壳聚糖制备工艺。改

合集下载

黑曲霉菌体制备壳聚糖的工艺研究

黑曲霉菌体制备壳聚糖的工艺研究

黑曲霉菌体制备壳聚糖的工艺研究黑曲霉菌体制备壳聚糖的工艺研究可以包括以下步骤:
1. 菌种培养:选取适合的黑曲霉菌菌种,并在适当的培养基中进行培养,提供适宜的生长条件。

2. 菌丝培养:将培养好的菌种接种到含有壳聚糖基质的培养基中,进行菌丝的生长培养。

3. 培养基改性:通过调整培养基的组成、添加适宜的促进壳聚糖生产的营养成分,改善壳聚糖的合成效果。

4. 发酵过程控制:控制培养条件,包括温度、pH、氧气供应等因素,以促进菌体合成和壳聚糖产量的提高。

5. 分离和提取:将培养液中的黑曲霉菌体进行分离和纯化,以得到纯净的黑曲霉菌体。

6. 壳聚糖提取:通过适当的酶处理、酸碱处理等方法,将黑曲霉菌体中的壳聚糖提取出来。

7. 纯化和干燥:对提取得到的壳聚糖进行纯化、过滤、
洗涤和干燥处理,以得到可用于应用的最终产物。

以上是制备壳聚糖的一般工艺研究流程,具体的条件和步骤可能会因研究目的、设备条件等而有所调整和改变。

需要进行详细的研究和实验以确定最佳工艺。

壳聚糖改性吸附剂的制备及其吸附性能研究

壳聚糖改性吸附剂的制备及其吸附性能研究
环保安全
壳聚糖改性吸附剂制备过程简单,安全环保,不会产生二 次污染。
05
结论
研究成果总结
壳聚糖改性吸附剂的制备方法
本研究成功开发了一种壳聚糖改性吸附剂的制备方法,该方法简单、 高效,适用于大规模生产。
吸附性能显著提高
通过改性处理,壳聚糖吸附剂的吸附容量和吸附速率均得到显著提升, 能够有效去除水中的重金属离子和有机污染物。
拓展应用领域
将壳聚糖改性吸附剂应用于其他领域, 如土壤修复、放射性核素去除等,以 拓展其应用范围。
开发新型改性材料
尝试其他天然高分子材料进行改性处 理,以期获得性能更优异的吸附剂。
加强实际应用研究
进一步验证壳聚糖改性吸附剂在实际 应用中的效果,为其在水处理领域的 推广应用提供有力支持。
THANKS
吸附剂的结构。
扫描电子显微镜分析
观察改性吸附剂的表面形貌、 孔径分布和孔容等结构特征。
X射线衍射分析
用于分析改性吸附剂的晶体结 构和晶格常数。
热重分析
研究改性吸附剂的热稳定性及 失重行为。
03
壳聚糖改性吸附剂的吸附性能研究
吸附机理
01
02
03
物理吸附
通过分子间范德华力吸附 污染物。
化学吸附
通过吸附剂表面的活性基 团与污染物发生化学反应, 形成稳定的化学键。
离子交换吸附
壳聚糖改性吸附剂表面的 氨基和羧基可以与污染物 中的阳离子和阴离子进行 离子交换。
吸附动力学研究
吸附速率
研究吸附过程中不同时间点的吸附量,分析吸附 速率随时间的变化规律。
吸附平衡时间
确定达到吸附平衡所需的时间,为实际应用提供 参考。
动力学模型
建立吸附动力学模型,用于描述吸附速率与污染 物浓度、吸附剂用量等因素之间的关系。

甲壳素制备壳聚糖工工艺流程

甲壳素制备壳聚糖工工艺流程

甲壳素制备壳聚糖工工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!甲壳素制备壳聚糖的精细工艺流程甲壳素,一种广泛存在于虾、蟹壳等生物废弃物中的天然高分子化合物,经过一系列复杂的化学反应和物理处理,可以转化为壳聚糖,一种具有广泛应用前景的生物聚合物。

壳聚糖的改性研究

壳聚糖的改性研究

壳聚糖的改性研究壳聚糖及其衍是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。

本文综合概述了壳聚糖的结构、性质、富集及其改性的方法,简单介绍了它们的应用领域。

壳聚糖具有许多独特的化学性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。

对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。

通过对甲壳质和壳聚糖进行修饰与改性来制备性能独特的衍已经成为当今世界应用开发的一个重要方面。

1、壳聚糖及其改性吸附剂壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素n-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-d-葡萄糖。

壳聚糖本身的基本结构就是葡萄糖胺聚合物,与纤维素相似。

但因多了一个胺基,具有正电荷,所以并使其性质较为开朗。

且因其生成分子融合键角度自然改变之故,对于小分子或元素可以出现HGPRT螳螂合作用。

根据甲壳素退乙酰化时的条件相同,壳聚糖的退乙酰度和分子量相同,壳聚糖的分子量通常在几十万左右。

但一般来说n-乙酰基脱下55%以上的就可以称作壳聚糖。

壳聚糖本身性质十分稳定,不会氧化或吸湿。

鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、制药、水处理方面显示出非常诱人的应用价值。

近年来,国内外对壳聚糖的开发研究十分活跃。

由于壳聚糖吸附剂存有以上的优点,学者们对其天然的工艺已经存有了较为深入细致的研究。

李斌,崔慧研究了以壳聚糖作富集柱,稀h2so4为洗脱剂,稀naoh 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量cu(ⅱ)的方法,于波长nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。

