物理化学实验——金属相图

合集下载

实验一 金属二元相图绘制

实验一 金属二元相图绘制

实验三金属二元相图绘制一、实验目的(1)了解步冷曲线的测量原理和类型;(2)用测定步冷曲线的方法绘制Bi-Sn二元合金相图。

(3)加深对物理化学的简单相图的分析和理解。

二、实验原理1.相图相图是多相(二相或二相以上)体系处于相平衡状态时体系的某些物理性质(如温度或压力)对体系的某一变量(如组成)作图所得的图形,因图中能反映出相图平衡情况(相的数目及性质等),故称为相图。

由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系相平衡情况的演变(例如钢铁及其它合金的冶炼过程,石油工业分离产品的过程),都要用到相图。

由于压力对仅由液相和固相构成的凝聚体系的相平衡影响很小,所以二元凝聚体系的相图通常不考虑压力的影响,而常以组成为自变量,其物理性质则取温度。

2.热分析法测绘步冷曲线热分析法是绘制相图常用的基本方法。

其原理是将体系加热融熔成一均匀液相,然后让体系缓慢冷却,用体系的温度随时间的变化情况来判断体系是否发生了相变化。

记录体系的温度随时间的变化关系,再以时间为横坐标,温度为纵坐标,绘制成温度--时间曲线,称为步冷曲线(如图3-1)。

从步冷曲线中一般可以判断在某一温度时,体系有无相变发生。

当系统缓慢而均匀地冷却时,若系统内无相的变化,则温度将随时间而均匀地改变,即在T-t 曲线上呈一条直线,若系统内有相变化,则因放出相变热,使系统温度变化不均匀,在T-t 图上有转折或水平线段,由此判断系统是否有相变化。

对于二组分固态不互溶凝聚系统(A-B系统),其典型冷却曲线形状大致有三种形态,见图3-1所示。

(a) (b) (c)图3-1 冷却曲线形状3.绘制二元合金相图无论平台还是转折,都反映了相平衡时的温度,把各种不同组成的体系的步冷曲线的转折点(拐点)和平台,在温度-组成图上标志出来连成曲线就得到相图。

图3-2 根据步冷曲线绘制相图严格地讲,Bi-Sn合金是固态部分互溶凝聚系统,只是由于普通的热分析方法灵敏度较低,只能得出一与Bi-Cd系统相仿的相图,所以,我们通过本实验得到的是Bi-Sn二元合金的简化相图如图3-2所示。

河北科技大学金属相图实验教案

河北科技大学金属相图实验教案

第次课 4 学时实验8 金属相图一、实验目的1. 学习用热分析法测绘金属相图的方法和原理技术;2. 用热分析法测绘Sn-Pb二组分系统的金属相图;3. 掌握热电偶测温技术和平衡记录仪的使用。

二、实验原理相图表示相平衡系统组成、温度、压力之间关系。

对于不同的系统、根据所研究对象和要求的不同可以采用不同的实验方法测绘相图。

例如对于水-盐系统,常用测定不同温度下溶解度的方法。

对于合金,可以采用热分析方法。

本实验采用热分析方法测绘Sn-Pb 二元金属相图。

二元金属相图A、B两纯金属组成的系统,被加热完全熔化后,如果两组分在液相能够以分子状态完全混合,称其为液相完全互溶, 把系统降温,当有固相析出时,因A、B 物质不同会出现三种情况:(a)液相完全互溶,固相也完全互溶;(b)液相完全互溶,固相完全不互溶;(c)液相完全互溶,固相部分互溶。

本实验测绘的Sn-Pb二元金属相图属于液相完全互溶,固相部分互溶系统,其相图如图8.1所示。

图的横坐标表示Sn的质量分数,纵坐标为温度(℃),α相为Sn溶于Pb 中所形成的固体溶液(固溶体),β相为Pb溶于Sn中所形成的固体溶液(固溶体)。

图中ACB线以上,系统只有一相(液相);DCF线以下,α、β两相平衡共存;在ACD 区域中,α相与液相两相平衡共存;在BCF区域,β相与液相两相平衡共存;ADP以左及BFQ以右的区域分别为α相和β相的单相区,C点为ACD与BCF两个相区的交点,α、β和液相三相平衡共存;在DCF线上,α、β和液相三相平衡共存,该线称为三相线。

该图用热分析法测绘。

图8.1 Sn-Pb相图图8.2 Sn-Pb体系步冷曲线测绘相图就是要根据实验数据把图中分隔相区的线画出来。

热分析方法是测绘固-液相图最常用的方法之一。

该方法根据系统被加热或冷却的过程中,释放或吸收潜热,使系统升温或降温速率发生突变、系统温度-时间曲线上出现转折点这一现象,判断某组分的系统(样品)出现相变时的温度。

6物理化学实验金属相图.

