、烯氢、醛氢等。

2.磁核的化学环境:由偶合常数和自旋-自旋裂分来判别,如在 1H-NMR 中可判定甲基是与-CH 2-相连,还是与苯环相连。

3.各类磁核的相对数量:氢谱中,通过积分面积或积分曲线来判断。

4 .核自旋弛豫时间:13CNMR 可提供 T 1,并用于结构归属指定,构象的测定,以及窥测体 系的运动情况。

5 .核间相对距离:通过核的 Overhause 效应可测得。

3.1核磁共振的基本原理3.1.1原子核的磁矩原子核是带正电荷的粒子,自旋将产生磁矩,但并非所有同位素的原子核有自旋,只有有自旋才有磁矩。

具有自旋运动的原子核具有一定自旋量子数(I ),I=1/2 *n ,那1,2,3···1. 核电荷数和和质量数均为偶数的原子核没自旋。

2. 核电荷数为奇数或偶数,核质量数为奇数,有自旋现象。

3. 核电荷数为奇数,核质量数为偶数,I 为整数的原子核有自旋现象。

对于自旋不为零的核来说,当其自旋时由于形成环电流,故而产生一个小磁场,这个小磁场可用核磁矩 μ 表示。

μ 是矢量,其大小由下式确定:πγγμ2)1(hI I p +==式中 γ ---核的磁旋比 p---自旋角动量不同的核有不同的 γ 值,是确定同位素核的特征常数。

3.1.2自旋核在磁场中的取向和能级对于I 不为零的核来说,如果不受外来磁场的干扰,其自旋轴的取向将是任意的。

当它们处于外加静磁场(磁场强度为H0)中时,根据量子力学理论,它们的自旋轴的取向不再是任意的,而只有(2I+1)种,这叫核自旋的空间量子化。

每一种取向可用一个磁量子数m 表示,则m=I,I-1,I-2,…-I+1,-I。

核磁氢谱中常见的官能团化学位移

核磁氢谱中常见的官能团化学位移

核磁氢谱中常见的官能团化学位移核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种重要的分析技术,可以用于研究化合物分子结构和化学环境。

在核磁共振谱中,氢原子的化学位移是一个重要的参数,可以提供分子中不同官能团的信息。

官能团是分子中具有特定化学性质的结构单元,每个官能团都有其特有的核磁化学位移范围。

下面介绍一些核磁氢谱中常见的官能团及其化学位移范围:1. 烷基(Alkyl)官能团烷基官能团是由碳和氢组成的烷烃分子链,例如甲基(CH3-)和乙基(C2H5-)等。