此法的优点在于简便、快速、选择性好、经济实用、效果良好。

但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。

然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。

壳聚糖的改性方法主要包括化学改性和物理改性。

化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。

例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。

物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。

例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。

目前,壳聚糖的改性研究已经取得了显著的进展。

然而,仍存在一些问题和挑战。

其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。

改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。

未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。

壳聚糖在工业、生物医学等领域有着广泛的应用。

在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。

例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。

在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。

例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。

在生物医学领域,壳聚糖还可用于组织工程。

通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。

这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。

壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。

例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。

壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。

壳聚糖的制备方法

壳聚糖的制备方法

壳聚糖的制备方法
壳聚糖可以通过多种方法制备,以下是一些常见的制备方法:
1. 天然提取法:天然提取法是直接从自然界中提取壳聚糖的方法。

例如,从虾、蟹等甲壳类动物的外壳中提取壳聚糖。

这种方法得到的壳聚糖纯度较高,但产量较低。

2. 化学合成法:化学合成法是通过化学反应在实验室里制备壳聚糖的方法。

这种方法可以大规模生产壳聚糖,但需要使用大量化学试剂,且产物的纯度可能不如天然提取法。

3. 生物合成法:生物合成法是利用微生物发酵的方法生产壳聚糖。

这种方法可以大规模生产壳聚糖,且不需要使用化学试剂,因此对环境友好。

但需要选择合适的微生物和发酵条件,以确保产物的纯度和产量。

4. 酶促合成法:酶促合成法是利用酶催化反应制备壳聚糖的方法。

这种方法可以在温和的条件下进行,且使用的酶通常对环境友好。

但需要选择合适的酶和反应条件,以确保产物的纯度和产量。

总的来说,制备壳聚糖的方法有很多种,可以根据实际需求选择合适的方法。

壳聚糖生产工艺

壳聚糖生产工艺

壳聚糖生产工艺壳聚糖是一种由壳类动物外壳和真菌组成的聚糖,具有广泛的应用价值。

壳聚糖的生产工艺主要包括原料准备、壳聚糖提取、壳聚糖纯化和产品制备四个步骤。

首先是原料准备。

壳聚糖的原料主要是海洋生物废壳和农产品废弃物,如虾壳、蟹壳、贝壳等。

这些废壳经过清洗、去除有机物和杂质的处理,然后破碎成粉末状,以便后续的提取工艺。

接下来是壳聚糖的提取。

提取壳聚糖的主要方法是酸碱法和酶解法。

其中,酸碱法是将粉末状的废壳与稀盐酸进行反应,使壳聚糖溶解在溶液中,然后通过酸碱中和、离心、过滤等步骤将壳聚糖分离出来。

酶解法是利用壳聚糖酶将废壳中的壳聚糖水解为可溶解于水的壳寡糖,再通过膜过滤、浓缩、冷冻干燥等步骤获得壳聚糖。

然后是壳聚糖的纯化。

壳聚糖提取出来后,通常会含有一定的杂质,如蛋白质、脂质等。

为了提高壳聚糖的纯度,需要进行纯化处理。

常用的纯化方法有沉淀法、离子交换法和超滤法。

沉淀法是将提取得到的壳聚糖溶液与醇类进行混合,在醇的作用下,壳聚糖形成沉淀,然后通过离心、洗涤等步骤将沉淀分离出来。

离子交换法是利用具有特定功能团的离子交换树脂,通过溶液中不同离子的吸附和解吸,将壳聚糖从溶液中分离出来。

超滤法是利用分子筛原理,通过不同孔径的膜将溶液中的大分子杂质和壳聚糖分离开。

最后是产品制备。

壳聚糖可以根据需求进行不同形式的产品制备,如片剂、凝胶、膜等。

片剂的制备是将壳聚糖溶解在适当的溶剂中,加入助溶剂、增粘剂等辅助原料,经过混合、挤压、切割等步骤制成固体片剂。

凝胶的制备是将壳聚糖溶解在水中,并在适当的条件下进行交联反应,形成具有凝胶状的产物。

膜的制备是将壳聚糖溶解在溶剂中,加入适量的增稠剂和交联剂,经过溶液待定、膜液脱水、膜涂覆、干燥等步骤形成薄膜。

以上就是壳聚糖的生产工艺,通过原料准备、壳聚糖提取、壳聚糖纯化和产品制备四个步骤,可以将海洋废壳和农产品废弃物等废料转化为有价值的壳聚糖产品,具有较高的环境和经济效益。

壳聚糖

壳聚糖

壳聚糖的制备改性及其应用进展摘要:扼要地介绍了甲壳素及壳聚糖的主要性质、结构、及制法。

重点论述了壳聚糖的一些主要的改性方法,包括醚化、氧化、酰化、交联、烷基化、接枝共聚、季铵化及和其他材料复合等方法;并综述了壳聚糖及其衍生物在食品工业、日用化学、医药行业、环保、轻工业及其他领域的应用现状。

关键词:壳聚糖;衍生物;化学改性;应用1 前言壳聚糖(chitosan) , 学名为(1,4)-2-氨基-2-脱氧-β-D-葡聚糖,是甲壳素(chitin) 脱乙酰的产物, 而甲壳素是仅次于纤维素的第2 大天然有机高分子物质, 每年地球上甲壳素自然生成量高达百亿吨, 其产量与纤维素相当, 储量巨大[1] 。

由于它具有良好的絮凝能力、成膜性和生物相容性等较为独特的功能, 近年来在纺织、医药、日化、农业、环保、生物工程等领域有了广泛的应用。

目前壳聚糖在全世界范围内供不应求。

我国有丰富的甲壳素资源和巨大的壳聚糖产品的潜在市场, 应充分利用资源优势, 加快研究和开发壳聚糖系列产品的步伐, 满足不同用途的需要。

2 壳聚糖的制备方法壳聚糖可由甲壳素通过脱乙酰基反应制的,其反应式如下:反应的实质是酰胺的水解反应,一般在40%的NaOH溶液中于100~180℃加热非均相进行,得到可溶于稀酸、脱乙酞度一般为80%左右的壳聚糖。

与一般的胺类物质不同,壳聚糖中的氨基在碱液中十分稳定,即使在50%的NaOH中加热到160℃也不分解[2]。

提高反应温度、碱液浓度及延长反应时间可提高脱乙酞度,但在碱液中壳聚糖的主链降解也变得严重,其表现为随着脱乙酞度的提高,通常伴随粘度及分子量的下降[3](表1-1)。

为了避免大分子链被破坏,可采用加入1 %NaBH 4[4]或通入惰性气体的办法。

最近有报道通过降低脱乙酞反应的温度、缩短反应时间、增加反应次数并进行中间产物的溶解一沉淀处理,可得到脱乙酞度达99%的高分子量(M W =59万)的壳聚糖[5]。

