高一数学基础知识讲义(2021)——集合

合集下载

高一数学讲义1

高一数学讲义1

高一数学讲义第一章:集合第一节:集合的概念和表示方法:知识点一:元素与集合的概念一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合。

说明:1、集合是一个整体2、构成集合的对象必须是确定的。

典型例题1:判断下列元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数(2)我国的小河流巩固练习:下列各组对象中,能组成集合的有。

(1)所有的好人;(2)平面上的到原点的距离等于2的点;(3)正三角形(4)不等式x+1>0的实数解;知识点二:元素的特征与集合相等:1、元素的特征:2、集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的,例如,集合{-1,1}与集合{1,-1}是相等的。

典型例题:判断下列各组中的两个集合是否相等。

(1){3,4}和{4,3};(2){7,2}和{7,2}(3){y|y=x²,x∈R}和{x| y=x²,x∈R};知识点三:元素与集合的关系我们通常用大写拉丁字母A,B,C,…表示集合,用小写的拉丁字母a,b,c…表示集合中的元素。

知识点四:常用的数集及其记法:注意:(1)通常情况下,上面的大写英文字母不再表示其他的集合;(2)0是最小的自然数(3)对于常用数集的记法要做到范围明确,即明确各数集符号所包含的元素,记忆准确,并且书写要规范。

典型例题:1、用符号∈和∉填空;(1)设A为所有亚洲国家组成的集合,则:中国A, 美国 A印度A, 英国 A(2)若A={x|x²=x},则-1 A(3)若B={x|x²+x-6=0},则3 B(3)若C={x∈N|1≤x≤10},则8 C,9.1 C巩固练习:用符号∈和∉填空;(1)√2+√5{x|x≤2+√3}(2)3 {x|x=n²+1,n∈N}y=3+√2π,M={m|m=a+b√2,a∈Q,b∈Q},(3)x=3−5√2则x M,y M知识点五:集合的表示方法:(1)自然语言法:用文字叙述的形式描述集合的方法叫做自然语言法;(2)列表法:把集合的元素一一列举出来,并用“{}”括起来表示集合的方法叫做列举法。

第1章集合课件-高一上学期高教版(2021)中职数学基础模块上册

第1章集合课件-高一上学期高教版(2021)中职数学基础模块上册
数学(基础模块)
第1章 集 合
1.1 • 集合的概念 1.2 • 集合之间的关系 1.3 • 集合的基本运算 1.4 • 充要条件
内容简介:本章主要讲述集合的有关概念及集合的表 示方法、集合之间的关系、集合的运算、充要条件,主要通 过集合语言的学习与运用,培养学生的数学思维能力。
学习目标:理解集合的有关概念,并掌握集合的表示 方法,掌握集合之间的关系和集合的运算,了解充要条件。
1.2.1 子集与真子集
1.子集 一般地,如果集合B中的每一个元素都是集合A的元素, 那么集合B称为集合A的子集,记作B A(或 A B ),读作 “B包含于A”(或“A包含B”).
显然,任何一个集合A的所有元素都属于它本身,所以任 何一个集合都是它自身的子集,即A A .
我们规定,空集是任何集合的子集.也就是说,对于任 何一个集合A,都有 A .
例2 用符号“∈”或“∉”填空: (1) 5_____N, -2_____N, 3.7_____N; (2) 0_____Z, 2.3_____Z, -5_____Z; (3) π_____Q, -1.6_____Q, 9.21_____Q; (4) 3 _____R, -2_____R, 4.7_____R.
给定一个集合A,如果a是集合A的元素,就说a属于A,记 作a A ;如果a不是集合A的元素,就说a不属于A,记作a A .
一个集合可以包含有限个元素,也可以包含无限个元素.我 们把含有有限个元素的集合称为有限集,如方程x2 9 0 的解 集;含有无限个元素的集合称为无限集,如N,N, Z,Q,R等.
g ,o ,d.
(2)解方程x2 2x 3 0 得
所以该方程的解集为
x1 3,x2 1,
3,1 .

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。

高一数学必修①第一章_集合与函数概念讲义

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51,B. {}15,C. (){}51,D. (){}15,3.给出下列关系:①12R ∈; Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .A BB A A B A B A . B .C .D . ¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ). A.A B ⊆ B.A B ⊇ C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 24.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ). A. x 0∈N B. x 0∉N C. x 0∈N 或x 0∉N D.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( ).A. 1B. -1C. 1或-1D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}b a a a b a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集 交集 补集概念由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set ) 由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set )记号 A B (读作“A 并B ”) A B (读作“A 交B ”) U A (读作“A 的补集”) 符号 {|,}A B x x A x B =∈∈或 {|,}A B x x A x B =∈∈且{|,}UA x x U x A =∈∉且图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()UU R A x x B x x A B A B ==-≤≤=<<求.【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()AB C ; (2)()AAB C .【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.UA※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则UA =( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,72.若{|02},{|12}A x x B x x =<<=≤<,则A B =( ).A. {|2}x x <B. {|1}x x ≥C. {|12}x x ≤<D. {|02}x x <<3.右图中阴影部分表示的集合是( ). A. U A B B. U A B C.()UA B D.()UA B4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ).A. {}1,2B. {}0,1C. {}0,3D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = .※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}A B =,{1,5,7}U A B =,{9}U UA B =,求集合A 、B .9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()U A B 、()()UUA B .※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()AB ,写出所有可能的集合P .A¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n AB n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , A B .(教材P 14B 组题2)【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abca b c abc +++的值所组成的集合为M , 则下列判断正确的是( ). A. 0M ∉ B. 4M -∉ C. 2M ∈ D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6MN = B.MN U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ). A. {}|21x x -≤< B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足AB φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ∩D .()U A B ∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.※基础达标1.下列各组函数中,表示同一函数的是( ). A. 1,xy y x==B. 11,y x y =+= C. ,y x y ==D. 2||,y x y ==2.函数y 的定义域为( ). A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞-- D. 11(,)(,1]22-∞-- 3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).4.下列四个图象中,不是函数图象的是( ).5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)-6.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f =. ※能力提高 8.(1)求函数y =的定义域; (2)求函数2113x y x+=-的定义域与值域.9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.※探究创新10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.A. B.C.D.¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3)(2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.※基础达标1.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ).A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).A . p q + B. 2p q + C. 2p q + D. 2p q + 4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).A. f :x →y =12x B. f :x →y =13x C. f :x →y =14x D. f :x →y =16x5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),mf x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 . ※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式※探究创新 10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个?(2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ). A .增函数 B .减函数 C .先减后增 D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ).A. 2a ≥B. 2b ≥C. 4a ≤-D. 4b ≤- 6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f 之间的大小关系为 . ※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.※基础达标 1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( ). A. 8 B. 83C. 4D. 433.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ). A .1a < B .1a ≤ C .1a > D . 1a ≥4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后最高呢( ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒5. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值6.函数3y x =-的最大值是 .7.已知3()3xf x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?※探究创新10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值.¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点: 1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ). 2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.※基础达标1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.(08年全国卷Ⅱ.理3文4)函数1()f x x x=-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ). A. (1)x x -+ B. (1)x x + C. (1)x x - D. (1)x x -- 4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).A .奇函数B .既不是奇函数也不是偶函数C .偶函数D .既是奇函数也是偶函数5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ). A. 增函数且最小值是-1 B. 增函数且最大值是-1 C. 减函数且最大值是-1 D. 减函数且最小值是-16.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .※能力提高8.已知函数211()()12f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论.9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.※探究创新 10.已知22()()1xf x x R x =∈+,讨论函数()f x 的性质,并作出图象.第10讲 第一章 集合与函数概念 复习¤复习目标:强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练. 深刻理解函数的有关概念.掌握对应法则、图象等有关性质. 理解掌握函数的单调性和奇偶性的概念,并掌握基本的判定方法和步骤,并会运用.¤例题精讲:【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .(1)讨论()f x 的奇偶性; (2)若x ≥a ,求()f x 的最小值.第一章 集合与函数概念 21 第10练 第一章 集合与函数概念测试※基础达标1.(06年陕西卷)已知集合{}|110,P x N x =∈≤≤ {}2|60,Q x R x x =∈+-=则P Q 等于( ).A. {}1,2,3B. {}2,3C. {}1,2D. {}22.(06年重庆卷.1)已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()U U A B =( ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7}3.(06年辽宁卷.文3理2)设()f x 是R 上的任意函数,下列叙述正确的是( )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数 4.(06年辽宁卷. 文2理1)设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是( ).A. 1B. 3C. 4D. 85.(06年山东卷)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则f (6)的值为( ).A. -1B. 0C. 1D. 26.(06年上海卷.理1)已知集合{1,3,21}A m =--,集合2{3,}B m =.若B ⊆A ,则实数m = .7.(06年上海春卷)已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,()f x = .※能力提高8.已知全集*{|9,}U x x x N =≤∈,两个集合A 与B 同时满足: {2,4}A B =,(){1,3,5}U A C B =,且(){7,8}U C A B =. 求集合A 、B .9.已知函数2()8f x x x =-+,求()f x 在区间[],1t t +上的最大值()h t .※探究创新10.已知定义在实数集上的函数y =f (x )满足条件:对于任意的x 、y ∈R ,f (x +y )=f (x )+f (y ).(1)求证:f (0)=0; (2)求证f (x )是奇函数,并举出两个这样的函数;(3)若当x ≥0时,f (x )<0. (i )试判断函数f (x )在R 上的单调性,并证明之;(ii )判断方程│f (x )│=a 所有可能的解的个数,并求出对应的a 的范围.。

