23.2.2 中心对称图形(导学案)

合集下载

人教版数学九年级上册23.2.2 中心对称图形教案

人教版数学九年级上册23.2.2 中心对称图形教案

23.2.2中心对称图形●类比导入(1)欣赏:这些图案有什么共同的特征?(2)回顾:轴对称图形的特点是沿一条直线折叠,直线两旁的部分能够互相重合.(3)操作:你能将下面图形绕其上一点旋转180°,使旋转前后的图形完全重合吗?找出这些图形的共同特征.【教学与建议】教学:类比轴对称图形,中心对称图形,加强新旧知识之间的对比.建议:类比轴对称图形,学习中心对称图形.比较出两种图形的异同.●悬念激趣[魔术大揭秘]将图①中的四张扑克牌中的一张旋转180°后,得到图②,你知道旋转了哪一张扑克牌吗?议一议.图①图②【教学与建议】教学:通过魔术游戏及大家常见的扑克牌引入课题,激发学生学习兴趣.建议:班级先分组,然后实际操作比赛.命题角度1中心对称图形的识别识别中心对称图形,会辨别轴对称图形与中心对称图形.【例1】(1)下列标志既是轴对称图形又是中心对称图形的是(A)A B C D(2)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是(A)A B C D命题角度2中心对称图形的开放性作图命题方式:①设计中心对称图形;②将原有图形分割为若干个中心对称图形.【例2】(1)图①和图②中所有的小正方形都全等,将图①的正方形放在图②中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是__③__.图①图②(2)有一块矩形土地ABCD,其中有一口如图所示的圆形井,现将此土地分给甲、乙两户承包种植蔬菜.若使两家得到的面积一样大,请帮他们分一分.(保留作图痕迹)解:如图,直线l即为所求的痕迹.必胜的下棋游戏要玩这种游戏,需要准备一张正方形纸ABCD(如图所示),再找一些形状、大小相同,而且对称的小东西,例如同样分值的硬币、围棋棋子等等.规则:两人对垒,两个人依次把棋子一个一个放到纸上的任意位置,一直到没有地方再放为止,最后放下棋子的那个人为赢家.必胜法则:假设我们使走第一步棋的人获胜,那他只需把他的第一个棋子放到正方形对角线的交点O处,并使棋子的对称中心和点O重合;以后每一次把自己的棋子放到对手所放棋子的对称位置上(比如如图:对方放在M处,我就放M′处,对手放N处,我就放N′处等等).只要遵守这个规则,那么走第一步的人总会找到安放棋子的位置,最后必然获胜.几何道理:正方形是中心对称图形,对角线的交点是对称中心.经过对称中心的任意直线(如图的EF等)都把图形分成相等的两部分,因此,除掉这个中心O外,任何一点(放下的任一棋子)必然有它对称的另一点(放棋子的位置).由此可知,只要走第一步棋的人占领了图形的中心位置,那么无论他的对手把棋子放到什么位置,必然会找到一个和对手刚刚放下的棋子位置相对称的空位子.又因为棋子位置每次必须由后走的人选择,因此玩到最后,先下的人必胜.高效课堂教学设计1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C)A B C D3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B)A B C D4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)对应课时练习.2.教学反思。

新人教版数学九年级上册23.2.2中心对称图形导学案

新人教版数学九年级上册23.2.2中心对称图形导学案

九年级(上)数学导学案 班别 姓名 学号 学习内容:23.2.2 中心对称图形学习目标: 1、正确认识什么是中心对称图形,能够判别一个图形是不是中心对称图形。

2、理解中心对称图形与中心对称的区别与联系。

重点:能判别一个图形是不是中心对称图形。

难点:理解中心对称图形与中心对称的区别与联系。

学习过程: 一、探究新知1、中心对称图形的定义:把一个图形绕着某一个点旋转 后,能和原来的图形 ,那么这个图形叫做中心对称图形;这个点叫做它的 ;互相重合的点叫做 。

如图,□ABCD 绕两对角线的交点O 旋转180º后与它本身重合, 因此是 对称图形,对称中心是 ;点A 的 对称点是 ;点D 的对称点是 。

2、交流探讨:中心对称图形......与中心对称....的区别与联系 (1)区别:①图形个数不同。

中心对称涉及两个图形,是指两个全等图形之间的相互位置关系;而中心对称图形只对一个图形而言,是指具有特殊形状的一个图形。

②对称点位置不同。

成中心对称的两个图形中,其中一个图形上的所有点关于对称中心的对称点都在另一个图上;而中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。

(2)联系:①如果把中心对称的两个图形看成一个整体,那么这个图形是中心对称图形;②如果把一个中心对称图形中对称的部分看成是两个图形,那么它们是中心对称。

二、自我尝试1、在下列图形中,是中心..对称图形的是( )2、如下图中,既是中心对称又是轴对称的图案是( )3、下列图由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )4、下列图形中,是中心对称图形,但不是轴对称图形的是( ).A .正方形B .矩形C .菱形D .平行四边形5、下列图中:①线段;②正方形;③圆;④三角形;⑤平行四边形;⑥五角星,其中既是轴对称图形,又是中心对称图形有( ) A .1个 B .2个C .3个D .4个DC BA6、下列关于中心对称图形的描述中正确的是( ) A .中心对称图形与中心对称是同一个概念B .中心对称描述的是两个图形的位置关系,中心对称图形是一个图形的性质C .一个图形绕着某一点旋转的过程中,只要能与原来的图形的重合,那么这个图形就叫做中心对称图形。