壳聚糖的合成方法及应用研究

壳聚糖的合成方法及应用研究

壳聚糖的合成方法及应用研究壳聚糖是一种天然多糖,由N-乙基葡糖胺单体通过聚合反应得到。

它在生物医学工程、药物传递系统、环境保护等领域中具有广泛的应用。

本文将探讨壳聚糖的合成方法及其在不同领域的应用研究。

一、壳聚糖的合成方法1. 壳聚糖的酸性水解法酸性水解法是最常见的壳聚糖合成方法之一。

首先,将壳聚糖原料与酸性溶液(如盐酸)反应,使壳聚糖分子链中断,生成壳聚糖片段。

接下来,通过调节pH 值和温度使得酸性水解的壳聚糖片段重新连接形成更长的壳聚糖链。

这种方法简单易行,但需要注意控制反应条件,以避免产生副产物或降解。

2. 壳聚糖的酶催化法酶催化法是一种环境友好的壳聚糖合成方法。

通过使用特定的酶催化剂,可以在温和的条件下将壳聚糖单体聚合成壳聚糖链。

这种方法具有高产率、高选择性和对环境友好等优点,但酶催化剂的成本较高,并且需要优化反应条件。

3. 壳聚糖的还原性修饰法还原性修饰法通过将壳聚糖中的羟基还原为胺基,从而获得更多功能化基团的壳聚糖。

这种方法可以通过氨基化剂(如戊二醛)在合成过程中引入胺基,也可以在合成后通过还原剂(如氢气、亚硫酸氢钠)来实现。

还原性修饰法可以扩展壳聚糖的应用领域,并提供更多的功能化设计空间。

二、壳聚糖的应用研究1. 生物医学工程领域应用壳聚糖在生物医学工程领域具有广泛的应用潜力。

它可以用作药物传递系统的载体,可通过控制粒径、表面修饰和药物包封来实现药物的稳定释放。

壳聚糖也可以用于组织工程和创伤修复中,作为生物可降解的支架材料。

此外,壳聚糖还可用作生物传感器和生物成像试剂,用于检测和监测生物分子。

2. 环境保护领域应用壳聚糖在环境保护领域具有一定的应用潜力。

它可以用于制备高效的吸附剂,可用于水处理中去除重金属离子、有机物污染物等。

壳聚糖还可用于制备可降解的半透膜和膜过滤器,用于废水处理和固体废物处理。

此外,壳聚糖还可用作土壤改良剂和植物生长调节剂,促进植物生长和修复受损的土壤。

3. 肥皂和化妆品领域应用由于壳聚糖具有良好的防腐性和保湿性能,它在肥皂和化妆品领域中也得到了广泛的应用。

乙二醇壳聚糖的制备方法(一)

乙二醇壳聚糖的制备方法(一)

乙二醇壳聚糖的制备方法(一)乙二醇壳聚糖的制备方法介绍乙二醇壳聚糖是一种重要的天然高分子化合物,具有广泛的应用前景。

本文将详细介绍几种常见的乙二醇壳聚糖制备方法。

1. 直接糖酸酐化法•步骤:1.将壳聚糖溶解在醋酸中;2.在溶液中加入适量的乙二醇;3.加入一定量的酸酐(如吡嗪-2,6-二甲酸酐);4.在适宜的温度下反应一段时间;5.过滤得到产物,洗涤并干燥。

2. 化学修饰法•步骤:1.将壳聚糖溶解在适宜的溶剂中;2.加入乙二醇和一定量的化学修饰剂(如苛性钠);3.在一定的温度和时间下进行反应;4.调节反应条件使化学修饰剂完全反应或生成乙二醇壳聚糖。

3. 酶法•步骤:1.将壳聚糖溶解在缓冲液中;2.加入适量的乙二醇,调节pH值;3.加入适量的酶(如壳聚糖酶);4.在适宜的温度和时间下进行反应;5.过滤得到产物,洗涤并干燥。

4. 微生物发酵法•步骤:1.选择适宜的生产微生物(如白色假丝酵母);2.培养微生物并发酵;3.通过调节培养基组成、温度、pH值等条件优化发酵过程;4.分离培养液,经过适当的处理得到乙二醇壳聚糖。

5. 离子液体法•步骤:1.将壳聚糖溶解在离子液体中;2.加入乙二醇,调节温度和pH值,使反应适宜进行;3.将反应混合液进行离子交换、析出或沉淀等处理;4.分离产物并进行后续处理。

总结乙二醇壳聚糖的制备方法有直接糖酸酐化法、化学修饰法、酶法、微生物发酵法和离子液体法。

不同的方法适用于不同的实际情况,需要根据具体需求选择合适的方法进行制备。

以上列举的几种方法只是其中的一部分,随着科技的发展,还会有更多新颖的方法被开发出来。

通过这些方法,我们可以高效地制备出乙二醇壳聚糖,并应用于各种领域中的创新产品开发。

乙二醇壳聚糖的制备方法(续)6. 光催化法•步骤:1.将壳聚糖溶解在适宜的溶剂中;2.加入适量的乙二醇和光敏剂(如二氧化钛);3.通过紫外光照射反应体系;4.在一定的时间和条件下进行反应;5.分离产物并进行后续处理。