其化学位移范围通常在0.5~2.5 ppm之间。

2. 烯烃(Alkenyl)官能团烯烃官能团是含有碳—碳双键的分子,例如乙烯(C2H4-)和丙烯(C3H6-)等。

其化学位移范围通常在4.5~6.0 ppm之间。

3. 酮(Ketone)官能团酮官能团是由碳氧双键连接碳原子形成的结构,例如丙酮(CH3COCH3)和己酮(C5H9COCH3)等。

其化学位移范围通常在2.1~2.4 ppm之间。

4. 醇(Alcohol)官能团醇官能团是由羟基(-OH)连接到碳原子的结构,例如甲醇(CH3OH)和乙醇(C2H5OH)等。

其化学位移范围通常在0.5~5.0 ppm之间。

5. 醛(Aldehyde)官能团醛官能团是由碳氧双键和氢连接到同一个碳原子的结构,例如乙醛(CH3CHO)和丁醛(C4H9CHO)等。

其化学位移范围通常在9.0~10.0 ppm之间。

除了这些常见的官能团,核磁氢谱中还存在其他许多官能团化学位移,如羧酸、酰胺、卤代烷等。

通过对氢原子的化学位移的分析,我们可以进一步确定化合物的结构和化学环境。

CNMR核磁共振碳谱化学位移总览表课件

CNMR核磁共振碳谱化学位移总览表课件
耦合常数
根据碳碳耦合和耦合常数,确定邻近碳原子 的类型和它们之间的关系。
峰形和强度
通过峰形和相对强度,确定化合物的结构和 它们在分子中的位置。
峰的位置和积分峰面积
通过峰的相对位置和积分峰面积,计算化合 物中各类碳原子的数量。
化学位移的基本概念和计算方法
1 化学位移
化学位移是一种定量指标,描述碳原子的磁场感受性,通常表示为δ值。
CNMR核磁共振碳谱化学 位移总览表课件
CNMR核磁共振碳谱化学位移总览表课件。
什么是核磁共振碳谱
核磁共振碳谱(CNMR)是一种分析化学的技术,用于确定和解释有机化合 物中碳原子的化学环境。
CNMR谱图的读取与解读方法
峰高与化学位移
测量CNMR谱图中峰的高度,根据化学位移 数值判断化合物中的碳原子类型。
2 计算方法
化学位移可以通过将每个峰位置相对于标准物质(如三甲基硅烷)进行测定和计算得到。
常见化合物的谱图和化学位移数值对照 表
谱图解读
通过解读常见化合物的CNMR谱图,学习化学位 移数值在不同类型化合物中的变化规律。
数值对照表
提供一张常见化合物的CNMR化学位移数值对照 表,帮助快速确定未知化合物的结构。
影响化学位移的因素及其解释
电子效应
电子的吸引或排斥会改变碳 原子的化学位移。
取代基效应
取代基的种类和位置会对化 学位移产生影响。
溶剂效应
溶剂分子的影响会改变化学 位移数值。
核磁共振碳谱在有机化学和药物研发中 的应用
1
结构确认
核磁共振碳谱帮助鉴组分定量
通过测量峰面积,核磁共振碳谱可以用于定量分析。
3
改进合成路径
通过核磁共振碳谱的结果,调整合成路径以获得更理想的产物。

13c nmr①碳谱的化学位移

13c nmr①碳谱的化学位移

O
O

C

99.98
O
O
C
1H
M
天然丰度/%



同位素

M




M




C


C
O
13C
M
O



O
C
O


M


O
O
C
M




O

O
C
O


M

C
O
M
O






M
M
M










M
M
M












M
M








碳谱的化学位移
1.核磁共振碳谱的特点
碳-13:丰度低,磁旋比小→灵敏度低

O
C
乙酸乙酯的1H/13C NMR图(溶剂CDCl3)
O


M


O
O
C
M




1H

C
O
M
O



溶剂的化学位移(碳谱和氢谱)

溶剂的化学位移(碳谱和氢谱)