知识要点总结之---- 高一数学前两章知识点总结

知识要点总结之---- 高一数学前两章知识点总结

高一数学讲义(一)集合:1.集合的描述性定义:某些指定的对象集在一起就成为一个集合,简称集。

集合中的每个对象叫做这个集合的元素。

2.元素的特征:①确定性 ②互异性 ③无序性3.集合的表示方法:(1)列举法:把集合中的元素一一列举出来的方法。

(2)描述法:用确定的条件表示某些对象是否属于这个集合的方法。

(3)韦恩图法:用封闭曲线表示集合的方法。

4.元素与集合,集合与集合的关系:从属“∈”;包含“”。

5.子集与真子集:(1)子集:数学表达式:若对任意B x A x ∈⇒∈,则B A ⊆ (2)真子集:B A ⊆且存在A x B x ∉∈但A⇒B6.集合相等:如果集合A 与B 的元素都相等,则称A=B 证明方法:若B A ⊆且A B ⊆,则A=B 7.集合的运算:(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合;表示为:B A ⋂ 数学表达式:{}B x A x x B A ∈∈=⋂且 性质:A B B A A A A A ⋂=⋂Φ=Φ⋂=⋂,,(2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合;表示为:B A ⋃数学表达式:{}B x A x x B A ∈∈=⋃或 性质:A B B A A A A A A ⋃=⋃=Φ⋃=⋃,,(3)补集:已知全集I ,集合I A ⊆,由所有属于I 且不属于A 的元素组成的集合。

表示:A C I 数学表达式:{}A x I x x A C I ∉∈=且性质:,I A C A I =⋃,Φ=⋂A C A I A A C C I I =)(,B C A C B A C I I I ⋂=⋃)(B C A C B A C I I I ⋃=⋂)(,B A A B A ⋃⊆⊆⋂⊆Φ,B A B B A ⋃⊆⊆⋂⊆Φ (二)简易逻辑:1.基本概念:命题,复合命题,逻辑联结词“或”“且”“非”,真值表,四种命题,等价命题,反证法,充分条件,必要条件,充要条件(充分不必要条件,必要不充分条件,既不充分也不必要条件)。