壳聚糖纳米颗粒的制备方法

壳聚糖纳米颗粒的制备方法

壳聚糖纳米颗粒的制备方法
壳聚糖纳米颗粒的制备方法包括以下几个步骤:
1. 溶液制备:首先将壳聚糖溶于适量的酸性溶液(如醋酸溶液)中,
搅拌均匀,直至溶解。

2. 交联剂加入:将适量的交联剂(如硬脂酸)溶于有机溶剂中,将该
溶液缓慢滴入壳聚糖溶液中,同时搅拌,以实现交联反应。

3. 超声处理:将交联后的溶液经过超声处理,利用超声波的剪切力作用,进一步降低颗粒的大小,提高颗粒的分散性。

4. 过滤和洗涤:将处理后的溶液通过滤纸或膜过滤,去除大颗粒,然
后用去离子水洗涤颗粒,去除残留的杂质。

5. 干燥:将洗涤后的颗粒在恒温干燥箱中低温干燥,直至完全干燥。

通过以上步骤,可以获得壳聚糖纳米颗粒,其具有较小的颗粒大小和
良好的分散性,在生物医学、食品添加剂等领域具有广泛的应用前景。

改性壳聚糖制备及止血性能探究

改性壳聚糖制备及止血性能探究

改性壳聚糖制备及止血性能探究摘要:壳聚糖是一种天然高分子聚合物,属于氨基多糖,学名为[ (1. 4) -2-乙酰氨基-2-脱氧-β -D-葡萄糖]。

是至今为止发现的唯一带阳离子电荷的碱性多糖,壳聚糖在自然界中广泛存在于低等生物菌类,藻类的细胞,节肢动物虾、蟹、昆虫等的外壳中。

生物相容性好、毒性低、可生物降解,广泛应用于食品、医药、保健、生物工程等领域。

近年来由于其诸多独特物理化学性质和广阔应用前景而越来越受到人们的重视。

壳聚糖分子结构中的氨基基团比甲壳素分子中的乙酰氨基基团反应活性更强,使得该多糖具有优异的生物学功能并能进行化学修饰反应。

因此,壳聚糖被认为是比纤维素具有更大应用潜力的功能性生物材料。

本文对壳聚糖、以及壳聚糖改性机理、改性方法、改性壳聚糖在止血材料中的相关应用、止血效果等方面进行研究与探讨。

关键词:壳聚糖;改性;止血海绵;止血材料不可控的急性出血一直是难以解决的问题,尤其是在战场和事故中。

战场上50%的死亡是由过度失血所致,入院前的及时止血可以为后续入院救治争取宝贵的时间。

目前,现有的商业化的止血材料分别为基于沸石、蒙脱石和高岭土的无机硅铝酸盐止血剂以及基于壳聚糖的有机高分子止血剂。

其中,无机硅铝酸盐止血剂具有多孔结构,能够浓缩血液成分,从而促进凝血。

高分子止血剂主要利用了壳聚糖的黏附机制,快速地封堵伤口,加速凝血。

但是,这些材料都有各自的缺点,沸石在吸收血液时会大量放热,易灼烧伤口;蒙脱石和高岭土.易残留堵塞血管;壳聚糖基止血剂的止血能力弱于无机材料,且机械强度较低,不足以抵抗动脉血压的冲击和实际应用中的压力和撕扯。

因此,对壳聚糖进行改性、研发安全高效的止血剂对军事医学和外科医疗具有重要意义。

一、壳聚糖简介壳聚糖又名脱乙酰甲壳质、可溶性甲壳素、聚氨基葡萄糖,为类白色粉末,无臭,无味。

本品微溶于水,几乎不溶于乙醇。

本品是一种阳离子聚胺,在pH<6.5时电荷密度高。

壳聚糖是一种带有活泼羟基与氨基的线型聚电解质,是天然多糖甲壳素脱除部分乙酰基的产物,具有生物降解性、生物相容性、无毒性、抑菌、抗癌、降脂、增强免疫等多种生理功能,广泛应用于食品添加剂、纺织、农业、环保、美容保健、化妆品、抗菌剂、医用纤维、医用敷料、人造组织材料、药物缓释材料、基因转导载体、生物医用领域、医用可吸收材料、组织工程载体材料、医疗以及药物开发等众多领域和其他日用化学工业[1]。

壳聚糖制备工艺。改

壳聚糖制备工艺。改

实验一:壳聚糖制备工艺一、实验目的1、了解制备甲壳质和壳聚糖的意义;2、学习甲壳质和壳聚糖制备工艺。

二、实验原理壳聚糖是碱性多糖,有止酸、消炎作用,可抑制胃溃疡。

动物实验表明,可降低胆固醇、血脂。

国外已报道用作心血管系统降低胆固醇的药物。

经分子修饰制得的肝素类似物,具有抗血栓作用,能与肝素妣美。

壳聚糖广泛用于食品与医药,如用作药物的载体具有缓释、持效的优点;用于制作人造皮肤、人造血管、人工肾、手术缝合线等。

虾蟹壳含无机盐碳酸钙和磷酸盐约占45%;蛋白和脂肪约占27%;甲壳质约占20-25% (蟹壳含甲壳质17.1-18.2%;龙虾含甲壳质22.5%;虾壳含甲壳质20-25%)甲壳质是聚-2-乙酰氨基-2-脱氧-D-毗喃葡萄糖,以0-(1,4)糖苷键连接而成,是一种线型高分子多糖,天然的中性粘多糖。

甲壳质一般与蛋白质或碳酸钙或两者紧密结合在一起。

盐酸浸泡处理可除掉壳里的无机盐碳酸钙、磷酸盐,壳中的CaCO3与HCL生成CaCL存在于废酸液中被除掉。

碱处理可除掉壳中的蛋白和脂肪。

经分离制得的甲壳质为白色无定型粉末,或亮白色半透明的小片状物。

甲壳质不溶于水、稀酸、碱溶液和乙醇、乙醚等有机溶剂,溶于无水甲酸、浓无机酸。

浓热碱液与甲壳质作用,可脱掉甲壳质分子结构上的乙酰基,生成壳聚糖。

即壳聚糖是由甲壳质在高浓度碱液中脱乙酰制备而成。

壳聚糖为可溶性甲壳质,化学名称为聚-2-氨基-2- 脱氧-D-毗喃葡萄糖,以0-(1,4)糖苷键连接而成。

相对分子量约为12万-59万,是一种大分子阳离子聚合物。

壳聚糖不溶于水和一般有机溶剂,不溶于碱,可溶于酸性水溶液(但不溶于硫酸)。

制备高黏度(高分子量)壳聚糖,脱乙酰工艺路线有几条,学生自行设计:1.60-70°C,40-41%NaOH 溶液保温20h;2.110-120°C,45-50% NaOH 溶液反应1h 左右;3、间歇式工艺路线:100C条件下,45%的NaOH溶液,1+1间歇反应2次,每次反应1h,每次反应后水洗全中性。

壳聚糖改性水性有机硅聚氨酯-丙烯酸酯的制备及成膜性能

壳聚糖改性水性有机硅聚氨酯-丙烯酸酯的制备及成膜性能

壳聚糖改性水性有机硅聚氨酯-丙烯酸酯的制备及成膜性能壳聚糖改性水性有机硅聚氨酯/丙烯酸酯的制备及成膜性能导言水性有机硅聚氨酯/丙烯酸酯是一种具有优异性能的高分子材料,在涂料、粘合剂和密封剂等领域有广泛的应用。