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,andAbraham Nudelman*Department of Chemistry,Bar-Ilan University,Ramat-Gan52900,IsraelReceived June27,1997In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice.We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist.Experimental SectionNMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected.In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine.ResultsProton Spectra(Table1).A sample of0.6mL of the solvent,containing1µL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3µL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once.For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively).Carbon Spectra(Table2).To each tube,50µL of the stock solution and3µL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts(1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217.(2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz.(3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture..Chem.1997,62,7512-7515S0022-3263(97)01176-6CCC:$14.00©1997American Chemical Societyshow their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2µL of a specific substrate were added and the spectra run again.Table1.1H NMR Dataproton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92OH c s 5.01 6.65 4.79 5.20ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.451,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH s c,d 1.32 3.39 4.63 2.47ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88CH2br s 1.26 1.29 1.36 1.27 1.29n-hexane CH3t0.880.880.860.890.890.90CH2m 1.26 1.28 1.25 1.24 1.28 1.29HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90CH2m 1.27 1.27 1.27 1.23 1.29 1.292-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32CH(o/p)m7.177.1-7.27.187.027.1-7.37.16CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at2.81and3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks.Notes .Chem.,Vol.62,No.21,19977513.Chem.,Vol.62,No.21,1997NotesTable2.13C NMR Data aCDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent signals77.16(0.0629.84(0.0139.52(0.06128.06(0.02 1.32(0.0249.00(0.01206.26(0.13118.26(0.02acetic acid CO175.99172.31171.93175.82173.21175.11177.21 CH320.8120.5120.9520.3720.7320.5621.03 acetone CO207.07205.87206.31204.43207.43209.67215.94 CH330.9230.6030.5630.1430.9130.6730.89 acetonitrile CN116.43117.60117.91116.02118.26118.06119.68 CH3 1.89 1.12 1.030.20 1.790.85 1.47 benzene CH128.37129.15128.30128.62129.32129.34tert-butyl alcohol C69.1568.1366.8868.1968.7469.4070.36 CH331.2530.7230.3830.4730.6830.9130.29 tert-butyl methyl ether OCH349.4549.3548.7049.1949.5249.6649.37 C72.8772.8172.0472.4073.1774.3275.62C C H326.9927.2426.7927.0927.2827.2226.60 BHT C(1)151.55152.51151.47152.05152.42152.85C(2)135.87138.19139.12136.08138.13139.09CH(3)125.55129.05127.97128.52129.61129.49C(4)128.27126.03124.85125.83126.38126.11CH3Ar21.2021.3120.9721.4021.2321.38C H3C30.3331.6131.2531.3431.5031.15C34.2535.0034.3334.3535.0535.36chloroform CH77.3679.1979.1677.7979.1779.44cyclohexane CH226.9427.5126.3327.2327.6327.961,2-dichloroethane CH243.5045.2545.0243.5945.5445.11 dichloromethane CH253.5254.9554.8453.4655.3254.78diethyl ether CH315.2015.7815.1215.4615.6315.4614.77 CH265.9166.1262.0565.9466.3266.8866.42 diglyme CH359.0158.7757.9858.6658.9059.0658.67 CH270.5171.0369.5470.8770.9971.3370.05CH271.9072.6371.2572.3572.6372.9271.63 1,2-dimethoxyethane CH359.0858.4558.0158.6858.8959.0658.67 CH271.8472.4717.0772.2172.4772.7271.49 dimethylacetamide CH321.5321.5121.2921.1621.7621.3221.09 