6物理化学实验金属相图.

七 数据处理
1. 根据记录的时间和温度绘 制步冷曲线图。
2. 找出各步冷曲线中拐点和
平台对应的温度值。
3. 以温度为纵坐标,以物质组成 为横坐标,绘出Sn—Bi金属相图。
Sn-Bi二元相图的绘制
0.3Bi b c a O A'
A
1.0Sn
0.6Bi
0.75Bi d e
1.0Bi
H
A 505
熔化物(单相)
H 546
F
F
C
B
C
G
Sn(s)+熔化物
熔化物+Bi(s)
D D' E
0.2
Sn 100%
D Sn(s)+Bi(s) 0.4 0.6
铋的质量分数
E
G
0.8
Bi 100%
Sn-Bi二元相图的绘制
八 实验成败的关键
(1)温度要适当,温度过高样品易氧化变质;温度过低或加 热时间不够则样品没有全部融化,步冷曲线转折点测不出。
(2)了解热电偶测量温度和进行热 电偶校正的方法。
三 实验原理
测绘金属相图常用的实验方法是热分析法,原理是将 一种金属或两种金属混合物熔融后,使之均匀冷却,每隔 一定时间记录一次温度,表示温度与时间关系的曲线称步 冷曲线。当熔融体系在均匀冷却过程中无相变时,温度将 连续均匀下降得一平滑的步冷曲线;当体系内发生相变则 因体系产生的相变热与自然冷却时体系放出的热量相抵消, 步冷曲线就会出现转折或水平线段,转折点对应的温度, 为该组成体系的相变温度。利用步冷曲线所得到的一系列 组成和所对应的相变温度数据,以横轴表示混合物的组成, 纵轴上标出开始出现相变的温度,把这些点连起来,就可 绘出相图。二元简单低共熔体系的冷却曲线具有图5-1所 示的形状

物理化学实验报告二组分简单共熔合金相图绘制

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。

2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。

二、主要实验器材和药品1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡三、实验原理压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。

较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。

研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。

溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。

此法适用于常温F易测定组成的系统,如水盐系统。

热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。

它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。

其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。

根据步冷曲线可以判断体系有无相变的发生。

当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。

这是因为相变时的热效应使温度随时间的变化率发生了变化。

因此,由步冷曲线的斜率变化可以确定体系的相变点温度。

测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。

物理化学实验报告讲义二组分金属相图的测定

物理化学实验报告讲义二组分金属相图的测定

实验30 二组分金属相图的测定预习要求1.理解热分析法。

2.理解步冷曲线上的转折点及停歇线表示的含义。

3.本实验所测定的Zn-Sn二组分,在液相及固相的相互溶解情况。

4.使用热电偶测量温度时的注意事项。

(参阅附录1.2.3)实验目的1.用热分析法(步冷曲线法)绘制Zn-Sn二组分金属相图。

2.掌握热电偶测量温度的基本原理和自动平衡记录仪的使用方法。

实验原理简单的二组分金属相图主要有三种:①液相完全互溶,凝固后固相也能完全互溶成固溶体的系统,如Cu-Ni,溴苯-氯苯;②液相完全互溶,固相完全不互溶的系统,如Bi-Cd;③液相完全互溶,固相部分互溶的系统,如Pb-Sn。

本实验研究的Zn-Sn系统属于第二种。

在低共熔温度下,Zn在固相Sn中的最大溶解度为w Zn=0.09。

热分析法是绘制金属相图的基本方法之一,即利用金属或合金在加热或冷却过程中发生相变时,相变热的吸收或释放引起热容的突变,来得到金属或合金中相转变温度的方法。

通常的做法是将金属或合金加热至全部熔化,然后让其在一定的环境中自行冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线,即为步冷曲线(见图3-13)。