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
2. 数学抽象:学生能够从具体的图形中抽象出中心对称图形的概念,理解中心对称图形的性质,并能够将这些性质抽象成数学语言进行表达。
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。

九年级数学上册 23.2 中心对称 23.2.2 中心对称图形导学案 (新版)新人教版

九年级数学上册 23.2 中心对称 23.2.2 中心对称图形导学案 (新版)新人教版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题23.2.2 中心对称图形一、学习目标:1、.知道中心对称图形和中心对称之间的辩证关系,并掌握它们的性质和判定。

2、会画一个图形关于某一点的对称图形二、学习重难点:重点:中心对称图形的有关概念及其它们的运用难点:区别关于中心对称的两个图形和中心对称图形探究案三、合作探究(一)观察探究将下面的图形绕O点旋转180°,你有什么发现?定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(二)例题解析例1:哪些是中心对称图形?例2:正三角形是中心对称图形吗?正方形呢?正五边形呢?正六边形呢?……你能发现什么规律?例3. 下面的扑克牌中,哪些牌面是中心对称图形?归纳总结中心对称与中心对称图形的区别与联系:变式训练1. 下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2、在下列图形中,属于中心对称图形的是()A.锐角三角形B.直角三角形C.钝角三角形D.平行四边形随堂检测1.下列图形中既是轴对称图形又是中心对称图形的是()A . 角 B. 等边三角形 C . 线段 D . 平行四边形2.下列图形中是中心对称图形而不是轴对称图形的是( )A . 平行四边形 B. 矩形 C . 菱形 D . 正方形3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有_______,是中心对称图形的有________ .4、图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?5. 如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获___________________________________________________________________________ _________________________________________________________________________参考答案探究案定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.例题解析:例1:√√√√√√×例2:×√×√例3:√×√√×归纳总结变式训练1、B2、D随堂检测1、C2、A3、①③①②③4、(1)(2)3条;9005、(1)(2)解:由(1)知:△ADE≌△BDC,则CD=DE,AE=BC,∴AE﹣AC<2CD<AE+AC,即BC﹣AC<2CD<BC+AC,∴2<2CD<10,解得:1<CD<5.。

23.2.2 中心对称图形 教案-2022-2023学年人教版数学九年级上册

23.2.2 中心对称图形 教案-2022-2023学年人教版数学九年级上册

23.2.2 中心对称图形教案-2022-2023学年人教版数学九年级上册一、教学目标1.理解中心对称图形的概念;2.掌握中心对称图形的判定方法;3.能够完成中心对称图形的绘制;4.能够解决与中心对称图形相关的问题。

二、教学重难点1.教学重点:中心对称图形的概念和判定方法;2.教学难点:通过判定中心对称性来完成图形的绘制。

三、教学过程1. 导入新知让学生回顾上一堂课学习的内容:“对称”和“轴对称图形”的概念,以及如何判断一个图形是否具有轴对称性。

2. 引入新知教师出示一张中心对称图形,带领学生讨论图形的特点,并引导学生思考中心对称图形的定义。

3. 学习新知3.1 学生理解中心对称图形的概念和特点。

- 中心对称图形是一种图形,如果将该图形绕一个点旋转180°,得到的图形与原图形完全重合。

- 中心对称图形有一个中心点,对称图形的任意一点与中心点的距离相等。

- 中心对称图形可以由对称轴将图形分为两个完全相同的部分。

3.2 学生掌握中心对称图形的判定方法。

- 如果一个图形中存在一个中心点,并且对称图形上的任意一点与该中心点的距离相等,则这个图形是中心对称图形。

- 通过观察图形的特征,如旋转对称性和对称点的位置,判定图形是否具有中心对称性。

4. 拓展练习4.1 练习1:判断图形是否具有中心对称性。

教师出示多个图形,要求学生判断每个图形是否具有中心对称性,并简要说明判断依据。

4.2 练习2:绘制中心对称图形。

教师给出一个图形的一半,要求学生通过对称性完成整个图形的绘制,并标明中心点。

5. 总结归纳教师与学生共同总结中心对称图形的概念、判定方法和绘制技巧,并强调中心对称图形的重要性和应用。

四、课堂小结通过本节课的学习,我们掌握了中心对称图形的概念、判定方法和绘制技巧。

中心对称图形在生活中有广泛应用,如中国传统的对联、工艺品等。

同学们在做题时要仔细观察图形的特征,灵活运用判定方法,提高解题效率。

23.2.2中心对称图形 教学设计

23.2.2中心对称图形   教学设计

23.2.2中心对称图形教学设计学习目标:1.通过具体事例,理解中心对称图形的概念.2.掌握中心对称图形的性质.3.了解中心对称与中心对称图形的关系.重点:中心对称图形的概念及相关的性质.难点:中心对称与中心对称图形的区别与联系复习导入1.观察下面的两幅图,你想到了什么?2.说一说,成轴对称和轴对称图形之间的区别与联系?3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.新课探究1.观察:将下面的图形绕O点旋转180°,你有什么发现?共同点:(1)都绕一点旋转了180度;(2)都与原图形完全重合.2.中心对称图形的定义把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.C'B'A'OAB C图中_ABCD________是中心对称图形对称中心是_点O_____点A的对称点是___点C___点D的对称点是__点B____注意:中心对称图形是指一个图形.3.中心对称与中心对称图形的区别与联系:中心对称与中心对称图形是两个既有联系又有区别的概念.区别: 中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系: 如果将中心对称的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的两部分看成两个图形,则它们成中心对称.典例精析1.下列几何图形:(1)等腰三角形 (2)矩形 (3)等腰梯形(4)平行四边形,其中是中心对称图形的是(2)、(4) . 巩固练习1.判断下列图形是否为中心对称图形.2.观察图形,并回答下面的问题:(1)哪些只是轴对称图形?(3)、(4)、(6)(2)哪些只是中心对称图形?(1)(3)哪些既是轴对称图形,又是中心对称图形?(2)、(5)3.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟. 下列剪纸图案中,是中心对称图形的有( D)A. ①②③B. ①②④C. ①③④D. ②③④课堂小结通过本课时的学习,需要我们掌握:1.中心对称及中心对称图形的有关概念;2.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用.作业布置见精准作业板书设计。