高一数学复习考点知识与题型专题讲解1---集合的概念

高一数学复习考点知识与题型专题讲解1---集合的概念

高一数学复习考点知识与题型专题讲解第一章集合与常用逻辑用语1.1集合的概念【考点梳理】考点一元素与集合的概念1.元素:一般地,把研究对象统称为元素(element),常用小写的拉丁字母a,b,c…表示.2.集合:把一些元素组成的总体叫做集合(set),(简称为集),常用大写拉丁字母A,B,C…表示.3.集合相等:指构成两个集合的元素是一样的.4.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的.考点二元素与集合的关系1.属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.2.不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.考点三常见的数集及表示符号数集非负整数集(自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R考点四:集合的表示(1)列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)描述法:一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x 所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.【题型归纳】题型一:集合的概念1.考察下列每组对象,能组成一个集合的是()①一中高一年级聪明的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的正整数;④3的近似值.A.①②B.③④C.②③D.①③2.下列说法中正确的有()个:①很小的数的全体组成一个集合:②全体等边三角形组成一个集合;③{}R表示实数集;④不大于3的所有自然数组成一个集合.A.1B.2C.3D.43.下列叙述正确的是()A .方程2210x x ++=的根构成的集合为{}1,1--B .{}220x x +==∅C .集合(){},5,6M x y x y xy =+==表示的集合是{}2,3D .集合{}1,3,5与集合{}3,1,5是不同的集合题型二:元素与集合的关系4.下列关系中①0N ∈;②27Z ∈;③3Z -∉;④Q π∉正确的个数为( )A .0B .1C .2D .35.下列五个写法,其中正确写法的个数为( )①{}{}00,1,3∈;②{}0∅⊆;③{}{}0,1,21,2,0⊆;④0∈∅;⑤0∅=∅IA .1B .2C .3D .46.设集合2{|2}M x R x =∈…,1a =,则下列关系正确的是( )A .a M ÜB .a M ∉C .{}a M ∈D .{}a M Ü题型三:元素特性技巧解题7.已知a R ∈,b R ∈,若集合{}2,,1,,0ba a ab a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .2-B .1-C .1D .28.已知{},1,1A x x =+,{}22,,B x x x x =+,且A B =,则x =( )A .1x =或1x =-B .1x =C .0x =或1x =或1x =-D .1x =-9.含有三个实数的集合既可表示成,,1ba a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20132014a b +()A .-1B .0C .1D .2题型四:集合的表示方法10.若用列举法表示集合311(,)1x y A x y x y ⎧⎫+=⎧⎪⎪=⎨⎨⎬-=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{}32x y ==,B .{}(32),C .{}32,D .32x y =⎧⎨=⎩11.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}12.集合{1,3,5,7,9,…}用描述法可表示为( )A .{x |x =2n ±1,n ∈Z }B .{x |x =2n +1,n ∈Z }C .{x |x =2n +1,n ∈N *}D .{x |x =2n +1,n ∈N }【双基达标】一、单选题13.已知集合{}1,2A =,{},,B x x a b a A b A ==-∈∈,则集合B 中元素个数为( )A .1B .2C .3D .414.集合{3,x ,x 2–2x }中,x 应满足的条件是( )A .x ≠–1B .x ≠0C .x ≠–1且x ≠0且x ≠3D .x ≠–1或x ≠0或x ≠315.由大于-3且小于11的偶数所组成的集合是( )A .{x |-3<x <11,x ∈Z }B .{x |-3<x <11}C .{x |-3<x <11,x =2k }D .{x |-3<x <11,x =2k ,k ∈Z }16.下列关系正确的是( )A .0N *∈B .Q π∈C .0∈∅D .2R ∈17.集合A ={1,-3,5,-7,9,L }用描述法可表示为()A .{x |x =2n ±1,n ∈N }B .{x |x =(-1)n (2n -1),n ∈N }C .{x |x =(-1)n (2n +1),n ∈N }D .{x |x =(-1)n -1(2n +1),n ∈N }18.下列叙述正确的是( )A .集合{x |x <3,x ∈N }中只有两个元素B .{x |x 2-2x +1=0}={1}C .整数集可表示为{Z }D .有理数集表示为{x |x 为有理数集}19.有下列四个命题:①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素;④集合6B x N N x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( )A .0B .1C .2D .320.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,1521.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A .{ x |是小于18的正奇数}B .{}|41,5x x k k Z k =+∈<且C .{}|43,,5x x s s N s =-∈≤且D .{}|43,,5x x s s N s *=-∈≤且22.给出下列6个关系:①22R ∈,②3Q ∈,③0N ∉,④4N ∉,⑤Q π∈,⑥2Z -∉,其中正确命题的个数为( )A .1B .2C .3D .4【高分突破】23.已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .424.集合{x |3213x -<-≤,x ∈Z }等于( )A .{1,2}B .{0,1,2}C .{1-,0,1,2}D .{0,1}25.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是()A.1∈M B.0∈MC.-1∈M D.-2∈M26.已知x,y都是非零实数,x y xyzx y xy=++可能的取值组成集合A,则()A.2∈A B.3∉A C.-1∈A D.1∈A27.设集合{1,2,3,4}A=,{5,6}B=,{|,}C x y x A y B=+∈∈,则C中元素的个数为()A.3B.4C.5D.628.设非空数集M同时满足条件:①M中不含元素-1,0,1;②若a∈M,则11aa+-∈M.则下列结论正确的是()A.集合M中至多有2个元素B.集合M中至多有3个元素C.集合M中有且仅有4个元素D.集合M中至少有4个元素29.已知集合{1M=,2m+,24}m+,且5M∈,则m的值为()A.1或1-B.1或3C.1-或3D.1,1-或330.若集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).则下列选项中元素与集合的关系都正确的是()A.2∈A,且2∈B B.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈B D.(3,10)∈A,且2∈B二、多选题31.(多选题)下列各组中M ,P 表示不同集合的是( )A .M ={3,-1},P ={(3,-1)}B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R},P ={x |x =t 2+1,t ∈R}D .M ={y |y =x 2-1,x ∈R},P ={(x ,y )|y =x 2-1,x ∈R}32.(多选题)若集合A ={x |kx 2+4x +4=0,x ∈R}只有一个元素,则实数k 的值为( ) A .0B .1C .2D .333.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5|Z k n k n =+∈,0k =,1,2,3,4,给出如下四个结论,其中,正确结论的是( ) A .[]20211∈B .[]33-∈C .若整数a ,b 属于同一“类”,则[]0a b -∈D .若[]0a b -∈,则整数a ,b 属于同一“类”34.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈.给出如下四个命题,其中正确命题的有( )A .若1m =,则{}1S =B .若12m =-,则114m ≤≤C .若12l =,则202m -≤≤D .112m -≤≤ 35.下面四个说法中错误的是( )A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D .0与{0}表示同一个集合36.设集合{}3,,A x x m n m n N *==+∈,若1x A ∈,2x A ∈,12x x A ⊕∈,则运算⊕可能是( ) A .加法B .减法C .乘法D .除法37.若集合A 具有以下性质:(1)0∈A ,1∈A ;(2)若x ∈A ,y ∈A ;则x ﹣y ∈A ,且x ≠0时,1x ∈A .则称集合A 是“好集”.下列命题中正确的是( )A .集合B ={﹣1,0,1}是“好集”B .有理数集Q 是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A三、填空题38.用符号“∈”或“∉”填空:(1)0______N ; (2)2021(1)-_____Z ;(3)44_____Q ; (4)2()π-_____R ;(5)1_____{|}1x x y x =-; (6)1_____{|}1x y y x =-; (7)(2,2)_____{|}1x x y x =-; (8)∅_____ {,{0}}∅.39.若集合2{|440}A x kx x =-+=只有一个元素,则集合A =______.40.已知集合{}221,(1),33A m m m m =+--+,若1A ∈,则2021m =__________.41.设集合{}222,3,3,7,2,0A a a a B a a⎧⎫=-++=-⎨⎬⎩⎭,已知4A ∈且4B ∉,则实数a 的取值集合为__________.42.用符号“∈”或“∉”填空:(1)设集合B 是小于11的所有实数的集合,则23________B ,1+2________B ; (2)设集合C 是满足方程x =n 2+1(其中n 为正整数)的实数x 的集合,则3________C ,5________C ;(3)设集合D 是满足方程y =x 2的有序实数对(x ,y )组成的集合,则-1________D ,(-1,1)________D .43.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会?”则此三女前三次相会经过的天数用集合表示为____.四、解答题44.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值;(2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.45.已知函数f (x )=2x -ax +b (a ,b ∈R ).集合A ={x |f (x )-x =0},B ={x |f (x )+ax =0},若A ={1,-3},试用列举法表示集合B .46.用描述法表示下列集合,并思考能否用列举法表示该集合(1)所有能被3整除的自然数(2)不等式²230x x +-<的解集(3)²230x x+-=的解集47.已知集合A的元素全为实数,且满足:若a A∈,则11aAa+∈-.(1)若3a=-,求出A中其他所有元素;(2)0是不是集合A中的元素?请你设计一个实数a A∈,再求出A中的元素;(3)根据(1)(2),你能得出什么结论?48.已知集合A={x|ax2-3x+2=0}.(1)若集合A中只有一个元素,求实数a的值;(2)若集合A中至少有一个元素,求实数a的取值范围;(3)若集合A中至多有一个元素,求实数a的取值范围.【答案详解】1.C【详解】①“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;②“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;③“不小于3的正整数”的标准确定,能构成集合;④“3的近似值”的标准不确定,不能构成集合.故选:C.2.B【详解】①很小的数不确定,不能组成一个集合,故错误:②全体等边三角形组成一个集合,故正确;③{}R 表示以实数集为元素的集合,不表示实数集,故错误;④不大于3的所有自然数是0,1,2,3,组成一个集合,故正确. 故选:B3.B【详解】对于A ,方程2210x x ++=的根构成的集合为{}1-,故A 错误;对于B ,方程220x +=无解,所以{}220x x +==∅,故B 正确;对于C ,集合(){},5,6M x y x y xy =+==为点集,集合{}2,3是数集, 故C 错误;对于D ,由集合元素的无序性可得集合{}{}13,1,5,3,5=,故D 错误. 故选:B.4.C【详解】①因为0是自然数,所以0N ∈,故正确;②因为27不是整数,所以27Z ∉,故错误;③因为3-是整数,所以3Z -∈,故错误;④因为π是无理数,所以Q π∉,故正确;故选:C.5.B【详解】解:①{}{}00,1,3Ü,故①错误,②{}0∅⊆,故②正确,③{}{}0,1,21,2,0=,故③正确,④0∉∅,故④错误,⑤0为元素,与∅无法运算,故⑤错误;故选:B6.D【详解】解:22x …,22x ∴-剟,{|22}M x R x ∴=∈-剟,又1a =,a M ∴∈,{}a M Ü.故选:D.7.B【详解】 因为{}2,,1,,0ba a ab a ⎧⎫=+⎨⎬⎩⎭, 所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩, 当1a =时,不满足集合元素的互异性,故1a =-,0b =,()2019201920192019101a b +=-+=-,故选:B.8.D【详解】当1x =时,集合{}1,2,1A =,{}1,2,1B =都出现两个1,出现了互异性的错误,排除ABC ,当1x =-时,{}1,0,1A =-,{}1,0,1B =-,A B =,故选:D.本题考查了集合性质,属于基础题.9.A【详解】 解:由题意得,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以0b a=即0a ≠,1a ≠,即0b =,则有{}{}2,0,1,,0a a a =,所以21a =,解得1a =-, ∴201320141a b +=-.故选:A.10.B【详解】因为3111x y x y +=⎧⎨-=⎩可解得:32x y =⎧⎨=⎩, 所以{}311(,)(32)1x y A x y x y ⎧⎫+=⎧⎪⎪==⎨⎨⎬-=⎩⎪⎪⎩⎭,. 故选:B11.C【详解】A.表示x 轴和y 轴上的点,但不包含原点,故A 错误;B.集合中只有一个元素,就是原点,故错误;C.00xy x =⇔=或0y =,即表示坐标轴上点的集合,故C 正确;D.表示平面中的点,但不包含原点,故错误.