当熔融的系统均匀冷却时,如果不发生相图3-13步冷曲线变,则系统温度随时间的变化是均匀的,冷却速度较快(如图中ab线段);若在冷却过程中发生相变,由于在相变过程中伴随着放热,所以系统的冷却速率减慢,步冷曲线上出现转折(如图中b点);当系统继续冷却到某一温度时(如图中c点),系统中有低共熔混合物析出,步冷曲线出现温度的“停顿”;在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图中cd线段);当系统完全凝固后,温度又开始下降(如图中de线段)。

图3-14 固相完全不互溶的A-B二组分金属相图及其步冷曲线由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的步冷曲线得到有固体析出的温度和低共熔温度。

根据一系列组成不同系统的步冷曲线各转折点、停歇线的温度,即可画出二组分系统的相图(温度-组成图)。

金属相图

金属相图

二组分金属相图一、实验目的和要求1.掌握热分析法的测量技术2.用热分析法测绘Sn-Bi二组分金属相图,了解固-液相图的基本特点。

二、实验原理1.互不相溶的二组分金属体系的相图对于和冶金有关的合金、化合物、融盐等体系,气相可以忽略,只考虑固相和液相。

这种没有气相的体系称为凝聚体系。

两种金属形成的二组分体系属于凝聚体系,可分为三种类型:①两种金属互不相溶;②部分互溶的固溶体(固态溶液);③完全互溶的固溶体。

本实验所测量的Sn-Bi二组分金属体系属于第一种类型。

对于二组分金属体系,平衡状态受外压的影响很小,因此,在测绘相图时,通常固定外压,一般为标准大气压,得到平面的温度-组成图。

由于外界影响因素中只考虑温度,相律可表示为f=C-φ+1=3-φ,自由度最大为2。

(参见“双液系气液平衡相图”中关于相律的讨论)图1互不相溶的二组分金属体系的相图图1是典型的互不相溶的二组分金属体系的相图。

横坐标w B表示金属B在整个体系中质量分数,纵坐标为温度。

T A*和T B*分别代表纯A和纯B的熔点。

人们很早就知道,一种金属中加入另外一种金属可以降低熔点,因此可以配制出熔点低于两种纯金属的合金来。

用食盐化雪也是这种办法。

因此,当在金属A中加入B后,熔点将沿ce下降,直到e点。

同样,在金属B中加入A,熔点沿de下降,直到e点。

体系在e点对应的组成下具有最低熔点,这个熔点Te称为低共熔点,相应的混合物称为低共熔混合物。

熔融状态的低共熔混合物在冷却过程中,A和B两种金属同时结晶。

图1中的熔点曲线ce和de称为液相线,它可以是直线,也可以是曲线。

水平直线men称为三相线,当物系点落在三相线上时,体系中存在固态A、固态B 和熔融物三相平衡。

根据相律,三相平衡时自由度f=2-3+1=0,因此各相组成必然分别为固态纯A、固态纯B、液态低共熔混合物,温度必然为低共熔点,。

液相线和三相线将相图划分为4个区域:I. 熔融物的单相区;II. 固态A和熔融物的两相平衡区;III. 固态B和熔融物物的两相平衡区;IV. 固态A和固态B的两相平衡区。

实验5 金属相图的绘制

实验5 金属相图的绘制
按照上述操作过程依次完成剩下五个样品管中的样品测量,并记录数据。
五、数据处理
1、将实验数据记录于表5-1中。
表5-1实验数据记录表
时间/min
0
1
2
3
4