人教版九年级数学上册第23章 23.2.2《中心对称图形》导学案

人教版九年级数学上册第23章 23.2.2《中心对称图形》导学案

23.2.2中心对称图形1.能说出中心对称图形的概念,会判断一个图形是不是中心对称图形,体会数学美.2.能确定一些特殊的中心对称图形的对称中心.3.重点:中心对称图形的概念及判断.【旧知回顾】把一个图形绕着某一点旋转180°,如果它能够与另一个图形重阅读教材本课时的内容,解决下列问题.1.线段绕其中点旋转180°后,与其自身重合;平行四边形绕对角线交点旋转180°后,与其自身重合.你还能再举出一个类似的图形吗?答案不唯一,如正方形、菱形、圆等.2.在下列几个图案中,绕某一点旋转180°后能与其自身重合的是①④.3.你能举出几个生活中的中心对称图形的例子吗?答案不唯一,如风车叶片、中国结、太极图等.4.线段的对称中心是它的中点,平行四边形的对称中心是对角线的交点.回忆中心对称中对称中心的找法,如何确定一个中心对称图形的对称中心?任意两对对应点连线的交点即为对称中心.【归纳总结】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【预习自测】以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是(B)互动探究1:观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有(B)A.1个B.2个C.3个D.4个【方法归纳交流】边数为偶数的正多边形,或与其具有类似特征的图形都是中心对称图形.互动探究3:请你画出把下列矩形的面积两等分的直线,并且根据你所画的直线回答下列问题.(1)在一个矩形中,把此矩形面积两等分的直线有多少条?它们都必须经过哪个点?(2)你认为还有具有这个性质的四边形吗?如果有,请你找出来.(3)你认为具有此性质的四边形都应该具有什么特征呢?解:(1)有无数条,它们都必须经过矩形对角线的交点.(2)有,如正方形、菱形、平行四边形也都是具有这种性质的四边形.(3)具有此性质的四边形都是中心对称图形.[变式训练]如图所示放置着两个矩形,请你作一条直线,将此图形分成面积相等的两部分.(不写作法,保留作图痕迹)解:本题有多种作图方法,只需用一种正确方法作图即可,如下图.【方法归纳交流】经过中心对称图形的对称中心的任意一条直线把中心对称图形分成两个全等图形,它们的面积相等.互动探究4:今有正方形土地一块,要修筑两条笔直的道路,用道路把这块土地分成形状相同且面积相等的四部分,若道路宽度可忽略不计,请你设计三种不同的修筑方案.解:答案不唯一,如图:。

人教版九年级数学上册导学案:23.2.2中心对称图形

人教版九年级数学上册导学案:23.2.2中心对称图形

一、自主预习1、回忆旋转的概念及性质,中心对称的概念及性质. 已知四边形ABCD 和点O (下图),画四边形A ’B ’C ’D ’,使它与已知四边形关于点O 对称2、思考:将下面的图形绕O 点旋转180°,你有什么发现?发现: 3、相关概念总结把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形互相 ,那么这个图形叫做 ;这个点叫做它的 ;互相重合的点叫做 .(如右图)图中 ABCD 是 图形 对称中心是______,点A 的对称点是______ 点D 的对称点是______4、思考:中心对称与中心对称图形之间的联系与区别二、合作探究1、我们平时见过的几何图形中,有哪些是中心对称图形?并指出对称中心.2、比较轴对称图形与中心对称图形,并指出上面的几何图形哪些是轴对称图形?哪些既是轴对称图形又是中心对称图形? 三、展示交流1、下列图形中既是轴对称图形又是中心对称图形的是( ) A 角 B 等边三角形 C 线段 D 平行四边形2、下列多边形中,是中心对称图形而不是轴对称图形的是( ) A.平行四边形 B.矩形 C.菱形 D.正方形3、已知:下列命题中真命题的个数是( )①关于中心对称的两个图形一定不全等 ②关于中心对称的两个图形是全等形 ③两个全等的图形一定关于中心对称 A 0 B 1 C 2 D 34、已知:如图ABCD 和矩形AB ’C ’D ’关于A 点对称 求证:四边形BDB ’D ’是菱形科目数学班级学生姓名 课题 23.2.2中心对称图形 课型新授 课时1课时主备教师备课组长签字学习目标:1、理解中心对称图形的概念 2. 会认中心对称图形 3. 掌握我们学过的中心对称图形 学习重点 中心对称图形的有关概念及其它们的运用 学习难点 区别关于中心对称的两个图形和中心对称图形5、已知:如图AD 是△ABC 中∠A 的平分线,DE//AC 交AB 于E.DF//AB 交AC 于F 求证:点E ,F 关于直线AD 对称四、当堂检测1.下列所示的图形中可以看作中心对称图形的有( )A .1组B .2组C .3组D .4组E .5组 2、如图所示,其中既不是轴对称图形,也不是中心对称图形的是( )3、如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°BC=1,则BB ′的长为( )A 、4B 、33 C 、332 D 、334 4、(选做题)如图,在△ABC 中,AB=AC ,若将△ABC 绕点C 顺时针旋转180°得到△FEC .(1)试猜想AE 与BF 有何关系?说明理由; (2)若△ABC 的面积为3cm 2,求四边形ABFE 的面积; (3)当∠ACB 为多少度时,四边形ABFE 为矩形?说明理由.。