然而,由于其膜层硬度较高,常常需要添加溶剂或增塑剂来实现较好的柔韧性和附着力。

因此,探索一种制备方法,可以在不加溶剂或增塑剂的情况下获得性能优良的膜层具有重要意义。

1. 引言壳聚糖,一种常见的天然高分子素材,由于其天然的生物相容性、可再生性和可降解性等特点,在材料科学领域中受到了广泛关注。

然而,壳聚糖的应用受到其固有的亲水性的限制,使得其在涂料应用中存在一定的挑战。

因此,将壳聚糖改性为水性有机硅聚氨酯/丙烯酸酯具有较好的前景。

2. 实验方法首先,采用酸碱法将壳聚糖与硅化物反应,得到壳聚糖改性的硅化物。

接着,将壳聚糖硅化物与异氰酸酯进行缩合反应,得到水性有机硅聚氨酯/丙烯酸酯预聚体。

最后,将预聚体与适量的丙烯酸酯单体共聚合成水性有机硅聚氨酯/丙烯酸酯。

3. 结果与讨论经过制备得到的水性有机硅聚氨酯/丙烯酸酯在无溶剂或增塑剂条件下,形成了均匀、透明的膜层。

通过扫描电子显微镜(SEM)观察膜层表面,发现膜层结构致密,无明显裂纹或缺陷。

同时,通过测量膜层的力学性能,发现其硬度明显降低,具有较好的柔韧性。

此外,膜层的附着力和耐水性也有显著的改善。

4. 结论本实验通过壳聚糖改性水性有机硅聚氨酯/丙烯酸酯的制备,成功制备得到了具有良好性能的膜层。

相对于传统的水性有机硅聚氨酯/丙烯酸酯,该制备方法不需要添加溶剂或增塑剂,能够在无溶剂的情况下获得优异的柔韧性和附着力。

因此,该制备方法具有潜在的应用价值。

总结本实验通过将壳聚糖改性为水性有机硅聚氨酯/丙烯酸酯,成功制备了具有良好性能的膜层。

该制备方法在无溶剂或增塑剂的情况下,实现了优异的柔韧性和附着力。

这为制备新型水性涂料提供了一种可行的选择,具有重要的应用前景。

壳聚糖制备工艺的研究

壳聚糖制备工艺的研究
维普资讯
安徽农业科学, u lf n u A .c.0 73 ()5 65 7 J ma o A h i Si20 。5 2 :2 —2 o
责任编辑 姜 丽 责任校对 胡剑胜
壳聚糖制备工艺的研 究
曹 卫星, 淑, 金兰 魏志恒 (阳 业 学 地 环 学 ,宁 阳ll) 沈 农 大 土 与 境 院辽 沈 16 01
摘要 利用河蟹壳制备壳聚糖的改进3 艺, - 对脱 乙酰度 、 . 粘均分子量 2 项主要指标进行测定。经过极差分析找到 了最佳工艺蒂件, 即 浓度 为 1 5%的 氢氧化 钠 10℃脱蛋 白 1 。 度 为 l %的 盐酸 2 脱钙 4 , 度 为 4 %的 氢氧化 钠 10 脱 乙酰反 应 3 。在 改 0 浓 h 5 5 -h 农 5 5 3 h 进工艺务件下, 壳聚糖脱 乙酰度在 8 %以上, 5 粘均分子量大于 7 0万, 免去氧化脱 色阶段 , 避免在氧化脱 色过程中造成壳聚糖的降解, 产物 色泽呈灰白或 肉色, 了壳聚糖的质量。这表明, 保证 利用盘锦河蟹壳制备壳聚糖 , 从而改进工艺是可行的。 关键词 甲壳素 ; 壳聚糖 ; 脱乙酰度 ; 粘均分子量 中图分类号 Q 3 文献标识码 A 文章编号 0 1—6 l20 )2 05 6 0 5 57 6 1(0 70 —0 2— 2
teb sc n i o a f u dtr u hr n e n ls . h c a tk n o p oe n t 5% Na H。 ha d1 0d g e .a igo c lim w t 5% h et o dt nw s o n ho g g ay i w ihw s a i g f rti wi i a a s h1 O l n 0 e e tk n f acu r i h1 HC , . h u s n 5 d ge 。a igo e tl i 5% N OH. o r n 3 e e . h e e f e c tlt nw sm r a 5% , n l 4 5 o r d2 e e tkn f a ey t 4 a r wh a 3h u sa d 1 0 d g e T ed g eo a eyai a o et n 8 r r d o h ad h ic s ya e a eweg t oe u a smoe t n 7 0 0 0 T e oo i gp a e a e d t a e u . oo f o u t s te vso i v rg ih fm lc lr a r a 0 0 , e d c lrn h s d d ga ain w slf o t T ec lro r d c a t o w h h n r o t h p w

壳聚糖的制备方法

壳聚糖的制备方法

壳聚糖的制备方法壳聚糖是一种重要的生物质大分子材料,具有多种用途,比如医药、食品、水处理等领域。

以下是50种关于壳聚糖的制备方法,并且对每种方法进行详细描述:1. 酸水解法:将贝壳、虾壳等富含壳聚糖的生物质原料在酸性条件下进行水解,然后经过沉淀、洗涤、干燥得到壳聚糖。

2. 碱水解法:将贝壳、虾壳等富含壳聚糖的生物质原料在碱性条件下进行水解,然后经过沉淀、洗涤、干燥得到壳聚糖。

3. 酶法:利用壳聚糖酶将富含壳聚糖的生物质原料进行水解,然后经过沉淀、洗涤、干燥得到壳聚糖。

4. 湿法制备法:将壳聚糖生物质原料在高压或高温条件下进行水解,然后经过沉淀、洗涤、干燥得到壳聚糖。

5. 组合法:将酸水解、碱水解、酶法等多种方法结合使用,以提高壳聚糖的产率和纯度。

6. 生物法:利用微生物发酵产生壳聚糖,然后经过提取、纯化得到壳聚糖。

7. 超临界流体法:采用超临界二氧化碳等流体作为溶剂,将富含壳聚糖的生物质原料进行提取,然后通过减压获得壳聚糖。

8. 离子液体法:利用离子液体作为溶剂,对富含壳聚糖的生物质原料进行提取,然后通过沉淀、洗涤、干燥得到壳聚糖。

9. 微波辅助法:利用微波辅助技术对富含壳聚糖的生物质原料进行水解,然后通过沉淀、洗涤、干燥得到壳聚糖。

10. 水热法:将壳聚糖生物质原料在水热条件下进行水解,然后经过沉淀、洗涤、干燥得到壳聚糖。

11. 溶剂交换法:将富含壳聚糖的生物质原料放置在适当的溶剂中,利用溶剂的渗透作用,逐步取代生物质中的水分和其他杂质,最终得到壳聚糖。

12. 气相法:通过气相反应将壳聚糖生物质原料转化为气态化合物,然后通过凝结得到壳聚糖。

13. 自组装法:利用壳聚糖的分子结构特点,通过自组装技术形成壳聚糖材料。

14. 化学修饰法:将天然壳聚糖进行一系列化学修饰操作,以获得具有特定性质的壳聚糖。

15. 光化学法:利用光敏剂对壳聚糖进行光化学修饰,改变其结构和性质。

16. 凝胶法:利用凝胶技术将壳聚糖原料转化为凝胶状态,然后通过干燥获得壳聚糖材料。

壳聚糖的制备与应用

壳聚糖的制备与应用

壳聚糖的制备与应用壳聚糖是一种天然的高分子多糖,可以从海洋中的甲壳类动物残骸中提取得到。

它具有多种优良的性质,如生物相容性、抗菌性、可降解性、吸附性等,被广泛应用于医药、食品、化妆品等领域。

本文将深入探讨壳聚糖的制备方法和应用。

一、壳聚糖的制备方法1. 酸解法酸解法是壳聚糖制备的传统方法,其原理是将甲壳类动物的残骸经过多次水洗除去杂质,然后使用稀盐酸等酸性溶液将硬质外壳中的壳质素和碳酸钙溶解,得到含壳聚糖的溶液。