故选:C.12.D对于A :{}{|}3,1,1,321,5x x n n Z =--=±∈,,故A 错误;对于B :{}{|}3,1,1,321,5x x n n Z =--=±∈,,故B 错误;对于C :{}*{|}3,5,217,x x n n N =+∈=,,故C 错误;对于D :{}{|}1,3,5,2,17x x n n N ==+∈,,故D 正确.故选:D13.C【详解】解:由题意知:{1,2}a ∈,{1,2}b ∈,{}{}|,,0,1,1B x x a b a A b A ==-∈∈=-,∴集合B 中元素个数为3.故选:C.14.C【详解】集合{3,x ,x 2–2x }中,x 2–2x ≠3,且x 2–2x ≠x ,且x ≠3,解得x ≠3且x ≠–1且x ≠0,故选:C .15.D【详解】解:大于-3且小于11的偶数,可表示为-3<x <11,x =2k ,k ∈Z ,所以由大于-3且小于11的偶数所组成的集合是{x |-3<x <11,x =2k ,k ∈Z },故D 符合题意;对于A ,集合表示的是大于-3且小于11的整数,不符题意;对于B ,集合表示的是大于-3且小于11的数,不符题意;对于C ,集合表示的是大于-3且小于11的数,,但不一定是整数,不符题意. 故选:D.16.D【详解】对于A ,因为0不是正整数,所以0N *∉,所以A 错误,对于B ,因为π是无理数,所以Q π∉,所以B 错误,对于C ,因为空集是不含任何元素的集合,所以0∉∅,所以C 错误, 对于D ,因为2是实数,所以2R ∈,所以D 正确,故选:D17.C解:观察集合A 的前几项发现:A 的元素都是奇数,并且偶数项为负,奇数项为正; ∴可表示为(1)(21)n x n =-+,n N ∈;{|(1)(21)n A x x n ∴==-+,}n N ∈.故选:C.18.B【详解】A.集合中元素有0,1,2,错;B.{}{}22101x x x -+==,正确;C.整数集表示为Z ,错;D.有理数集表示为{x |x 为有理数},错.故选:B.19.B【详解】①{0}中有一个元素0,不是空集,不正确;②中当0a =时不成立,不正确;③中2210x x -+=有两个相等的实数根,因此集合只有一个元素,不正确; ④中集合6{|}{1,2,3,6}B x N N x=∈∈=是有限集,正确, 故选:B20.B【详解】解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=②. 由题意知,P 中元素的和应是方程①和方程②中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6. 而对于方程②,364a ∆=-,当9a =时,0∆=可知方程②有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9; 当9a >时,∆<0方程②无实根,故P 中元素和为6; 当09a <<时,方程②中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12.故选:B .21.D【详解】对于A :{ x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,,故A 错误; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且,故B 错误; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且,故C 错误;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且,故D 正确.故选:D22.A【详解】R 、Q 、N 、Z 分别表示实数集、有理数集、自然数集、整数集, 所以,22R ∈,3Q ∉,0N ∈,42N =∈,Q π∉,22Z -=∈, 因此,①正确,②③④⑤⑥不正确,故选:A .23.A【详解】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.24.B【详解】解:{x |3213x -<-≤,x ∈Z }={x |2-<2x ≤4,x ∈Z }={x |1-<x ≤2,x ∈Z }={0,1,2}, 故选:B .25.C【详解】由2∈M 知2为方程x 2-x +m =0的一个解,所以22-2+m =0,解得m =-2.所以方程为x 2-x -2=0,解得x 1=-1,x 2=2.故方程的另一根为-1.故选:C .26.C【详解】①当x >0,y >0时,z =1+1+1=3;②当x >0,y <0时,z =1-1-1=-1;③当x <0,y >0时,z =-1+1-1=-1;④当x <0,y <0时,z =-1-1+1=-1,∴集合A ={-1,3}.∴-1∈A .故选:C27.C【详解】因集合{1,2,3,4}A =,{5,6}B =,又,x A y B ∈∈,则当5y =时,x y +的值有:6,7,8,9,当6y =时,x y +的值有:7,8,9,10,于是得{6,7,8,9,10}C =, 所以C 中元素的个数为5.故选:C28.D【详解】因为a ∈M ,11a a+-∈M , 所以111111aa a a ++-+--=-1a ∈M , 所以1111a a +---=11a a -+∈M , 又因为11111a a a a -++--+=a ,所以集合M 中必同时含有a ,-1a ,11a a+-,11a a -+这4个元素, 由a 的不确定性可知,集合M 中至少有4个元素.故选:D29.B【详解】解:5{1∈,2m +,24}m +,25m ∴+=或245m +=,即3m =或1m =±.当3m =时,{1M =,5,13};当1m =时,{1M =,3,5};当1m =-时,{1M =,1,5}不满足互异性,m ∴的取值集合为{1,3}.故选:B . 30.C 【详解】集合A 中的元素为y ,是数集,又y =x 2+1≥1,{}[)211,A y y x ==+=+∞,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,(){}2,1B x y y x ==+,经验证,(3,10)∈B .故选:C . 31.ABD 【详解】选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,P ={x |x =t 2+1,t ∈R}=[)1,+∞,故M =P ; 选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合. 故选ABD . 32.AB 【详解】集合A 中只有一个元素,即方程kx 2+4x +4=0只有一个根, 当k =0时,方程为一元一次方程,只有一个根,当k ≠0时,方程为一元二次方程,若只有一个根,则∆=16-16k =0,即k =1,所以实数k 的值为0或1. 故选:AB 33.ACD 【详解】对于A :因为202140451=⨯+,所以[]20211∈,故选项A 正确; 对于B :因为()3512-=⨯-+,所以[]32-∈,故选项B 错误;对于C :若a 与b 属于同一类,则15a n k =+,25b n k =+,()[]1250(a b n n -=-∈其中1n ,2Z)n ∈,故选项C 正确;对于D :若[]0a b -∈,设5,Z a b n n -=∈,即5,Z a n b n =+∈,不妨令5,Z b m k m =+∈,0k =,1,2,3,4,则()555a m n k m n k =++=++,m ∈Z ,Z n ∈,所以a 与b 属于同一类,故选项D 正确; 故选:ACD. 34.ABC 【详解】对于A 选项,若1m =,则2211x l x l ≤≤⇒≤≤, 根据当x S ∈时,有2x S ∈,可得21l l l≥⎧⎨≤⎩,得101l l ≥⎧⎨≤≤⎩,可得1l =,故{}1S =,A 对; 对于B 选项,若12m =-,则214m =,则214l ll⎧≤⎪⎨≤⎪⎩,解得114l ≤≤,B 对;对于C 选项,若12l =,则12S x m x ⎧⎫=≤≤⎨⎬⎩⎭,即212022m m m ≤≤⇒-≤≤,C 对; 对于D 选项,若1m =-,1l =时,此时{}11S x x =-≤≤符合题意,D 错. 故选:ABC .35.CD 【详解】解:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B 正确; 方程x 2﹣2x +1=0的所有解组成的集合是{1},故C 错误; 由集合的表示方法知0不是集合,故D 错误, 故选:CD . 36.AC由题意可设1113x m n =+,2223x m n =+,其中1m ,2m ,1n ,2n N *∈, 则()1212x x m m +=+()123n n ++,12x x A +∈,所以加法满足条件,A 正确;()()1212123x x m m n n -=-+-,当12n n =时,12x x A -∉,所以减法不满足条件,B 错误;()121212112133x x m m n n m n m n ==++,12x x A ∈,所以乘法满足条件,C 正确;11122233x m n x m n +=+,当()11220mnm n λλ==>时,12xA x ∉,所以出发不满足条件,D 错误.故选:AC . 37.BCD 【详解】解:对于A ,假设集合B 是“好集”,因为1B -∈,1B ∈,所以112B --=-∈,这与2B -∉矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0Q ∈,1Q ∈,且对任意的x Q ∈,y Q ∈有x y Q -∈,且0x ≠时,1Q x ∈,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2Z ∈,但12Z ∉,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0A ∈,又y A Î,所以0y A -∈,即y A -∈,又x A ∈,所以()x y A --∈,即x y A +∈,故D 正确. 故选:BCD .38.∈∈∉∈∉∉∉∈. 【详解】(1)N 是自然数集,所以0N ∈; (2)Z 是整数集,所以()202111Z -=-∈;(3)Q 是有理数集,所以442Q =∉; (4)R 是实数集,所以()2R ππ-=∈;(5)1xy x =-中1x ≠,所以11x x y x ⎧⎫∉=⎨⎬-⎩⎭; (6)1xy x =-={}1y y ≠,所以11x y y x ⎧⎫∉=⎨⎬-⎩⎭; (7)(2,2)表示点,{|}1xx y x =-表示数集,所以()2,21x x y x ⎧⎫∉=⎨⎬-⎩⎭; (8)集合{}{},0∅中有2个元素,分别是∅,{}0,所以{}{},0∅∈∅. 故答案为:∈;∈; ∉;∈; ∉; ∉;∉;∈ 39.{}1或{}2解:A 只有一个元素;∴方程2440kx x -+=只有一个解;0k =①时,440x -+=,1x =,满足题意; 0k ≠②时,16160k =-=;1k ∴=;解2440x x -+=得,2x =;{}1A ∴=或{}2.故答案为:{}1或{}2. 40.1 【详解】依题意,分别令11m +=,得0m =,此时()211m -=,不满足互异性; 当()211m -=,得0m =或2m =,检验后,都不满足互异性; 当2331m m -+=,解得:1m =或2m =,经检验,1m =,成立, 所以20211=m . 故答案为:1 41.{4} 【详解】当234a a -=时,可得4a =或1a =-, 若1a =-时,则274a a++=,不合题意;若4a =时,则2711.5a a ++=,|2|2a -=符合题意;当274a a++=,可得1a =-或2a =-, 若1a =-,则234a a -=,不合题意; 若2a =-,则|2|4a -=,不合题意. 综上所述:4a =. 故答案为:{4}42.∉ ∈ ∉ ∈ ∉ ∈ 【详解】(1)∵231211=> ∴23∉B ; ∵(1+2)2=3+22<3+2×4=11, ∴1+2<11 ,∴1+2∈B .(2)∵n 是正整数,∴n 2+1≠3,∴3∉C ; 当n =2时,n 2+1=5,∴5∈C .(3)∵集合D 中的元素是有序实数对(x ,y ),则-1是数, ∴-1∉D ;又(-1)2=1,∴(-1,1)∈D . 故答案为:∉,∈,∉,∈,∉,∈. 43.{}60,120,180 【详解】因为三女相会经过的天数是5,4,3的公倍数,且它们的最小公倍数为60, 所以三女前三次相会经过的天数用集合表示为{}60,120,180. 故答案为:{}60,120,180. 44.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 【详解】(1)因为210a +>,故212a +≠-, 因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性; ②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍),此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩,解得916a >-且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >. 45.{-3,3}. 【详解】:解答:A ={1,-3},∴f (1)−1=0,f (−3)−(−3)=0,即1−a +b −1=b −a =0,(9+3a +b )+3=3a +b +12=0, 解得a =−3,b =−3.∴f (x )+ax =2x +3x -3+(-3x )=2x -3=0. ∴x =±3, ∴B ={-3,3}. 46 【详解】(1){|3,}x x n n N =∈,集合中元素个数无穷,不能用列举法表示; (2)2230x x +-<,即(1)(3)0x x -+<,31x -<<,集合为{|31}x x -<<,集合中元素有无数个,不能用列举法表示; (3)集合可表示为2{|230}x x x +-=,列举法表示为{3,1}-.47.(1)由题意可知:3A -∈,则()()131132A +-=-∈--,11()12131()2A +-=∈--,1132113A +=∈-,12312A +=-∈-, 所以A 中其他所有元素为11223-,,; (2)假设0A ∈,则10110A +=∈-,而当1A ∈时,11a a+-不存在,假设不成立, 所以0不是A 的元素,取3a =,则13213A +=-∈-,1(2)11(2)3A +-=-∈--,11()13121()3A +-=∈--,1123112A +=∈-, 所以当3A ∈,A 中的元素是:3,2-,13-,12;(3)猜想A 中没有元素1-,0,1;A 中有4个元素,其中两个元素互为负倒数,另两个元素也互为负倒数. 由(2)知:0,1A ∉, 若1A -∈,则1(1)01(1)A +-=∈--,与0A ∉矛盾,则有1A -∉,即1,0,1-都不在集合A 中, 若实数1a A ∈,则12111a a A a +=∈-,12131211111111111a a a a A a a a a +++-===-∈+---, 311431111()111111()a a a a A a a a +-+-===∈-+--,1415114111111111a a a a a A a a a -+++===∈---+, 又由集合元素互异性知,A 中最多只有4个元素1234,,,a a a a 且132411,a a a a =-=-, 显然12a a ≠,否则11111a a a +=-,得211a =-无实数解,同理,14a a ≠,即A 中有4个元素,所以A中没有元素101-,,;A中有4个元素,其中两个元素互为负倒数,另两个元素也互为负倒数.48.(1)a=0或a=98;(2)9|8a a⎧⎫≤⎨⎬⎩⎭;(3)a≥98或a=0.【详解】解:(1)当a=0时,原方程可化为-3x+2=0,得x=23,符合题意.当a≠0时,方程ax2-3x+2=0为一元二次方程,由题意得,∆=9-8a=0,得a=98.所以当a=0或a=98时,集合A中只有一个元素.(2)由题意得,当0,980,aa≠⎧⎨∆=->⎩即a<98且a≠0时方程有两个实根,又由(1)知,当a=0或a=98时方程有一个实根.所以a的取值范围是9|8a a⎧⎫≤⎨⎬⎩⎭.(3)由(1)知,当a=0或a=98时,集合A中只有一个元素.当集合A中没有元素,即A=∅时,由题意得0,980,aa≠⎧⎨∆=-<⎩解得a>98.综上得,当a≥98或a=0时,集合A中至多有一个元素.。