人教版九年级上册数学学案:23.2.2中心对称图形

人教版九年级上册数学学案:23.2.2中心对称图形

23.2.2中心对称图形导学稿学科:执笔:审核:时间:学习目标:1、中心对称图形的概念、对称中心的概念及它们的运用。

2、区别关于中心对称的两个图形和中心对称图形学习过程:一、复习回顾:1、关于中心对称的两个图形具有什么性质?2、(学生活动)作图题.a、作出线段AO关于O点的对称图形OB,如下图所示b、作出三角形AOB关于O点的对称图形COD,如图所示二、探索新知1、观察思考:以上两个图形有什么共同的特征?像这样,那么这个图形叫做中心对称图形,这个点就是它的。

2、分析思考:(1)联系复习回顾作图题a与观察思考的(1)题有什么联系?(2)如果将复习回顾作图题b连结AD、BC,它与观察思考的(2)题有什么联系?(3)对比中心对称,中心对称图形有什么性质?与中心对称有什么区别和联系?3、学习教材65页内容并思考:中心对称图形还具有那些特点?请同学举出生活中存在的中心对称图形三、课堂小结:1、谈谈本节课的收获2、你能说说中心对称图形与轴对称图形的区别和联系吗?BAO达标检测:1.线段、两相交直线、等腰三角形、等边三角形、平行四边形、长方形、正方形、•正六边形、•圆等图形中是轴对称图形的有______•个,是中心对称图形的有______个,既是轴对称图形,又是中心对称图形的有____个.2.如图所示的五个图形中,既是轴对称图形又是中心对称图形的有________.(•把你认为正确的图形序号都填上)3.如图所示,其中既不是轴对称图形,也不是中心对称图形的是()4.如图,下面的图形绕着一个点旋转120°后,能与原来的位置重合的有()A.②④⑤ B.②③ C.②③④ D.①②④能力提高:5. 如图,任意剪一个平行四边形纸片ABCD,•利用对折的方法找到一组对应的中点E、F,按图中所示的方法过F点剪下一个等腰三角形FDG,按图中箭头所指的方向旋转180°.(1)你得到的四边形ABHG是什么形状的四边形?(2)线段AG、BH跟线段EF有什么关系?你能说明这个发现是正确的是吗?应用拓展:6. 在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)①等腰梯形是旋转对称图形,它有一个旋转角为180°;()②矩形是旋转对称图形,它有一个旋转角为180°;()(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(•写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.。

北大绿卡九年级数学上册 23.2.2 中心对称图形导学案(含解析)(新版)新人教版

北大绿卡九年级数学上册 23.2.2 中心对称图形导学案(含解析)(新版)新人教版

中心对称图形一、新课导入1、上节课我们学习了中心对称,日常生活中你见到过绕某点旋转180°后可以与自身重合的图案吗?2、你能自已画一个绕某点旋转180°后可以与自身重合的图案吗?二、学习目标1、掌握中心对称图形的概念。

2、了解中心对称图形的性质,会判断一个图形是否中心对称图形。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:要知道中心对称图形的概念,能找出中心对称图形的对称中心,判断一个图案是否中心对称图形。

检测练习一、1、如下图所示,把下列四个图形分别绕点O旋转180°后它们都可以与自身重合;2、把一个图形绕某个点顺时针旋转180°和逆时针旋转180°,到达的位置相同;3、如果一个图形绕点O旋转180°后可以与自身重合,那么这个图形是中心对称图形,点O叫旋转中心。

4、线段的对称中心是线段的中点,圆的对称中心是圆心,平行四边形和正方形的对称中心是对角线的交点。

完成尝试应用5、我们学过的哪些图形是中心对称图形(1)、直线和线段是中心对称图形,直线上的任意一点都是对称中心,线段的对称中心是线段的中点,射线不是中心对称图形;(2)、三角形不是中心对称图形;(3)四边形中的平行四边形、矩形、菱形、正方形都是中心对称图形,它们的对称中心是它们的对角线的交点。

研读二、认真阅读课本要求:什么样的正多边形是中心对称图形;问题探究:(1)下列图形中哪些图形既是中心对称图形又是轴对称图形?解:既是中心对称图形又是轴对称图形的有A、C、D;(2)正三角形是中心对称图形吗?正方形是中心对称图形吗?正五边形是中心对称图形吗:正六边形是中心对称图形吗?什么样的正多边形是中心对称图形?解:正三角形和正五边形不是中心对称图形,正方形和正六边形是中心对称图形。

结论:边数是偶数的正多边形是中心对称图形.检测练习二、6、下列图形中哪些既是中心对称图形又是轴对称图形?在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有①②③④⑥⑦⑧⑨,是中心对称图形的有①⑤⑥⑦⑧⑨,既是轴对称图形又是中心对称图形的有①⑥⑦⑧⑨.7、把如下的26个英文大写字母看成图案,英文大写字母是中心对称图形的有H I N O S X Z;轴对称图形的有A B C D E H I K M O T U V W X Y既是中心对称图形又是轴对称图形的有H I O X.研读三、中心对称与中心对称图形有什么关系?中心对称中有两个图形,把一个图形旋转180°后可以与另外一个图形重合;中心对称图形中有一个图形,把这个图形绕对中心旋转180°后可以与自身重合。