然后通过过滤、浓缩、沉淀等步骤,最终得到纯度高的壳聚糖。

2. 酶解法酶解法是一种相对较新的壳聚糖制备方法,其原理是将甲壳类动物残骸经过多次水洗除去杂质,然后使用壳聚糖酶或其他适合的酶将壳聚糖逐步水解成小分子的寡糖和单糖,最终通过过滤、浓缩、沉淀等步骤,得到纯度高的壳寡糖或壳单糖。

二、壳聚糖的应用1. 医药领域壳聚糖在医药领域中有广泛的应用,例如可以作为传统药物的辅助剂,增强药物的溶解性和降解速度,提高生物利用度。

此外,壳聚糖还可以作为创口敷料和人工骨复合材料的基础材料,具有良好的生物相容性和生物可降解性,可以减少手术创面的感染风险,促进创面愈合和骨组织再生。

2. 食品领域壳聚糖在食品领域中可以作为食品保鲜剂和稳定剂使用。

它可以增加食品的黏度和口感,减少食品的流失和氧化,延长食品的保质期。

由于其生物可降解性和安全性,还可以用于肉制品的包装和保鲜,减少肉制品的腐败和氧化,提高口感和营养价值。

3. 化妆品领域壳聚糖在化妆品领域中可以用作皮肤保湿剂和抗菌剂。

它可以有效地吸附皮肤表面的污垢和油脂,增加皮肤的湿润度和光泽度,并且能够抑制细菌和真菌的繁殖,减少皮肤感染和炎症的发生。

此外,壳聚糖还可以用作口腔清洁剂和牙齿美白剂,有效地去除口腔中的细菌和污垢,增加牙齿的白晰度。

综上所述,壳聚糖作为一种天然的高分子多糖,具有多种优良的性质,可以应用于医药、食品、化妆品等领域。

未来随着生物技术和材料科学的不断发展,壳聚糖在应用领域中的潜力将会更加广阔。

壳聚糖的改性及作为生物材料的应用研究

壳聚糖的改性及作为生物材料的应用研究

第24卷 第2期V ol 124 N o 12材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第100期Apr.2006文章编号:167322812(2006)022*******壳聚糖的改性及作为生物材料的应用研究李东旭,耿燕丽(南京工业大学材料科学与工程学院,江苏南京 210009) 【摘 要】 本文介绍了近年来国内外对壳聚糖改性的多种方法,以及接枝共聚;并简单介绍了壳聚糖作为生物材料的应用研究概况。

【关键词】 壳聚糖;改性;接枝共聚;生物材料中图分类号:T Q314.1 文献标识码:AModification of Chitosan and its Application Study for Biom aterialsLI Dong 2xu ,GENG Yan 2li(Materials Science and E ngineering college of N anjing U niversity of T echnology ,N anjing 210009,China)【Abstract 】 In this article ,several methods about m odification of chitosan both here and abroad were introduced as well as graftcopolymerization.Otherwise ,application study of chitosan for biomaterial was als o introduced briefly.【K ey w ords 】 chitosan ;m odification ;graft copolymerization ;biomaterial收稿日期:2005204218;修订日期:2005206221基金项目:江苏省研究生创新基金资助项目:国家“973”资助项目(2001C B610703)作者简介:李东旭,男,教授,E 2mail :d ongxuli @.1 概 述壳聚糖(chitosan )为甲壳素N 2脱乙酰基所得的产物,在天然高分子中的含量仅次于纤维素。

壳聚糖改性聚丙烯酸水凝胶的制备与性能分析

壳聚糖改性聚丙烯酸水凝胶的制备与性能分析

壳聚糖改性聚丙烯酸水凝胶的制备与性能分析水凝胶是一种具有高水含量、柔软弹性和可控释放药物能力的材料,广泛应用于生物医学、药物输送和组织工程等领域。

壳聚糖改性聚丙烯酸水凝胶是一类新型水凝胶材料,具有天然壳聚糖的生物相容性和聚丙烯酸的药物吸附能力,可用于递送药物、细胞载体和人工组织等方面。

本文将介绍壳聚糖改性聚丙烯酸水凝胶的制备方法以及性能分析。

制备方法:1. 壳聚糖制备:首先,将壳聚糖溶解在醋酸溶液中,并在室温下搅拌,直到溶液变得透明。

然后,将透明壳聚糖溶液过滤,并用乙醇沉淀壳聚糖。

最后,使用无水乙醇将沉淀洗涤干净,并干燥以获得壳聚糖粉末。

2. 聚丙烯酸制备:将聚丙烯酸溶解在蒸馏水中,并在室温下搅拌,直到聚丙烯酸完全溶解。

然后,使用滤纸过滤溶液,以去除其中的杂质。

3. 聚丙烯酸与壳聚糖的共聚反应:将聚丙烯酸溶液和壳聚糖粉末混合,加入过硫酸铵作为引发剂,并在适当的温度下反应一段时间。

此反应会导致聚丙烯酸与壳聚糖发生共聚,形成壳聚糖改性聚丙烯酸。

4. 凝胶化处理:将壳聚糖改性聚丙烯酸溶液转移至切割后的模具中,然后在适当的温度下进行凝胶化处理。

凝胶化处理的温度和时间可以根据所需的材料性能进行调整。

性能分析:1. 结构分析:使用傅里叶红外光谱(FTIR)分析技术对壳聚糖改性聚丙烯酸水凝胶的化学结构进行表征。

FTIR光谱可以提供关于材料的化学键和官能团的信息,以确定材料的组成和结构。

2. 吸水性能:通过浸泡法测量壳聚糖改性聚丙烯酸水凝胶的吸水性能。

将水凝胶样品浸泡在蒸馏水中,定期测量其质量增加的变化,计算吸水率。

高吸水性能能够增强水凝胶的药物递送和组织修复能力。

3. 机械性能:通过拉伸试验评估壳聚糖改性聚丙烯酸水凝胶的力学性能。

使用万能材料测试机,将水凝胶样品拉伸至破裂,测量应力-应变曲线,并计算材料的强度、伸长率和弹性模量。

良好的机械性能能够确保水凝胶具有足够的稳定性和可塑性。

4. 药物释放性能:使用模拟体液进行体外释放试验,评估壳聚糖改性聚丙烯酸水凝胶的药物释放性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一:壳聚糖制备工艺一、实验目的1、了解制备甲壳质和壳聚糖的意义;2、学习甲壳质和壳聚糖制备工艺。