CO171.07170.61169.54169.95171.31173.32174.57NCH335.2834.8937.3834.6735.1735.5035.03NCH338.1337.9234.4237.0338.2638.4338.76 dimethylformamide CH162.62162.79162.29162.13163.31164.73165.53 CH336.5036.1535.7335.2536.5736.8937.54CH331.4531.0330.7330.7231.3231.6132.03 dimethyl sulfoxide CH340.7641.2340.4540.0341.3140.4539.39 dioxane CH267.1467.6066.3667.1667.7268.1167.19 ethanol CH318.4118.8918.5118.7218.8018.4017.47 CH258.2857.7256.0757.8657.9658.2658.05 ethyl acetate C H3CO21.0420.8320.6820.5621.1620.8821.15 CO171.36170.96170.31170.44171.68172.89175.26CH260.4960.5659.7460.2160.9861.5062.32CH314.1914.5014.4014.1914.5414.4913.92 ethyl methyl ketone C H3CO29.4929.3029.2628.5629.6029.3929.49 CO209.56208.30208.72206.55209.88212.16218.43C H2CH336.8936.7535.8336.3637.0937.3437.27CH2C H37.868.037.617.918.148.097.87 ethylene glycol CH263.7964.2662.7664.3464.2264.3063.17“grease”CH229.7630.7329.2030.2130.8631.29n-hexane CH314.1414.3413.8814.3214.4314.45CH2(2)22.7023.2822.0523.0423.4023.68CH2(3)31.6432.3030.9531.9632.3632.73HMPA b CH336.8737.0436.4236.8837.1037.0036.46 methanol CH350.4149.7748.5949.9749.9049.8649.50c nitromethane CH362.5063.2163.2861.1663.6663.0863.22 n-pentane CH314.0814.2913.2814.2514.3714.39CH2(2)22.3822.9821.7022.7223.0823.38CH2(3)34.1634.8333.4834.4534.8935.302-propanol CH325.1425.6725.4325.1825.5525.2724.38 CH64.5063.8564.9264.2364.3064.7164.88 pyridine CH(2)149.90150.67149.58150.27150.76150.07149.18 CH(3)123.75124.57123.84123.58127.76125.53125.12CH(4)135.96136.56136.05135.28136.89138.35138.27 silicone grease CH3 1.04 1.40 1.38 2.10 tetrahydrofuran CH225.6226.1525.1425.7226.2726.4825.67 CH2O67.9768.0767.0367.8068.3368.8368.68 toluene CH321.4621.4620.9921.1021.5021.50C(i)137.89138.48137.35137.91138.90138.85CH(o)129.07129.76128.88129.33129.94129.91CH(m)128.26129.03128.18128.56129.23129.20CH(p)125.33126.12125.29125.68126.28126.29triethylamine CH311.6112.4911.7412.3512.3811.099.07 CH246.2547.0745.7446.7747.1046.9647.19a See footnotes for Table1.b2J PC)3Hz.c Reference material;see text.For D2O solutions there is no accepted reference for carbon chemical shifts.We suggest the addition of a drop of methanol,and the position of its signal to be defined as49.50ppm;on this basis,the entries in Table2were recorded.The chemical shifts thus obtained are,on the whole,very similar to those for the other solvents. Alternatively,we suggest the use of dioxane when the methanol peak is expected to fall in a crowded area of the spectrum.We also report the chemical shifts of sodium formate(171.67ppm),sodium acetate(182.02and 23.97ppm),sodium carbonate(168.88ppm),sodium bicarbonate(161.08ppm),and sodium3-(trimethylsilyl)-propanesulfonate[54.90,19.66,15.56(methylenes1,2, and3,respectively),and-2.04ppm(methyls)],in D2O. Temperature Dependence of HDO Chemical Shifts.We recorded the1H spectrum of a sample of D2O, containing a crystal of sodium3-(trimethylsilyl)propane-sulfonate as reference,as a function of temperature.The data are shown in Figure1.The solid line connecting the experimental points corresponds to the equation which reproduces the measured values to better than1 ppb.For the0-50o C range,the simplergives values correct to10ppb.For both equations,T is the temperature in°C.Acknowledgment.Generous support for this work by the Minerva Foundation and the Otto Mayerhoff Center for the Study of Drug-Receptor Interactions at Bar-Ilan University is gratefully acknowledged.JO971176Vδ)5.060-0.0122T+(2.11×10-5)T2(1)δ)5.051-0.0111T(2)Notes .Chem.,Vol.62,No.21,19977515。