温度/℃
样品1
样品2
样品3
样品4
样品5
样品6
2、在同一直角坐标系中以T对t分别绘出每个样品的步冷曲线。
3、由步冷曲线找出每个样品的转折温度和平台温度,填到表5-2中。
石蜡油;
铅(化学纯)
四、实验步骤
1、配制样品。
用感量为0.1g的天平配制含Sn质量分数分别为0、0.20、0.40、0.60、0.80、1.00的Pb-Sn混合物各100g,分别装入编号为1~6的硬质试管中,再加入少许石蜡油(约5mL),以防止加热过程中金属被空气氧化。
2、设置仪器。
打开电源,预热2min,按照以下参数设置仪器:
a b
图5-1简单低共熔系统步冷曲线(a)及其固-液相图(b)
(1)体系均匀冷却过程中,若无相变发生,则温度随时间均匀的降低。(2)若有相变发生,由于相变过程中会产生相变热,使得温度随时间的下降速度将减慢,步冷曲线就出现转折。当熔液继续冷却到熔液的组成达到最低共熔混合物的组成时,开始有最低共熔混合物析出,在最低共熔混合物完全凝固以前,体系温度保持不变,步冷曲线出现平台。当熔液完全凝固后,体系又无相变发生,温度随时间又均匀的下降。
由此可知,对组成一定的二组分低共熔混合物体系,可以根据步冷曲线,判断有固体析出时的转折温度和最低共熔混合物析出时的平台温度。如果作出一系列组成不同的体系的步冷曲线,从中找出各转折点即能画出二组分体系最简单的T-x相图。
三、仪器试剂

金属相图实验报告

金属相图实验报告

篇一:实验3 金属相图实验报告dyl物理化学实验备课材料实验3 热电偶温度计的校正及金属相图一、基本介绍一个多相体系的状态可用热力学函数来表达,也可用几何图形来描述。

表示相平衡体系状态与影响相平衡强度因素关系的几何图形叫平衡状态图,简称相固,也叫状态图。

由于常见的影响相平衡的强度因素是温度、压力和浓度,所以也可以说,相图是描述多相体系的状态与温度、压力和组成关系的几何图形。

相平衡的研究对生产和科学研究具有重大意义。

钢铁和合金冶炼生产条件的控制、硅酸盐(水泥、耐火材料等)生产的配料比、盐湖中无机盐的提取等,都需要相干衡的知识。

又如对物质进行提纯(如制备半导体材料)、配制各种不同低熔点的金屑台金等,都要考虑到有关相干衡问题。

化工生产中产品的分离和提纯是非常重要的,其中溶解和结晶、冷凝和熔融、气化和升华等都属相交过程。

总之.由于相变过程和相干衡问题到处存在,研究和革捏相变过程的规体,用以解释有关的自然现象和指导生产甚为重要。

二、实验目的1、用热电偶—电位差计测定bi—sn体系的步冷曲线,绘制相图;2、掌握热电势法测定金属相图的方法;3、掌握热电偶温度计的使用,学习双元相图的绘制。

三、实验原理绘制固液二相平衡曲线的方法,常用的有溶解度法和热分析法。

溶解度法是指在确定的温度下,直接测定固液二相平衡时溶液的浓度,然后依据澜得的温度和相应的溶解度数据绘制成相固。

此法适用于常温下易澜定组成的体系,如水盐体系等。

热分析法是指在常温下不便直接澜定固液乎衡时溶液组成的体系(如合金和有机化合物的体系).通常利用相变时的热效应来测定组成已确定之体系的温度,然后依据选定的一系列不同组成的二组分体系所测定的温度,绘制相图。

此法简单易行,应用顾广。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。

因此.体系的冷却速度必须足够慢.才能得到较好的结果。

体系温度的测量,可用水银温度计,也可选用合适的热电偶。

由于水银温度计的测量范围有限,而且其易破损,所以目前大都采用热电偶来进行测温。

物化实验报告-合金相图

物化实验报告-合金相图

二组分合金相图实验者:黄浩2011011743 分1同组实验者:李奕实验日期:2013-9-28 提交报告日期:2013-10-1实验老师:吉岩1. 引言1.1 实验目的a.用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