人教版九年级数学上册23.2.2中心对称图形导学案

人教版九年级数学上册23.2.2中心对称图形导学案

人教版义务教育课程标准实验教科书九年级上册23.2.2中心对称图形学习目标:(1)经历观察图形的过程,建立中心对称图形的概念,会判断一个图形是不是中心对称图形。

(2)通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力.(3)发展学生的观察、发现、比较、分析能力,让学生关注生活,积累一定的审美体验.重点:中心对称图形的定义及了解一些简单的几何图形的对称性.。

难点:中心对称图形与中心对称的关系,准确判断图形的对称性.一、自主学习(一)复习巩固1.关于中心对称的两个图形具有什么性质?2.作图题.(1)作出线段AO 关于O点的对称图形,如图所示.B A O(2)作出三角形AOB 关于O 点的对称图形,如上图所示.(二)自主探究如图1,将线段AB 绕它的中点旋转180º,你有什么发现?如图2,将它绕两对角线的交点O 旋转180º,你有什么发现?A O21085 思考:中心对称图形是举例说明我们学过的还有哪些是中心对称图形?(三)、自我尝试:1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .等腰梯形C .平行四边形D .正六边形2.下面的图案中,是中心对称图形的个数有( )个A .1B .2C .3D .43.下面图形中既是轴对称图形又是中心对称图形的是( )A .直角B .等边三角形C .直角梯形D .两条相交直线 4.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形5.如上图所示,平放在正立镜子前的桌面上的数字“21085”在镜子中的像是( ) A .21085 B .28015 C .58012 D .51082二、归纳小结 1、 什么叫做中心对称图形?2、中心对称与中心对称图形的区别:中心对称是指 个 图形之间的相互位置关系,成中心对称的 个图形中,其中一个图形上所有点关于对称中心的对称点都在图形上;而中心对称图形是指 个图形 成中心对称,中心对称图形上所有点关于对称中心的对称点都在 上;中心对称图形的对称中心是图形 的点,而两个图形关于某点成中心对称,对称中心位置 。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案)23.2.2 中心对称图形教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案)23.2.2 中心对称图形教案

23.2中心对称23.2.2中心对称图形一、教学目标【知识与技能】了解中心对称图形的定义及其特征,体会中心对称和中心对称图形之间的联系和区别.【过程与方法】经历观察、思考、探究、发现的过程,感受中心对称图形的特征,培养学生的观察能力和动手操作能力.【情感态度与价值观】通过对中心对称图形的探究和认知,体验图形的变化规律,感受图形的变换的美感,享受学习数学的乐趣和积累一定的审美经验.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】中心对称图形的有关概念及其性质.【教学难点】中心对称图形和中心对称的区别和联系五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问1:有四种形状的图形,将其中一个形状旋转180度后,跟原来形状一样吗?(出示课件2)学生思考并仔细分析图形特征,然后相互交流.(二)探索新知探究一中心对称图形的概念出示课件4,观察下面图形:教师问:这些图形有什么共同的特征?学生答:都是旋转对称图形.教师问:这些图形的不同点在哪?分别绕旋转中心旋转了多少度?学生答:第一个图形的旋转角度为120°或240°,第二个图形的旋转角度为72°或144°或216°或288°.后两个图形的旋转角度都为180°,第二,三个是轴对称图形.后两个图形都是旋转180°后能与自身重合.出示课件5:将下面的图形绕O点旋转,你有什么发现学生观察并口答.学生1:都绕一点旋转了180度.学生2:都与原图形完全重合.教师总结:中心对称图形的概念(出示课件6)把一个图形绕着某一个点旋转180°后,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.图中_______是中心对称图形,对称中心是_____,点A的对称点是______,点D的对称点是______.出示课件7:教师问:平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并设法验证你的结论.学生答:平行四边形是中心对称图形,对称中心是两条对角线的交点.教师问:根据上面的过程,你能验证平行四边形的哪些性质?学生答:能验证平行四边形的对边相等、对角相等、对角线互相平分等性质.出示课件8:下列图形中哪些是中心对称图形?⑴⑵⑶⑷学生观察后口答:⑴⑵⑶是,⑷不是.教师问:在生活中,有许多中心对称图形,你能举出一些例子吗?(出示课件9)出示课件10:例1(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.学生观察后尝试解决,教师举例如下:出示课件11,12:巩固练习:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形3.下列图形中,是轴对称图形但不是中心对称图形的是()4.在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个学生思考后口答:1.D 2.D 3.A 4.C出示课件13:例2如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.师生共同解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE 关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,易得阴影部分的面积为3.出示课件14:巩固练习:如图,点O是平行四边形的对称中心,点A、C关于点O对称,有AO=CO,那么OE=OF吗?学生自主解答:解:∵平行四边形是中心对称图形,O是对称中心.EF经过点O,分别交AB、CD于E、F.∴点E、F是关于点O的对称点.∴OE=OF.探究二探究中心对称图形的性质教师问:如图,你能得到什么结论?(出示课件15)学生答:(1)中心对称图形的对称点连线都经过对称中心;(2)中心对称图形的对称点连线被对称中心平分.教师归纳:中心对称图形上的每一对对称点所连成的线段都被对称中心平分.出示课件16:教师问:如何寻找中心对称图形的对称中心?学生答:连接任意两对对应点,连线的交点就是对称中心.画一画:1.下图是中心对称图形的一部分及对称中心,请你补全它的另一部分.生观察后独立操作,教师加以指导,如图所示.出示课件17:2.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎么画?生观察后独立操作,教师加以指导,如图所示.教师归纳:过对称中心的直线可以把中心对称图形分成面积相等的两部分.出示课件18-20:例请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎样画?师生共同操作如下:教师归纳:对于这种由两个中心对称图形组成的复合图形,平分面积时,关键找到它们的对称中心,再过对称中心作直线.出示课件21:巩固练习:从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有()A.1张B.2张C.3张D.4张学生观察后口答:A出示课件22,23,24:小组合作,讨论观察发现两种对称图形的区别后完成表格1、2、3.1.对比旋转对称图形与中心对称图形的异同点.2.对比中心对称与中心对称图形的异同点.3.对比轴对称图形与中心对称图形的异同点.(三)课堂练习(出示课件25-30)1.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个2.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是()A B C D3.下列图形中既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形4.观察图形,并回答下面的问题:①哪些只是轴对称图形?②哪些只是中心对称图形?③哪些既是轴对称图形,又是中心对称图形?5.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有,是中心对称图形的有.6.图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?参考答案:1.C2.B3.C4.解:①⑶⑷⑹②⑴③⑵⑸5.①②③;①③6.解:⑴如图所示:⑵如图所示,对称轴有4条;整体图形至少旋转90°与自身重合.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.2.3)的相关内容.七、课后作业1.教材67页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:本课通过学习中心对称图形,进一步认识几何图形的本质特征,通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力.。