核磁碳谱和氢谱的解析

核磁碳谱和氢谱的解析

碳谱、氢谱的解析分析氢谱有如下的步骤。

(1) 区分出杂质峰、溶剂峰、旋转边带。

杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。

据此可将杂质峰区别出来。

氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm 处出峰。

边带峰的区别请阅6.2.1。

(2) 计算不饱和度。

不饱和度即环加双键数。

当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。

(3) 确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配。

根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。

(4) 对每个峰的δ、J 都进行分析。

根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。

对每个峰组的峰形应仔细地分析。

分析时最关键之处为寻找峰组中的等间距。

每一种间距相应于一个耦合关系。

一般情况下,某一峰组内的间距会在另一峰组中反映出来。

通过此途径可找出邻碳氢原子的数目。

当从裂分间距计算J 值时,应注意谱图是多少兆周的仪器作出的,有了仪器的工作频率才能从化学位移之差Δδ(ppm)算出Δν(Hz)。

当谱图显示烷基链3J 耦合裂分时,其间距(相应6-7Hz)也可以作为计算其它裂分间距所对应的赫兹数的基准。

(5) 根据对各峰组化学位移和耦合常数的分析,推出若干结构单元,最后组合为几种可能的结构式。

每一可能的结构式不能和谱图有大的矛盾。

(6) 对推出的结构进行指认。

每个官能团均应在谱图上找到相应的峰组,峰组的δ值及耦合裂分(峰形和J 值大小)都应该和结构式相符。

如存在较大矛盾,则说明所设结构式是不合理的,应予以去除。

通过指认校核所有可能的结构式,进而找出最合理的结构式。

必须强调:指认是推结构的一个必不可少的环节。

如果未知物的结构稍复杂,在推导其结构时就需应用碳谱。

在一般情况下,解析碳谱和解析氢谱应结合进行。

核磁共振氢谱(化学位移)

核磁共振氢谱(化学位移)
(4)单键的磁各向异性效应
直立键上的氢核处于屏蔽区,在较高场,平伏键上的氢核处于去屏 蔽区,在较低场,化学位移值大约相差0.5 ppm。
精选课件
12
影响化学位移的因素
5. 氢键:分子形成氢键后,氢核周围的电子云密度降低 ,产生去屏蔽作用,化学位移向低场移动,增大。
6. 温度:大多数信号的共振位置受温度影响很小,但OH, -NH和-SH在升高温度时形成氢键的程度降低,化学 位移移向高场,降低。 7. 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成 氢键将对溶质中不同位置的氢核的化学位移产生影响。
精选课件
3
化学位移的产生
•核外电子的影响,屏蔽效应,化学位移
修正的核磁共振条件

h
h
2
核外电子在外加磁场作用下产生电子环
流,电子环流产生相应的感应磁场,感
应磁场的方向与原外加磁场的方向相反
,磁场强度等于σB0,此时原子核实际 受到的磁场强度小于原外加磁场强度B0 ,这种核外电子对原子核的影响称为屏
蔽效应,σ称为屏蔽常数。
由于屏蔽效应不同导致化学环境不同的 原子核共振频率不同,因而在不同的位 置上出现吸收峰,这种现象称为化学位 移。
精选课件
4
化学位移的表示方法与测定
•高场与低场的区分
•化学位移的表示方法——位移常数
•测定和计算方法——标准物质(通常用TMS,即四甲基 硅)对照法:
样品TMS 106 仪器
2. 共轭效应
3. 杂化效应
精选课件
8
影响化学位移的因素
4. 磁各向异性效应,屏蔽与去屏蔽 (1) 双键的磁各向异性效应
精选课件
9
影响化学位移的因素
(2)苯环的磁各向异性效应

NMR常见溶剂峰和水峰

NMR常见溶剂峰和水峰

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移氯仿:小、中小、中等极性DMSO:芳香系统(日光下自然显色、紫外荧光)。

对于酚羟基能够出峰。

芳香化合物还是芳香甙,都为首选。

吡啶:极性大的,特别是皂甙对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。

极性大的化合物可采用氘代丙酮、重水等。

针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。

丙酮:中等极性甲醇:极性大氯仿—甲醇:石:乙 5;1小极性石:丙 2:1——1:1中等极性氯仿:甲醇6:1极性以上含有一个糖2:1 含有两个糖含有糖的三萜皂甙:一般用吡啶常见溶剂的化学位移常见溶剂的1H在不同氘代溶剂中的化学位移值常见溶剂的化学位移常见溶剂的13C在不同氘代溶剂中的化学位移值核磁知识(NMR)一:样品量的选择氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg.二:如何选择氘代溶剂常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。

极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。

CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。

Solvent 化学位移(ppm) 水峰位移(ppm)CDCl3 7.26 1.56DMSO 2.50 3.33CD3OD 3.31 4.87D2O 4.79CD3COCD3 2.05 2.84。