b.掌握热电偶测量温度的基本原理和校正方法。

c.学会使用自动平衡记录仪。

1.2 实验原理人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

物理化学实验——金属相图

物理化学实验——金属相图
金属相图的绘制(基础)
一、实验目的 1. 学会利用热分析法测绘Pb-Sn二组分体系的 相图 2. 掌握热分析法的测量技术
二、实验原理
Pb-Sn二组分体系是固态部分互溶的体系,相图 为:
本实验是利用热分析法绘Pb-Sn相图。先将体 系加热至熔融的状态,然后记录温度随时间 的变化,做步冷曲线,然后,根据步冷曲线 绘制相图。 Pb的熔点:327℃,Sn的熔点:232℃
3. 测样品的步冷曲线 将电炉的冷风量调节至最小,内外控开关位 于外控,将样品用坩埚钳放入炉膛,探头放 入样品管,打开电炉和控温仪的开关,置数 (330℃),将工作置数开关位于工作,调 节加热量调节旋钮加热至所需温度。当工作 置数开关位于置数时,停止加热。调节冷风 量旋钮,使温度的下降速度为5--8℃/分,每 分钟记录温度一次至金属完全凝固为止(要 求130℃)。用坩埚钳将样品管取出,放到窗 台上。用坩埚钳将另一个样品放入炉膛,测 下一个步冷曲线。
三、仪器与试剂1. 可控升温电炉 2. 控温仪 3. Pb,Sn,石墨粉
SWky数字控温仪。该控温仪的特点是通过探 头可测定实时温度,又可以对升降温电炉 的温度进行控制。
四、实验步骤
1. 称量样品 用天平称量含S n量分别为20%,40%, 61.9%,80%的Pb-Sn混合物各100克,装入4 个样品管,并在样品管上方覆盖一层石墨 粉。 2. 仪器安装 将控温仪与可控升降温电炉相连
四实验步骤称量样品用天平称量含sn量分别为204061980的pbsn混合物各100克装入4个样品管并在样品管上方覆盖一层石墨仪器安装将控温仪与可控升降温电炉相连测样品的步冷曲线将电炉的冷风量调节至最小内外控开关位于外控将样品用坩埚钳放入炉膛探头放入样品管打开电炉和控温仪的开关置数330将工作置数开关位于工作调节加热量调节旋钮加热至所需温度

二组分金属相图的绘制

二组分金属相图的绘制

二组分金属相图的绘制
1 实验要求
(1) 测定Sn-Bi合金的步冷曲线,绘制其相图并确定低共熔点及相应的组成。

(2) 了解热分析法测量原理,掌握热电偶的使用和校正。

(3) 回答本次实验需要讨论的5个问题。

2 注意事项
(1)按程序降低加热电压,否则热惯性太大,温度会过高。

如温度过高,取
出样品管对炉口扇风降低温度。

(2) 试样溶解后一定要搅拌均匀,这样数据才准确。

如搅拌后温度过低,
可用50V电压再加热。

搅拌时动作要轻,防止烫伤。

3 问题讨论
(1) 在实验中,样品管内中为何加入石墨?
(2) 在实验中,为什么要选择适当的样品量和适当的升温速率?
(3) 二组分金属相图各相区的相律是多少?
(4) 何谓步冷曲线法?用步冷曲线法测绘相图时,应注意哪些问题?
(5) 分析各步冷曲线上出现平台的原因。

4 参考文献
(1)复旦大学.物理化学实验[M].北京:高等教育出版社, 1993
(2) 罗澄源.物理化学实验[M].北京:高等教育出版社,2003
(3) 刘青,王永宁等.微机金属相图绘制的实验程序设计[J].青海师范大学学
报(自然科学版),2007,(2)
(4) 于庆水,潘春晖.金属相图实验的改进[J].沧州师范专科学校学
报,2004,(1)
(5) 蔡定建,杨忠等.二元合金相图的绘制与应用实验装置的改进[J].南方冶
金学院学报,2001,(1)。

金属相图(Pb-Sn体系)

金属相图(Pb-Sn体系)

温 度
①② a a/



B
温 度
B
A
A
b
b/
L
c/
时间
(a)步冷曲线
L+A(s)
L+B(s)
O A(s)+B(s)
0(A)
B% 100(B)
(b)二元组分凝聚系统相图
热分析法绘制相图
分析1:
纯物质的步冷曲线如①、⑤所示,如 ①从高温冷却,开始降温很快,ab线的 斜率决定于体系的散热程度,冷到A的 熔点时,固体A开始析出,体系出现两 相平衡(液相和固相A),此时温度维 持不变,步冷曲线出现水平段,直到其 中液相全部消失,温度才下降。
液体石蜡202131011实验步骤实验步骤准备样品准备样品按比例按比例样品置入电炉样品置入电炉中加热中加热加液体石蜡加液体石蜡覆盖覆盖启动自动平衡记启动自动平衡记录仪有关开关录仪有关开关观察升温情况观察升温情况及时停止加热及时停止加热温度到最温度到最高点搅拌高点搅拌观察降温情况观察降温情况及时停止实验及时停止实验取出样品放取出样品放入新样品测试入新样品测试实验结束记录实验结束记录数据恢复原状数据恢复原状
观察升温情况 及时停止加热
取出样品、放 入新样品测试
实验结束记录 数据恢复原状
准备样品
按以下比例配制
锡的百 分含量
0%
20%
锡(g) 0 20
铅(g) 100 80
40% 61.9% 80% 100%
40 61.9 80 100 60 38.1 20 0
何时停止加热?
纯Pb、纯Sn、含锡61.9%(低共熔物)三个样品, 如果出现转折点,则停止加热,利用电炉的余热加 热到熔点以上30~40 ℃ 。