2021年新高考数学一轮专题复习第01讲-集合(解析版)

2021年新高考数学一轮专题复习第01讲-集合(解析版)

8.(2020·江苏省泰州中学高三月考)已知集合 A {x | 0 x 2} , B {x | x 1} ,则 A B ______
【答案】{x |1 x 2}
【解析】因为集合 A {x | 0 x 2} , B {x | x 1} , 所以 A B {x |1 x 2}. 故答案为:{x |1 x 2}
2.子集的传递性:A⊆B,B⊆C⇒A⊆C.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
三、 经典例题
考点一 集合的基本概念
【例 1-1】(2020·全国高三一模(文))已知集合 A x x2 2ax 2a 0 ,若 A 中只有一个元素,则实数 a
④如果 a1 M , a2 M ,那么 a1 a2 M
其中,正确结论的序号是__________. 【答案】①③
【解析】对①:对 b 2n 1, n N ,
总是有 b 2n 1 n 12 n2 , n 1, n z ,故 B M ,则①正确;
对② c 2n, n N ,若 c 2n M ,则存在 x, y Z ,使得
A.30
B.31
C.62
【答案】A
【解析】因为集合 A x | x 6 且 x N* 1, 2,3, 4,5 ,
D.63
所以 A 的非空真子集的个数为 25 2 30 .
故选:A
【例 2-3】(2020·北京牛栏山一中高三月考)已知集合 A={-2,3,1},集合 B={3,m²}.若 B A,则实数 m 的
解不等式 lg x 1 1,得 0 x 1 10 ,解得 1 x 9 .
A x x 1或x 3 , B x 1 x 9 ,则 ðR A x 1 x 3 ,