核磁氢谱溶剂峰化学位移表__解释说明

核磁氢谱溶剂峰化学位移表__解释说明

核磁氢谱溶剂峰化学位移表解释说明1. 引言1.1 概述核磁氢谱溶剂峰化学位移表是化学分析中非常重要的工具之一。

在核磁共振(NMR)技术中,溶剂峰是指由于溶剂中特定原子核的共振信号所引起的信号峰。

这些溶剂峰可以提供有关样品分子结构和化学环境的宝贵信息。

本篇文章将详细介绍核磁氢谱溶剂峰化学位移表的概念、意义以及构建方法,并解释如何使用该表进行核磁氢谱数据分析和解读。

1.2 文章结构本文将分为五个主要部分进行讨论。

首先,在引言部分,我们会对本文作出概述,并介绍文章内容和结构。

然后,我们将在第二部分介绍核磁氢谱溶剂峰的基本概念以及其在化学位移中的意义。

接着,我们将在第三部分详细探讨建立核磁氢谱溶剂峰化学位移表的方法。

在第四部分,我们将通过实际应用案例来说明如何分析和解读核磁氢谱溶剂峰化学位移表。

我们将介绍应用案例的背景,并阐述如何使用化学位移表来解读样品核磁氢谱数据。

最后,我们会讨论实际应用中可能遇到的挑战,并提出相应的解决方案。

最后,在结论与展望部分,我们将总结本文的研究成果,并对未来相关研究方向进行展望。

1.3 目的本文旨在全面介绍核磁氢谱溶剂峰化学位移表及其分析和解释方法,以帮助读者更好地理解和运用这一重要工具。

通过对该表的深入了解,读者可以准确地分析和解读核磁氢谱数据,并在实际应用中有效利用溶剂峰化学位移信息进行样品结构和环境的推测。

2. 核磁氢谱溶剂峰化学位移表:2.1 核磁氢谱概述:核磁共振(NMR)是一种重要的分析技术,广泛应用于化学和生物学领域。

核磁氢谱是其中一种常见的NMR实验,用于确定分子中氢原子的化学环境和相互作用。

在核磁氢谱图中,峰表示不同化学位移的氢原子信号。

2.2 溶剂峰化学位移的意义:在进行核磁氢谱测定时,需要选择一个特定的溶剂作为溶剂系统的参考标准。

这个溶剂在谱图中会产生一个固定位置的峰,称为溶剂峰。

通过与溶剂峰对比,可以精确地确定其他化合物中氢原子信号的化学位移。

溶剂峰化学位移表是记录各种常见有机溶剂在核磁共振实验中对应峰位置(通常以ppm表示)的表格。

核磁共振氢谱化学位移表

核磁共振氢谱化学位移表

核磁共振氢谱化学位移表
核磁共振氢谱化学位移表是一种用于确定有机分子结构的有效工具。

它是根据核磁共振(NMR)信号的频率和强度来确定有机分子中氢原子的化学位移的。

核磁共振氢谱化学位移表的基本原理是,每种类型的氢原子都有不同的化学位移,这些位移可
以通过NMR信号的频率和强度来确定。

根据这些位移,可以确定有机分子中氢原子的位置,从
而确定有机分子的结构。

核磁共振氢谱化学位移表的结构是由一系列的氢原子位移值组成的,这些位移值可以用来确定
有机分子中氢原子的位置。

核磁共振氢谱化学位移表中的氢原子位移值可以分为三类:α位移,β位移和γ位移。

α位移是指氢原子与其他原子之间的相对位移,β位移是指氢原子
与其他原子之间的绝对位移,而γ位移是指氢原子与其他原子之间的相对位移。

核磁共振氢谱化学位移表的应用非常广泛,它可以用来确定有机分子的结构,从而更好地了解
有机分子的性质。

此外,核磁共振氢谱化学位移表还可以用来确定有机分子中氢原子的位置,
从而更好地了解有机分子的结构。

总之,核磁共振氢谱化学位移表是一种有效的工具,可以用来确定有机分子的结构,从而更好
地了解有机分子的性质。

它可以帮助科学家们更好地理解有机分子的结构,从而更好地利用有
机分子的性质。

CNMR核磁共振碳谱化学位移总览表