人教课标 初中数学九年级上册第二十二章23 . 2 . 2 中心对称图形导学案

人教课标 初中数学九年级上册第二十二章23 . 2 . 2 中心对称图形导学案

23.2中心对称图形导学案教学目标:(1)掌握中心对称图形的定义.(2)培养学生发现问题、观察问题、解决问题的能力.(3)培养学生的创新能力.学生自主合作学案:一、情景导入先请同学们欣赏几张很漂亮的图片.二、新授过程(一)观察与发现师:我们玩个小魔术戏吧:(课件出示图片)小明先拿出图(1)所示的四张纸牌,然后背着大家将其中某一张旋转了180°,得到图(2)。

你知道旋转了哪一张扑克吗?议一议.师:大家已看出梅花5具有旋转180度后能与原来重合这样的特性,接下来请大家观察我所展示的几何图形,它们也具备这样的特点吗?(出示教具)师:我做了一个什么样的变换?变换后又有什么样的现象?中心对称图形的定义:把图形绕着某一点 , 如果旋转后的图形能够和原来的图形相互 ,那么这个图形叫中心对称图形,这个点就是它的对称中心。

生活中,有许多图形都是中心对称图形。

你能举出生活中的一些中心对称图形吗?(二)找一找1、老师也搜集了很多图形,我们一起来欣赏一下,看看有没有大家认识的图案,其中哪些是中心对称图形?(出示课件图片)2.英文字母中有中心对称图形吗?(出示课件图片)(三)考考你1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?哪些是轴对称图形?哪些既是中心对称图形又是轴对称图形?(出示课件图片)(1)线段(2)三角形(3)平行四边形(4)正方形(5)矩形(6)角(7)菱形(8)等腰梯形2.正三角形是中心对称图形吗?正方形呢?正五边形呢?正六边形呢?……你能发现什么规律?(出示课件图片)归纳:(四)比比看1.你知道中心对称与中心对称图形有什么区别和联系吗?2.中心对称图形和轴对称图形有什么不同之处?(五)深入探究师:我们知道,把中心对称图形看成两部分,就得到关于中心对称的两个图形.你能把一个平行四边形分成两个关于中心对称的图形吗? (出示课件图片)归纳:(六)综合应用1.这是公园里两块形状不同的草坪,现在要·修一条笔直的小路同时穿过这两块草坪,而且同时把两块草坪分成面积相同的两部分,如果你是设计师,你怎样设计这条小路?归纳:2.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?归纳:(五)深入探究第1题第2题三、课堂小结同学们,我们一起想一想本节课学到了哪些知识,有什么收获?四、作业布置课后作业:习题23.2 第2、5、8题。

九年级数学上册 23.2.2 中心对称图形 精品导学案 新人教版

九年级数学上册 23.2.2 中心对称图形 精品导学案 新人教版

中心对称图形学习目标:1、知识和技能:了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.2、过程和方法:复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.3、情感、态度、价值观:培养学生的审美意识。

学习重点:中心对称图形的有关概念及其它们的运用.学习难点:区别关于中心对称的两个图形和中心对称图形.导学过程课前预习:阅读课本P65-66页,完成《导学案》“教材导读”及“自主测评”。

二、课堂导学:1.情境导入:什么是轴对称图形?常见的轴对称图形有哪些?出示任务,自主学习:(1)了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应(2)复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.3.合作探究:(1)什么是中心对称图形?(2)常见的中心对称图形有哪些?(3)中心对称与中心对称图形的区别与联系。

三、展示与反馈:《导学案》P62页“自主测评”1、等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有()个.A.1B.2C.3D.42、下列图形中,是中心对称图形,但不是轴对称图形的是( )A.正方形 B.矩形 C.菱形 D.平行四边形3、下列图由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )4、下列图中:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形,是轴对称图形,但不是中心对称图形有( )A.1个 B.2个 C.3个 D.4个5、在下列图形中,是中心..对称图形的是( )、6、右列4个图形中是中心对称图形的有()A.1B.2 C .3 D.4个7、如下图中,既是中心对称又是轴对称的图案是().(8题图)8、欣赏右上图的图案,它们中间中心对称图形的个数有个.学习小结:1、中心对称图形的定义。