高一数学集合知识点

高一数学集合知识点

高一数学集合知识点集合〔简称集〕是数学中一个基本概念,它是集合论的研讨对象,集合论的基本实际直到19世纪才被创立。

接上去我们一同来看看高一数学集合知识点。

2021高一数学集合知识点一、集合及其表示1、集合的含义:〝集合〞这个词首先让我们想到的是上体育课或许休会时教员经常喊的〝全体集合〞。

数学上的〝集合〞和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一同就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么一切高一二班的同窗就构成了一个集合,每一个同窗就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A ,相反,d不属于集合A ,记作 d?A。

有一些特殊的集合需求记忆:非负整数集(即自然数集) N 正整数集 N*或 N+整数集Z 有理数集Q 实数集R集合的表示方法:罗列法与描画法。

①罗列法:{a,b,c……}②描画法:将集合中的元素的公共属性描画出来。

如{x?R| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}③言语描画法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描画法表示集合应留意集合的代表元素A={(x,y)|y= x2+3x+2}与 B={y|y= x2+3x+2}不同。

集合A 中是数组元素(x,y),集合B中只要元素y。

3、集合的三个特性(1)无序性指集合中的元素陈列没有顺序,如集合A={1,2},集合B={2,1},那么集合A=B。

例题:集合A={1,2},B={a,b},假定A=B,求a、b的值。

解:,A=B留意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合确实定性是指组成集合的元素的性质必需明白,不允许有模棱两可、模糊不清的状况。

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集课件 a必修1a高一必修1数学课件

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集课件 a必修1a高一必修1数学课件
解:∵A∪B=A,∴B⊆A. ∵A={x|0≤x≤4}≠∅,∴B=∅或 B≠∅. 当 B=∅时,有 m+1>1-m,解得 m>0. 当 B≠∅时,用数轴表示集合 A 和 B,如图所示,
2021/12/9
第三十四页,共四十五页。
m+1≤1-m, ∵B⊆A,∴0≤m+1,
1-m≤4,
解得-1≤m≤0.
2021/12/9
第三十二页,共四十五页。
求解“A∩B=B 或 A∪B=B”类问题的思路:利用“A∩B =B⇔B⊆A,A∪B=B⇔A⊆B”转化为集合的包含关系问题.当 题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视, 从而引发解题失误.
2021/12/9
第三十三页,共四十五页。
[变式训练 4] 已知集合 A={x|0≤x≤4},集合 B={x|m+ 1≤x≤1-m},且 A∪B=A,求实数 m 的取值范围.
2021/12/9
第二十九页,共四十五页。
[变式训练 3] 设集合 A={x|x2+ax-12=0},B={x|x2+bx +c=0},且 A∪B={-3,4},A∩B={-3},求实数 a,b,c 的 值.
解:∵A∩B={-3},∴-3∈A,且-3∈B, 将-3 代入方程 x2+ax-12=0 得 a=-1, ∴A={-3,4}, 又 A∪B={-3,4},A≠B,∴B={-3}. ∵B={x|x2+bx+c=0}, ∴(-3)+(-3)=-b,(-3)×(-3)=c, 解得 b=6,c=9,则 a=-1,b=6,c=9.
2021/12/9
第十一页,共四十五页。
知识点二 交集
[填一填] 1.交集的定义
文字语言表述为:由所有 属于集合 A 且属于集合 B 的元素 所组成的集合,叫做 A 与 B 的交集,记作 A∩B ,读作 A 交 B .

高一数学基础知识讲义(2021)——函数及其性质

高一数学基础知识讲义(2021)——函数及其性质

高一数学基础知识讲义(2021)——函数及其性质第二讲 函数及其性质知识要点一:函数及其相关概念⑴映射:设,A B 是两个非空集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素与它对应,这样的对应关系叫做从集合A 到集合B 的映射。

记作::f A B →。

⑵象与原象:给定一个集合A 到集合B 的映射,且,a A b B ∈∈,如果,a b 对应那么元素b 叫做元素a 的象,元素a 叫做元素b 的原象。

⑶一一映射:设,A B 是两个非空集合,:f A B →是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,把这个映射叫做从集合A 到集合B 的一一映射。

⑷函数:设集合A 是一个非空数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数,记作:(),y f x x A =∈这里x 叫自变量,自变量的取值范围叫做这个函数的定义域,所有函数值构成的集合,叫做这个函数的值域。

这里可以看出一旦一个函数的定义域与对应法则确定,则函数的值域也被确定,所以决定一个函数的两个条件是:定义域和对应法则。

⑸函数的表示方法:解析法、图像法、列表法。

⑹区间:定 义名 称符 号{}x a x b ≤≤闭区间[],a b{}x a x b <<开区间(),a b{}x a x b ≤<半开半闭区间[),a b{}x a x b <≤半开半闭区间(],a b闭区间是包括端点,开区间不包括端点。

实数集R 可以表示为(),-∞+∞,“∞”读作“无穷大”,例如:“3x ≥”可以表示为[)3,+∞,“4x <-”可以表示为(),4-∞-。

高考要求:了解映射的概念,理解函数的有关概念,掌握对应法则图像等性质,能够熟练求解函数的定义域、值域。

例题讲解:夯实基础一、判断下列关系哪些是映射。

高一数学教案模板集合的运算文案

高一数学教案模板集合的运算文案

高一数学教案模板集合的运算文案备课是讲课的前提,是讲好课的基础,教案则是备课的具体表现形式。

述说它可以反映教师在整个教学中的总体设计和思路,是衡量教师教学水平高低,尤其是反倒教学态度认真与否的重要尺度。

今天在这里整理了一些高一数学教案模板的运算2021文案,我们一起来呢吧!高一数学教案模板集合的运算2021文案11.教材(教学内容)本课时主要研究任意角三角函数的定义。

三角函数是一类重要的基本初等函数,是描述周期性关键性现象的重要数学模型,本课时的参考资料具有承前启后的重要作用:承前是因为可以用的定义来抽象和规范三角函数的定义,同时也可以类比研究操作方式函数的模式和方法来研究傅里叶;无理数启后是指定义了三角函数之后,就可以进一步研究三角函数的性质研究成果及图形特征,并体会三角函数在具有周期性变化规律问题中的作用,从而更深入地领会应用领域数学在其它领域中的重要应用.2.设计理念本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。

整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“非零角三角函数的定义”这一新的概念,最后通过例题与练习,将非零角三角函数的定义,内化为学生新的认识结构,从而达成教学研究目标.3.教学目标知识与技能目标:产生并掌握任意角三角函数的定义,并学会不断改进这一定义,解决相关问题.过程与方法目标:体会数学模式识别思想、类比思想和化归思想在数学新概念已经形成中的重要作用.情感态度与价值观总体目标:数理逻辑引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.4.重点难点重点:任意角是三角函数的定义.难点:任意角余弦这一概念的理解(函数模型的建立)、类比与化归思想的渗透.5.学情分析中学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以向量直角三角形为抓手的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.6.教法分析“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的拉沙泰格赖厄县,最后在解决问题的过程中形成新的认知结构.这种教学法这个能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的发挥优势.7.学法分析本课时先通过“阅读”学习法,引导学生改造已有的认知结构,指导再通过类比讲授法引导学生形成“任意角的插值的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和罗马数字希腊字母问题,从而使学生形成新的认识见识结构,达成教学目标.8.教学设计(过程)一、引入问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?问题3:当角clip_image002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕四面体O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间关系能用一个函数模型来刻画吗?二、原有认知结构的改造和重构问题4:当角clip_image002[1]是锐角时,clip_image004,线段OP 的长度clip_image006这几个量之间何为关系?学生回答,分析结论,这种关系就是我们在初中学习过的锐角三角函数学生阅读教材,并思考:问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解函数它?学生讨论并回答三、新概念的形成问题6:如果我们将角度推广逐步推广到任意角,我们能得到任意角的三角函数的定义吗?学生回答,并阅读教材,得到余弦任意角三角函数的定义.并思考:问题7:任意角三角函数定义符合我们高中所学的函数定义吗?展示下述角三角函数的定义,并指出它是如何刻划圆周运动的并等效函数的研究方法,得出任意角三角函数的定义域和值域。