CNMR核磁共振碳谱化学位移总览表
03
醇、醚、酮类化合物的碳原子的化学位移与其连接的氧原子和氢原子 数量成反比关系,即氧原子和氢原子数量越多,化学位移越低。
04
取代基对醇、醚、酮类化合物的碳原子的化学位移影响较大,例如烷 基取代会使化学位移减小,而芳基取代会使化学位移增大。
醛、酸、酯类化合物
醛、酸、酯类化合物的碳原子的化学 位移通常在200-300ppm范围内。
CNMR碳谱的优点与局限性
优点:
高灵敏度:碳原子具有高磁敏感性,使其成为核磁共振中的理想检测目标 。
结构信息丰富:碳谱能够提供丰富的化学结构信息,有助于确定有机分子 中的官能团和连接方式。
CNMR碳谱的优点与局限性
• 非破坏性:核磁共振技术对样品无破坏性,可以重复使用 。
CNMR碳谱的优点与局限性
取代基的影响
取代基的电负性
电负性强的取代基会使碳谱的化学位移向低场移 动。
取代基的电子效应
给电子取代基会使碳谱的化学位移向低场移动, 而吸电子取代基则会使化学位移向高场移动。
取代基的空间效应
空间位阻较大的取代基会使碳谱的化学位移向低 场移动。
溶剂的影响
溶剂的极性
极性溶剂会使碳谱的化学位移向低场移动,非极性溶剂则会使化 学位移向高场移动。
01自然丰度 较低,需要较高的检测灵敏度。
03
谱图解析复杂:由于碳谱的复杂性,解析 碳谱需要较高的专业知识。
04
对水质和温度敏感:水质和温度的变化可 能影响核磁共振信号的稳定性。
CNMR碳谱未来的发展方向
提高检测灵敏度
通过改进检测技术和仪器,提高碳谱 的检测灵敏度,以适应更多样品的检 测需求。
卤代烃类化合物
卤代烃类化合物的碳原子的化学位移通常在80150ppm范围内。

CNMR核磁共振碳谱化学位移总览表

CNMR核磁共振碳谱化学位移总览表

含氮化合物
含氮化合物:氮原子的化学位移范围为0-100ppm 影响因素:杂化轨道、共轭效应、溶剂等 实例:蛋白质、核酸等生物大分子中的氮原子位移 应用:用于鉴定有机化合物中的氮原子类型
其他类化合物
内容:介绍其他类化合物的化学位 移总览表包括醇、醚、酯、酸等
应用:在有机化学、药物化学等领 域有广泛应用
在药物研发中的应用
在药物研发中 CNMR核磁共振 碳谱化学位移总 览表可用于确定 药物分子的化学 结构和构型从而 指导药物设计和
合成。
通过比较不同药 物分子的化学位 移数据可以发现 它们之间的相似 性和差异性有助 于发现新的药物 靶点和候选药物
分子。
CNMR核磁共振 碳谱化学位移总 览表还可以用于 评估药物分子的 代谢和动力学性 质预测其在体内 的行为和效果。
实例分析:通过 实例分析了解不 同类型醛、酮类 化合物的碳谱位 移规律。
总结:掌握醛、 酮类化合物在 CNMR谱图中的 碳谱位移规律有 助于对化合物的 结构进行准确解 析。
酸、酯类化合物
酸类化合物:通常在10-12ppm范围内出现明显的信号峰
酯类化合物:通常在5-8ppm范围内出现明显的信号峰
化学位移概念及意义
化学位移定义:原子核在磁场中的位置变化所产生的共振频率的位移。 影响因素:原子核所处的化学环境包括周围的电子云密度和屏蔽效应。 意义:化学位移是核磁共振谱学中的重要参数用于解析分子结构、化学键和反应机理。 应用:在有机化学、药物化学、生物化学等领域中化学位移是研究分子结构和性质的重要手段。
推断有机物的结构
用于环境科学中的 污染物分析
用于药物研发中的 化合物鉴定
在其他领域的应用
化学领域:用于研 究分子结构和化学 键
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档