2、常见的中心对称图形。

3、中心对称与中心对称图形的区别与联系。

23.2中心对称(教案)2023-2024学年数学人教版九年级上册

23.2中心对称(教案)2023-2024学年数学人教版九年级上册
2.难点解析:针对中心对称性质的推导和空间观念的培养进行深入讲解,帮助学生突破难点。
(四)实践活动(用时10分钟)
1.分组讨论:让学生围绕“中心对称在实际生活中的应用”这一主题展开讨论,提出自己的观点和想法,并与小组成员交流。
2.实验操作:进行简单的中心对称实验,让学生亲身体验中心对称的基本原理。
(五)总结回顾(用时5分钟)
五、教学反思
在今天的教学中,我重点关注了中心对称这一概念的教学。通过引入日常生活中的实例,我希望学生能够感受到数学知识在实际中的应用,从而激发他们的学习兴趣。在讲授新课的过程中,我尽量用简洁明了的语言解释中心对称的定义和性质,同时结合案例分析,让学生看到理论知识的实际运用。
在实践活动中,我鼓励学生进行分组讨论和实验操作,这样不仅能够让他们在实践中加深对中心对称的理解,还能培养他们的团队合作能力和动手操作能力。看到学生们积极参与,我感到很欣慰。
b.针对空间观念的培养,教师可以设计一些实际操作活动,如让学生制作中心对称的剪纸作品,从中感受中心对称的空间效果。
c.在解决中心对称相关问题中,教师可以举例讲解解题思路和技巧,如如何找到对称中心、如何利用对称性质简化计算等。
直接输出:
四、教学流程
(一)导入新课(用时5分钟)
以问题导入:“你们在日常生活中是否遇到过需要将一个图形进行对称变换的情况?”通过这个问题,引发学生对中心对称的兴趣和好奇心,为探索中心对称的奥秘奠定基础。
4.培养学生解决问题的能力:通过解决中心对称相关问题,使学生能够运用所学知识解决实际生活中的几何问题,提高解决问题的能力。
5.培养学生的创新意识:鼓励学生在学习过程中提出新的观点和解决问题的方法,激发创新思维和创造力。
三、教学难点与重点

23.2 中心对称图形导学案

23.2 中心对称图形导学案

《中心对称图形》导学案年级:八年级科目:数学课型:新授课导师:班级:姓名:小组:时间:【学习目标】1.通过观察图形,能说出中心对称图形的定义,并能准确判断图形是否为中心对称图形。

2.通过动手操作、合作探究,发现并说明中心对称图形的性质,进而能运用这些知识解决相关的简单问题。

3.在学习过程中,通过对中心对称图形的研究,体会类比和转化数学思想的应用,感受中心对称图形的美,体验数学“来源于生活,服务于生活”的奥妙。

【学习重点和难点】重点:中心对称图形的定义及其性质。

难点:中心对称图形的性质及应用。

【知识链接】轴对称:在平面内,把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就是轴对称图形,这条直线叫做对称轴旋转:旋转的三要素:旋转的性质:对应边对应角旋转角对应点与旋转中心的连线长度对应点连线的中垂线过【学法指导】一、通过寻找中心对称与轴对称的区别于联系来帮助自己学习。

二、通过探索中心对称与旋转的关系来加强自己对中心对称的理解。

三、通过小组讨论,合作学习来提高自己的学习效率。

【课前导学】(1)下列这些图形绕其中心旋转多少度后与他自身重合?(2)这些图形的共同特征是都旋转多少度与自身重合?(3)根据课本提示,我们把这种图形叫做。

(4)你能用自己的话写出中心对称图形的定义吗?【课堂研讨与展示】问题一:我们能通过对轴对称的定义进行改造,给出这种与旋转有关的对称的定义吗?在平面内,一个图形绕某个点,如果旋转前后的图形,那么这个图形叫做中心对称图形,旋转后相互重合的点叫。