2021年新版高一数学必修一第一章公式定义知识点汇总

2021年新版高一数学必修一第一章公式定义知识点汇总

2020-2021年高一数学必修一第一章公式定义知识点第一章集合(jihe)与函数概念一、集合(jihe)有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念A集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>R| x-32的解集是{x>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

高中数学 第1章 集合与函数概念 1.1.2 集合间的基本关系课件 a必修1a高一必修1数学课件

高中数学 第1章 集合与函数概念 1.1.2 集合间的基本关系课件 a必修1a高一必修1数学课件

4.集合间关系的性质 (1)任何一个集合都是它本身的子集,即 A⊆A. (2)对于集合 A,B,C, ①若 A⊆B,且 B⊆C,则 A⊆C; ②若 A B,B C,则 A C. (3)若 A⊆B,A≠B,则 A B.
2021/12/12
第七页,共三十二页。
[基础自测] 1.思考辨析 (1)空集中只有元素 0,而无其余元素.( ) (2)任何一个集合都有子集.( ) (3)若 A=B,则 A⊆B 或 B⊆A.( ) (4)空集是任何集合的真子集.( )
2.若集合 A={x|1<x<b},试结合 b 的取值,指出 A 集合中的元素.
提示:当 b≤1 时,A=∅;当 b>1 时,A 中的元素是由满足不等式 1<x<b 的实 数组成的.
2021/12/12
第二十页,共三十二页。
例 3 已知集合 A=|x|-2≤x≤5},B={x|m+1≤x≤2m-1},若 B A,求实数 m 的取值范围. 思路探究: B={x|m+1≤x≤2m-1} ―分―B结=―合∅―数和―轴B―≠→∅
∴∴2m2m2mmm++- --1111≤ ≤ 1>≥>--mm5++,22,,11,,
即即mmmmmm≥>≤≥ ≤ >22- 3,3-,,,33,, ∴∴mm不不存存在在..
即即不不存存在在实实数数
m m
使使
AA⊆ ⊆BB..
2021/12/12
第二十四页,共三十二页。
[规律方法] 1.利用集合的关系求参数问题
(1)利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含
参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需
特别注意端点问题.

高一数学讲义-集合间的基本关系

高一数学讲义-集合间的基本关系

集合间的基本关系一、子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1){1,2,3}A =,{1,2,3,4,5}B =;(2){}C =新华一中高一 班全体女生,{}D =新华一中高一 班全体学生;(3){|}E x x =是两条边相等的三角形,{}F x x =是等腰三角形1.子集的定义:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:()A B B A ⊆⊇或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系:A B ⊆2. 集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。

如(3)中的两集合E F =。

3. 真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset )。

记作: A B (或B A )读作:A 真包含于B (或B 真包含A )4. 空集定义:不含有任何元素的集合称为空集(empty set ),记作:∅。

用适当的符号填空: ∅ {}0; 0 ∅; ∅ {}∅; {}0 {}∅重要结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。

说明:1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;2. 在分析有关集合问题时,要注意空集的地位。

三、例题讲解:例1.若集合{}{}260,10,A x x x B x mx =+-==+= B A ,求m 的值。

2020-2021学年人教版 高一 数学必修1第一章《集合与逻辑用语》知识导图

2020-2021学年人教版 高一 数学必修1第一章《集合与逻辑用语》知识导图
数学必修一 《集合与逻辑用语》单元知识导图
集合与常用逻辑用语 单元知识导图
集合
1.1集合的含义 1、集合与元素的含义
集合:A 元素:a
2、元素与集合的关系
a∈A
3、集合中元素的特点
确定性 互异性 无序性
4、集合的表示方法
列举法 描述法
5、常见数集
N、 N*或 N+ 、Z 、Q、R
1.2集合间的基本关系 1、子集的概念
A∩B={x|x∈A,且x∈B}
3、全集补与集
∁UA={x|x∈U,且x∉A}
4、并集、交集、补集的 运算性质
集合与常用逻辑用语 单元知识导图
逻辑用语
1.4充分条件与必要条件
1.全称量词和存在量词
1.5全称量词
全称量词
存在量词
1、充分条件------判定定理 2、必要条件------性质定理 3、充要条件------数学定义
与存在量词
对充分条件和必要条件的进一步划分:
条件 p 与结论 q 的关系 p⇒q,且 q⇒/ p q⇒p,且 p⇒/ q
p⇒q,且 q⇒p,即 p⇔q
结论 p 是 q 的充分不必要条件 p 是 q 的必要不充分条件
p 是 q 的充要条件
量词
所有的、任意一个
符号

命题 含有全称量词的命题叫做全称量词命题
结论 全称量词命题的否 定是存在量词命题
p ⇒/ q,且 q ⇒/ p
p 是 q 的既不充分也不必要条件
存在量词命题 ∃x∈M,p(x)
∀x∈M,﹁p(x )
存在量词命题的否 定是全称量词命题
存在一个、至少有一个 ∃
含有存在量词的命题叫做存在量词命题
“对 M 中任意一个 x,p(x)成立”,可用 “存在 M 中的元素 x,p(x)成立”,可用

2021年高一数学 基础知识点汇总 1集合

2021年高一数学 基础知识点汇总 1集合

2021年高一数学基础知识点汇总 1集合1集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A ∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)注:空集包含于任何集合,但不能说“空集属于任何集合注:空集属于任何集合,但它不属于任何元素.某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

集合的性质:确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。

不能写成{1,1,2},应写成{1,2}。

无序性:{a,b,c}{c,b,a}是同一个集合集合有以下性质:若A包含于B,则A∩B=A,A∪B=B常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,级做R集合的运算:1.交换律A∩B=B∩AA∪B=B∪A2.结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)3.分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)例题已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},求实数a的值.∵A∩B={-3}∴-3∈B.①若a-3=-3,则a=0,则A={0,1,-3},B={-3,-1,1}∴A∩B={-3,1}与∩B={-3}矛盾,所以a-3≠-3.②若2a-1=-3,则a=-1,则A={1,0,-3},B={-4,-3,2}此时A∩B={-3}符合题意,所以a=-1.[uN32417 7EA1 纡 31524 7B24 笤39476 9A34 騴(38052 94A4 钤23125 5A55 婕(223040 5A00 娀20277 4F35 伵35904 8C40 豀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学基础知识第一讲 集合知识要点一:集合的有关概念⑴某些指定的对象集在一起就成为一个集合,这些研究对象叫做元素。

⑵集合中元素的特性:⎪⎩⎪⎨⎧的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素注意:这三条性质对于研究集合有着很重要的意义, 经常会渗透到集合的各种题目中,同学们应当重视。

⑶元素与集合的关系:①如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈②如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ∉(注意:属于或不属于(∉∈,)一定是用在表示元素与集合间的关系上)⑷集合的分类:集合的种类通常分为:有限集(集合含有有限个元素)、无限集(集合含有无限个元素)、空集(不含任何元素的集合,用记号∅表示)⑸集合的表示:①集合的表示方法:列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。