二、实验原理壳聚糖是碱性多糖,有止酸、消炎作用,可抑制胃溃疡。

动物实验表明,可降低胆固醇、血脂。

国外已报道用作心血管系统降低胆固醇的药物。

经分子修饰制得的肝素类似物,具有抗血栓作用,能与肝素妣美。

壳聚糖广泛用于食品与医药,如用作药物的载体具有缓释、持效的优点;用于制作人造皮肤、人造血管、人工肾、手术缝合线等。

虾蟹壳含无机盐碳酸钙和磷酸盐约占45%;蛋白和脂肪约占27%;甲壳质约占20-25%(蟹壳含甲壳质17.1-18.2%;龙虾含甲壳质22.5%;虾壳含甲壳质20-25%)甲壳质是聚-2-乙酰氨基-2-脱氧-D-吡喃葡萄糖,以β-(1,4)糖苷键连接而成,是一种线型高分子多糖,天然的中性粘多糖。

甲壳质一般与蛋白质或碳酸钙或两者紧密结合在一起。

盐酸浸泡处理可除掉壳里的无机盐碳酸钙、磷酸盐,壳中的CaCO3与HCL生成CaCL存在于废酸液中被除掉。

碱处理可除掉壳中的蛋白和脂肪。

经分离制得的甲壳质为白色无定型粉末,或亮白色半透明的小片状物。

甲壳质不溶于水、稀酸、碱溶液和乙醇、乙醚等有机溶剂,溶于无水甲酸、浓无机酸。

浓热碱液与甲壳质作用,可脱掉甲壳质分子结构上的乙酰基,生成壳聚糖。

即壳聚糖是由甲壳质在高浓度碱液中脱乙酰制备而成。

壳聚糖为可溶性甲壳质,化学名称为聚-2-氨基-2-脱氧-D-吡喃葡萄糖,以β-(1,4)糖苷键连接而成。

相对分子量约为12万-59万,是一种大分子阳离子聚合物。

壳聚糖不溶于水和一般有机溶剂,不溶于碱,可溶于酸性水溶液(但不溶于硫酸)。

制备高黏度(高分子量)壳聚糖,脱乙酰工艺路线有几条,学生自行设计:1.60-70℃,40-41%NaOH溶液保温20h;2.110-120℃,45-50% NaOH溶液反应1h左右;3.间歇式工艺路线:100℃条件下,45%的NaOH 溶液,1+1间歇反应2次,每次反应1h,每次反应后水洗至中性。

三、实验材料1.材料与试剂虾壳,1mol/L盐酸,5%氢氧化钠,95%乙醇,乙醚,硼氢化钠2.仪器与设备粉碎机,20目筛,方盘,磁力搅拌器,电磁炉,恒温水浴锅,真空干燥箱,布氏漏斗,抽滤瓶,循环水泵,三口烧瓶,冷凝管,温度计,烧杯,量筒,pH试纸,滤纸,纱布。

四、实验步骤虾壳(称重,取25g),加1mol/L盐酸溶液,(固液比1:10,搅拌,静置12h)过滤。

加5% 氢氧化钠溶液,(固液比1:8),搅拌,隔水煮1h,过滤,得甲壳质,烘干,粉碎,待用。

取5g甲壳质于三口瓶中,加45%氢氧化钠溶液(固液比1:20),再加1% 硼氢化钠,于110-120℃搅拌反应1h,冷却,离心,移去上清液,水洗沉淀,再离心,再移去上清液,水洗沉淀,再移去上清液,以95%乙醇洗涤沉淀,一起倒入抽滤瓶中,抽滤,留滤饼,得壳聚糖,晾干,称重。

五、实验结果1.测定产品的主要质量指标黏度和脱乙酰度;2.每种指标有两种测定方法,学生可以自选,测定方法见实验讲义附件。

六、思考题1.由甲壳质制备壳聚糖为什么要加入硼氢化钠?2.如何评价壳聚糖的质量?七、参考书目李良铸、李明晔编〈最新生化药物制备技术〉中国医药科技出版社,2001.3附:壳聚糖脱乙酰度测定方法壳聚糖的脱乙酰度,也就是壳聚糖分子链上自由氨基的含量,是一项极为重要的技术指标之一。

壳聚糖脱乙酰度的高低,直接关系到它在稀酸中的溶解能力、黏度、离子交换能力、絮凝性能和氨基有关的化学反应能力,以及许多方面的应用。

壳聚糖的脱乙酰度可定义为壳聚糖分子中脱除乙酰基的糖残基数占壳聚糖分子中总的糖残基数的百分数。

测定脱乙酰度的方法有很多,如:红外光谱法、紫外光谱法、滴定法等。

方法一:紫外光谱法仪器:紫外-可见分光光度计、紫外皿4个、精密pH计1台100mL容量瓶3个、电子天平1台、架1个、10mL试管15支500mL烧杯1个、250mL烧杯1个、50mL烧杯1个试剂:N-乙酰葡萄糖胺、去离子水、盐酸(分析纯)方法:以0.001mol/L HCl (分析纯) 为溶剂,用0.1mg/mL N-乙酰葡萄糖胺标准品配成0.01、0.02、0.03、0.04、0.05mg/mL 的标准溶液。

以0.001mol/L HCl为参比液,在199nm处测定系列溶液的吸光度,最大吸光度A与浓度C的关系为A=17C.称10~20mg壳聚糖样品于100mL容量瓶中,加入10mL 0.01mol/L盐酸,全部溶解后,用去离子水稀释至刻度、摇匀。

以0.001mol/L盐酸作参比液,测量其在199nm时的吸光度,制作工作曲线,从工作曲线中得到样品中N-乙酰葡萄糖胺的浓度,从而求得脱乙酰度(%)=100%-(样品中乙酰基浓度/标准品浓度)×100%。

方法二:酸碱滴定法酸碱滴定法,不需要特殊的仪器,重复性较好,特别适合于生产过程中的质量监控。

仪器:碱式滴定管2个、500mL烧杯1个、250mL烧杯2个50mL烧杯1个、吸管2个、滴定台1个250mL三角瓶9个、精密pH计1台、100mL容量瓶3个电子天平1台、试管架1台、10mL试管10支试剂:N-乙酰葡萄糖胺,凡士林,去离子水,盐酸(分析纯),甲基橙指示剂,氢氧化钠滴定液(0.1mol/L),盐酸滴定液(0.1mol/L)。