判断一个图形是否为中心对称图形,关键注意几点?1. ;2. ;3. 。

小试牛刀:在我们以前学习过的图形中有很多事中心对称图形,观察下图中哪些是中心对称图形?哪些是轴对称图形?哪些既是中心对称图形又是轴对称图形?问题二:通过上面图形,你能总结中心对称图形和轴对称图形的区别与联系吗?并思考如何快速判断一个图形是不是中心对称图形,或轴对称图形?中心对称图形轴对称图形相同点不同点火眼金睛:在我们日常生活中也有很多中心对称图形,请你支出下图哪些是中心对称图形,哪些既是中心对称图形又是轴对称图形?问题三:如图,在□ABCD中;1.由平行四边形是中心对称图形,我们可以验证平行四边形的哪些性质?2.点A和点C是一对对应点,则OA=OC,同理,OB=OD,那么,在一个中心对称图形中,对称中心平分一对对应点间的连线吗?你发现了什么规律?请把下面的结论补充完整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.2.2中心对称图形
一、导学
1.导入课题:
情景:猜一猜:
(1)如果将线段AB绕它的中点O旋转180°,会出现什么情况?
(2)如果将平行四边形ABCD绕它的两条对角线的交点O旋转180°,又会出现什么情况?
根据学生发现的结果,指出具有这种性质的图形就是我们今天要学习的中心对称图形. (板书课题)
2.学习目标:
(1)能判断一个图形是不是中心对称图形.
(2)知道中心对称和中心对称图形的区别和联系.
3.学习重、难点:
重点:中心对称图形的概念.
难点:中心对称和中心对称图形的区别和联系.
4.自学指导:
(1)自学内容:教材第66页“思考”至第67页的内容.
(2)自学时间:10分钟.
(3)自学方法:运用对比的方法,弄清中心对称图形与中心对称的区别和联系,以及中心对称图形与轴对称图形的区别.
(4)自学参考提纲:
①线段AB绕它的中点O旋转180°后能与原来的图形重合,平行四边形ABCD绕它的两条对角线的交点O旋转180°后能与原来的图形重合.像这样,把一个图形绕着某一个点旋转180°后,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
②比较中心对称和中心对称图形的概念,试说明它们有何区别与联系:
区别:中心对称是针对两个图形而言的,而中心对称图形是针对单个图形而言的.
联系:如果把中心对称的两个图形看成一个整体,则成为中心对称图形;如果把一个中心对称图形相互对称的两部分看成两个图形,则它们成中心对称.
③如图,AB∥CD,AD、BC相交于点O,且OA=OD,OB=OC,满
足上述条件的图形中,若从整体看它是中心对称图形,若从△AOB和△
COD两个图形看,它是关于点O中心对称的两个图形.因此,中心对称是
相对于两个图形而言,中心对称图形是相对于一个图形而言.
④下列几个图形是国际通用的交通标志,其中不是中心对称图形的是(AD)
A B C D
⑤指出如图所示的汽车标志中的中心对称图形:
第一、三个标志是中心对称图形.
二、自学学生可参考自学指导进行自主学习.
三、助学
1.师助生:
(1)明了学情:关注学生对中心对称与中心对称图形之间的关系的认识以及能否判断中心对称图形.
(2)差异指导:根据学情予以适当指导.
2.生助生:生生互动、交流研讨、订正结论.
四、强化
1.中心对称图形的概念.
2.中心对称与中心对称图形的区别与联系.
3.练习:
(1)下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是(A)
霾大雪浮尘大雨
A B C D
(2)下列标志中,可以看做是中心对称图形的是(D)
A B C D
(3)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)
(4)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.
(5)下面图形是中心对称图形吗?如果是中心对称图形,指出其对称中心.
禁止标志风轮叶片三叶风扇正方形正六边形正三角形解:禁止标志是中心对称图形,对称中心是圆心;风轮叶片是中心对称图形,对称中心是叶柄的交点;三叶风扇不是中心对称图形;正方形是中心对称图形,对称中心是两条对角线的交点;正六边形是中心对称图形,对称中心是中心;正三角形不是中心对称图形.
五、评价
1.学生的自我评价(围绕三维目标):各小组组长汇报本组的学习情况,总结经验、收获和不足.
2.教师对学生的评价:
(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):在创设情境环节中,实物图形把学生引入到丰富多彩的美丽世界,使学生享受了数学带给他们的快乐;在教学过程中,通过辨别中心对称图形,使学生产生了亲切的感受,教师强调:能判断常见的几何图形是不是中心对称图形,整节课的学习都是享受美的过程,接受美的熏陶,发现美,从而阐述自己的感受.
(时间:12分钟满分:100分)
一、基础巩固(70分)
1.(10分) 下列图形中,既是轴对称图形,又是中心对称图形的是(D)
A.等边三角形B.等腰三角形C.平行四边形D.正方形
2.(10分) 下列图形中,是中心对称图形,但不一定是轴对称图形的是(D)
A.正方形B.矩形C.菱形D.平行四边形
3.(10分) 小明把如图(1)所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,如图(2),然后小明很快辨认出被倒过来的那张扑克牌是(A)
图(1) 图(2)
A.方块5
B.梅花6
C.红桃7
D.红桃8
4.(10分) 如图,边长为2的正方形ABCD的对角线相交于点O,过
点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(A)
A.1 B.2 C.3 D.4
5.(10分) 如图,下列汉字或字母中是中心对称图形但不是轴对称图形的是(B)
A.田B.Z C.H D.中
6.(10分) 下列图案中既是轴对称图形又是中心对称图形的是(D)
A B C D
7.(10分) 如图O1、O2分别是两个半圆的圆心,这个图形是中心对称图形吗?如果不
是,请说明理由;如果是,请指出对称中心
解:是中心对称图形,对称中心是线段O1O2的中心.
二、综合应用(20分)
8.(10分) 若用两个全等的直角三角形拼四边形,则能拼成中心对称图形的有3个.
9.(10分) 过菱形的对角线交点的一条直线,把菱形分成了两个梯形,这两个梯形是全等的吗?为什么?
解:这两个梯形是全等的,因为菱形是中心对称图形,对角线的交点即
为对称中心,所以过对角线交点的直线将菱形分成的两个梯形成中心对称,
所以它们是全等的.三、拓展延伸(10分)
10.(10分) 将两个大小相等的圆部分重合,其中重叠的部分(如右图中的
阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣
图形,下面是一些由“花瓣”和圆组成的图形.
A(二瓣图形)B(三瓣图形)C(四瓣图形)D(五瓣图形)E(六瓣图形)
(1)以上5个图形中是轴对称图形的有A、B、C、D、E,是中心对称图形的有A、C、E;(分别用图形的代号A、B、C、D、E填空)
(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律:“花瓣”个数为偶数时,这个图形既是轴对称图形又是中心对称图形;“花瓣”个数为奇数时,这个图形是轴对称图形;
(3)根据上面的结论,试判断下列花瓣图形的对称性:
①2014瓣图形是中心对称图形,也是轴对称图形;②2015瓣图形是轴对称图形.。

相关文档
最新文档