例:{}2,1=A描述法:在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

例:{}4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。

图示法(即维恩图法):用平面内一条封闭曲线的内部表示一个集合。

②特定集合的表示:自然数集(非负整数集)记作N ;正整数集记作()+N N *;整数集记作Z ;有理数集记作Q ;实数集记作R 。

(这些特定集合外面不用加{})高考要求:理解集合的概念,了解属于关系的意义,掌握相关的术语符号,会表示一些简单集合。

例题讲解:夯实基础一、判断下列语句是否正确1)大于5的自然数集可以构成一个集合。

正确{}5>∈x N x2)由1,2,3,2,1构成一个集合,这个集合共有5个元素。

错误3)所有的偶数构成的集合是无限集。

正确4)集合{}{}b a c B c b a A ,,,,,==则集合A 和集合B 是两个不同的集合。

错误二、用符号∈或∉填空。

1)N __0 2)Z _____14.3 3)Q ______π4)若{}x x x A 22==,则A _____2-5)若{}0322=--=x x x B ,则B _____3三、用适当的方法表示下列集合1)一次函数12+=x y 与421+-=x y 的交点组成的集合。

⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛517,56⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛517,56⎭⎬⎫⎩⎨⎧517,56区别是什么?2)绝对值等于3的全体实数构成的集合。

{}3,3-3)大于0的偶数。

{}*,2N n n x x ∈={},...8,6,4,2能力提升1)集合(){}N y x y x y x A ∈=+=,,72,,用列举法表示集合A 。

,005322x y N x y N N ∈∴≥≥∉∈∴解: 当x=1 y=3 当x=3 y=2x=2 y= x=4 y= x=5 y=1{(1,3),(3,2),(5,1)}2)集合{}0122=++=x ax x A 中只有一个元素,求a 的值。

21221044a 1=0a=1x ≠++=∆=-⨯⨯∴解:当a=0 方程:2x+1=0 x=-合题意当a 0 ax 当3)用描述法可将集合{},11,9,7,5,3,1---表示成________________________。

n+1{x x n *}N =∈解:(-1)(2-1),n知识要点二:集合与集合之间的关系⑴子集①一般地,如果集合A 中的任何元素都是集合B 中的元素,那么集合A 叫做集合B 的子集记作B A ⊆(A 包含于B )或A B ⊇(B 包含A )即:对任意B x A x ∈⇒∈,则B A ⊆。

显然A A ⊆,对于任一集合A ,规定A ⊆φ。

⑵真子集:如果集合B A ⊆,但存在元素A x B x ∉∈,,我们称集合A 是集合B 的真子集,记作A B 。

⊂集合是任意非空集合的真子集。

⑵集合的相等集合,A B 如果B A ⊆,同时B A ⊆,则称A B =。

⑶严格区分,正确使用“,,,,∈∉⊆⊄”等符号。

前两个是用在元素与集合的关系上,后三个是用在集合与集合的关系上,一定注意区分。

集合关系与其特征性质之间的关系一般地,设(){}(){},A x p x B x q x ==,如果B A ⊆,则B x A x ∈⇒∈,{}2x x x x例: A={3} B=于是x 具有性质()p x x ⇒具有性质()q x ,即()()p x q x ⇒。

B ∈⇒⇒若A B 当x 3x 2当x 3x 2我们说A 一定是的子集。

反之,如果()()p x q x ⇒,则A 一定是B 的子集。

集合的运算⑴交集一般地,对于两个给定的集合,A B ,由属于A 又属于B 的所有元素构成的集合,叫做,A B 的交集,记作A B ⋂,读作“A 交B ”由定义容易知道:⑵并集一般地,对于两个给定的集合,A B ,由A ,B 两个集合的所有元素构成的集合,叫做,A B 的并集,记作A B ⋃,读作“A 并B ”由定义容易知道⑶补集全集:如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 来表示。

补集:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作UA ,读作“A 在U 中的补集”。

高考要求:理解子集、补集、交集、并集的概念。

了解全集的意义,了解包含、相等关系得意义,掌握相关的术语、符号,并会用它们正确表示一些简单的集合。

命题趋向:这一讲应该说考查的重点是集合与集合间的关系,近几年高考加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,一般在高考中以客观题形式出现,难度为容易。

例题讲解:夯实基础一、用适当的符号填空∈⊆⊂1){}2__1,2,3 2){}__,a a b 3){}{}_____,,a a b c 4){}__0∅5){}{}1,4,7____7,1,4 6){}0,1____N 7){}2____1x R x ∅∈=-二、已知集合{}2,0,1A =-,那么A 的非空真子集有_________个。

{}{}{}{}{}{}20120211,0Φ---解:A 的非空真子集指的是,除A 集合本身与后所有子集 含有1个元素的 含有2个元素的,,n 2n =给出计算子集的公式,全部子集个数,表示元素个数。

三、求下列四个集合间的关系,并用维恩图表示。

U A C{}{}{}{}A x x B x x C x x D x x ====是平行四边形,是菱形,是矩形,是正方形⊂⊂⊂⋂解:B A,C A,D A,D=B C四、已知{}{}{}1,2,3,4,,10,21234U A B ===,4,6,8,10,,,,,求()(),U U A B C A C B ⋂⋂。

{}{}{}()(){}24135795678910579U U U U A B A B A B ⋂===∴⋂=解:, C ,,,, C ,,,,,C C ,,能力提升一、 若集合X 满足{}{}0121012X ⊆⊆--,,,,,,则X 的个数有几个? {}{}{}{}{}{}{}{}{}{}0101320110120101232101220112010132102X --------解:中至少要含有,两个元素。

比,多一个元素的有个,,,,,,比,多个人元素的有个,,,,,,,,,比,多个元素的,,,1,二、 如右图U 是全集,,,M P S 是U 的三个子集, 则阴影部分所表示的集合是( )()().U A M P C S ⋂⋂ ()().U B M P C S ⋂⋃ ().C M P S ⋂⋂().D M P S ⋂⋃u M P C S ⋂解:先看如图所示 而为图以外部分以上两部分公共区域显然为图中阴影三、 已知集合{}{}{}24,21,,5,1,9,9A a a B a a A B =--=--⋂=,试求实数a 。

{9}9B A ∴∴∴⋂⋂=∴∈解:对于集合A 来讲(1)令2a-1=9a=5A={-4,9,25} B={0,-4,9}A B={-4,9}与已知不符。

a=5舍去A2(2)9333{4,5,9}a a a a A ===-==-令或时, B={-2,-2,9} 不符合集合的互异性,a=3舍去A B={9}3{4,4,8,7,9}a AB ⋂∴=-∴⋃=---(3)当a=-3A={-4,-7,9} B={-8,4,9} 与相符四、 已知集合(){}2210,,A x x p x p x R =+++=∈,且A R +⋂=∅,求实数p 的取值范围。

222(2)x 1041104p 0 -4p 0A R p φφφ+⋂=+++=∴∆-⨯⨯+∴解:若 等价于A= 或方程x 有两个非正根 若A=则=(p+2)p21212(2)x 100p 0p 4x x p 20p x x 10p -4p 0p 2p 0p p +++=∆≥⇒≥≤⎧⎪+=--⎨⎪⋅=⎩≤≥⎧⎨-⎩∴≥∞ (2)方程x 有两个非正根或 -2或 解得 综上的取值范围(-4,+)注意:A R +⋂=∅的条件之一就是A =∅,这是十分容易遗漏的,另外对(){}2210,,A x x p x p x R =+++=∈的正确理解应是二次方程()2210x p x +++=的根组成的集合。

那么应该有三种情况:两个不等实根、两个相等实根、无实根。

而无实根就是使得A 为空集的情况。

高考一轮复习写作攻略演讲稿致辞(2021高考英语-解析版)。

相关文档
最新文档