①实验原理:壳聚糖的自由氨基呈碱性,可与酸定量地发生质子化反应,形成壳聚糖的胶体溶液,溶液中游离的H+用碱反滴定,这样,从用于溶解壳聚糖的酸量与滴定用去的碱量之差,即可推算出壳聚糖自由氨基结合酸的量,从而计算出壳聚糖分子中自由氨基的含量。

②实验前准备:用1mol/L的盐酸标定NaOH,得C NaOH=0.1047mol/L根据药典的规定配制甲基橙指示剂;③实验步骤:准确称取0.3~0.5克壳聚糖样品,置于250mL三角瓶中,加入标准0.1mol/L 盐酸溶液30mL,在20~25℃搅拌至溶解完全(可加适量的蒸馏水稀释),加入2~3滴指示剂,用标准0.1047mol/L的NaOH溶液滴定游离的盐酸。

另取一份样品,置于105℃烘干至衡重,测定水分。

每个样品要各测3次。

④计算:DD%={[(C1V1-C2V2)×0.016]/[G(100-W)×0.0994]}×100%其中:C1——盐酸标准溶液的浓度,mol/LC2——氢氧化钠标准溶液的浓度,mol/LV1—加入的盐酸标准溶液的体积,mLV2—滴定耗用的氢氧化钠标准溶液的体积,mLG—样品重,gW—样品的水分,%;0.016—与1mL,1mol/L盐酸溶液相当的氨基量,g。

注意事项:在室温下溶解样品;样品必须是中性的;样品必须是中性的,否则会影响测定结果。

附:壳聚糖粘度与粘均分子量测定方法黏度反映了高分子物的分子量大小。

壳聚糖是一种天然高分子多糖,分子量大小不同,其物理机械性能也不一样,用途也不同,因此黏度是其一项重要指标。

黏度的测定方法有多种,其物理意义不一样。

在壳聚糖的生产上,常用旋转黏度计和乌氏黏度计来测定壳聚糖的黏度。

测定方法不同,物理意义不一样。

方法一:乌式粘度稀释法乌氏黏度计的原理是在一定温度和溶剂条件下,特性黏度[η]和高聚物摩尔质量M之间的关系通常用带有两个参数的Mark-Houwink经验方程式来表示:[η]=KMα式中,M为黏均摩尔质量;K为比例常数;α是与分子形状有关的经验参数。

K和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。

K值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数介于0.5~1之间。

K与α的数值可通过绝对方法确定,有下列公式可求[η]y=[η]=式中,t为测定溶液黏度时液面从a刻度流至b刻度的时间;t0为纯溶剂流过的时间,c为壳聚糖溶液的浓度,可以看出高聚物摩尔质量的测定最后归结为特性黏度[η]的测定。

本实验采用毛细管法测定黏度,通过测定一定体积的液体流经一定长度和半径的毛细管所需时间而获得。

仪器:乌式粘度计、秒表1块、100mL量瓶3个、恒温水浴锅1个电子天平1台、移液管2mL 3支、1mL 2支、吸嘴2个大烧杯2个、量筒100mL、量筒10mL试剂:N-乙酰葡萄糖胺、去离子水、盐酸(分析纯)、氯化钠混合溶剂(醋酸0.1mol/L,氯化钠0.2mol/L)方法:1.仪器:乌氏黏度计、恒温水浴一套、秒表、温度计:分度为0.1℃,用于测水浴温度。

2.实验前准备:黏度计的洗涤,先用热洗液(经砂心漏斗过滤)将黏度计浸泡再用自来水、蒸馏水分别冲洗几次,每次都要注意反复流洗毛细管部分,洗好后烘干备用;调节恒温槽温度至(25.0±0.1);3.操作步骤:把壳聚糖样品干燥衡重,精确称取1~1.2g(称量精度0.005g),用0.1mol/L 乙酸-0.2mol/L氯化钠溶剂配成50mL样品溶液,此样品溶液的浓度为C1,此溶液经过过滤,精密量取中间部分滤液10mL,移入乌氏黏度计测管(粗管),将黏度计垂直固定于衡温水浴中保温达10分以上,使管内溶液的温度与水浴温度达到平衡。

在另外2根支管口各接1根乳胶管,将侧管上面的乳胶管用夹子夹住,在B管处用洗耳球将溶液从F球经D球、毛细管、E球抽至G球2/3处,松开食指,让C管通大气,此时D球内的溶液即回入F球,使毛细管以上的液体悬空。

毛细管以上的液体下落,当液面流经a刻度时,立即按停表开始记时间,当液面降至b刻度时,再按停表,测得刻度a、b之间的液体流经毛细管所需时间。

重复这一操作至少三次,它们间相差不大于0.3s,取三次的平均值为t1。

4.溶剂流出时间的测定:先用壳聚糖溶液的溶剂润洗黏度计几次,步骤如上, 实验完毕后,黏度计一定要用蒸馏水洗干净。

计算产品粘均分子量精密称取壳聚糖0.3g,置100mL量瓶中,加入混合溶剂(醋酸0.1mol/L,氯化钠0.2mol/L)80mL,加热使溶解,放冷,加混合溶剂至刻度。

按药典法测定特征性粘度【η】,按公式:【η】=1.81×10-3M0.93计算平均得:M=log0.93η/1.81×10-3壳聚糖的粘度与分子量相关,分子量越大,粘度越大。

粘度与壳聚糖药剂学上的某些应用(如膜剂)相关,故设立此项。

用乌氏粘度计稀释法测定。

具体计算为:【η】=【ln(T/To)】/CT:供试液流出时间;To:溶剂流出世间;C:供试液浓度(g/mL)。

【η】代入公式计算。

因药典要求T在120~180s之间,参照一般报道分子量设定=1×106设T=150s【2】,实验测得To=20s,计算得C=0.3%,初配壳聚糖醋酸液的浓度为0.3%,具体浓度应视T值实际情况相应调整。

判断标准(高粘度壳聚糖:1%壳聚糖溶于1%醋酸溶液中,粘度大于1000mPa.s ;中等粘度壳聚糖:1%壳聚糖溶于1%醋酸溶液中,粘度为100~500mPa.s ;低粘度壳聚糖:2%壳聚糖溶于2%醋酸溶液中,粘度为25~50mPa.s)方法二:NDJ-5S数字式粘度计法NDJ-5S数字式粘度计法使用说明NDJ- 系列粘度计是采用高细分驱动步进电机、16 位微电脑处理器和带夜视功能液晶屏的数字显示式粘度计。

相关文档
最新文档