金属相图实验步骤(学生)

金属相图实验步骤(学生)

实验八金属相图一、实验目的1、学会用热分析法测绘铅-锡二组分金属相图;2、掌握热分析法的测量技术;3、熟悉ZR-HX金属相图控温仪、ZR-08金属相图升温电炉等仪器。

二、基本原理相图是用以研究体系的状态随浓度、温度、压力等变量的改变而发生变化的图形,它可以表示在指定条件下存在的相数和各相的组成,对蒸汽压较小的二组分凝聚体系,常以温度-组成图来描述。

热分析法是绘制相图常用的基本方法之一。

这种方法是通过观察体系在冷却时温度随时间的变化关系,来判断有无相变的发生。

通常的做法是先将体系全部融化,然后让其在一定环境中自行冷却,并每隔一定时间记录一次温度,以温度(T)为纵坐标,时间(t)为横坐标,画出步冷曲线。

当体系均匀冷却时,如果体系不发生相变,则体系的温度随时间的变化将是均匀的,冷却也较快(如图8-1中ab线段)。

若在冷却过程中发生了相变,由于在相变过程中伴随着热效应,所以体系温度的降温速度随时间的变化将发生改变,体系的冷却速度减慢,步冷曲线就出现转折(如图8-1中bc线段)。

当熔液继续冷却到某一点时,由于此时熔液的组成已达到最低共熔混合物的组成,故有最低共熔混合物析出,在最低共熔混合物完全凝固以前,体系温度保持不变,因此步冷曲线出现平台(如图中cd线段)。

当熔液完全凝固后,温度才迅速下降(见图中de线段)。

由此可知,对组成一定的二组分低共熔混合物体系来说,可以根据它的步冷曲线,判断有固体析出时的温度和最低共熔点的温度。

如果作出一系列组成不同的体系的步冷曲线,从中找出各转折点,即能画出二组分体系最简单的相图(温度-组成图)。

不同组成熔液的步冷曲线与对应相图的关系可以从8-2中看出。

图 8-2 图 8-1用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。

因此,体系的冷却速度必须足够慢,才能得到较好的结果。

三、仪器和试剂ZR-HX金属相图控温仪 ZR-08金属相图升降温电炉铅(C.P.)锡(C.P.)四、操作步骤1、配制样品:测试样品分别为纯锡、含锡量为20%、40%、61.9%、80%的铅-锡混合样和纯铅六个试样,用分析天平按质量百分比严格称取,并确保六个试样的总质量均等于180g,将样品置于升温电炉中。

3.差热分析法测定Pb-Sn的金属相图

3.差热分析法测定Pb-Sn的金属相图

差热分析法测‎定P b-Sn的金属相‎图一、实验目的和要‎求1.用热分析法测‎绘Pb-Sn二元金属‎相图,并掌握应用步‎冷曲线数据绘‎制二元体系相‎图的基本方法‎;2.了解步冷曲线‎及相图中各曲‎线所代表的物‎理意义;二、实验原理相是指体系内‎部物理性质和‎化学性质完全‎均匀的一部分‎。

相平衡是指多‎相体系中组分‎在各相中的量‎不随时间而改‎变。

研究多相体系‎的状态如何随‎组成、温度、压力等变量的‎改变而发生变‎化,并用图形来表‎示体系状态的‎变化,这种图就叫相‎图。

将某一物质进‎行加热或冷却‎,在这样的过程‎中,若有物相变化‎发生,如发生熔化、凝固、晶型转变、分解、脱水等相变时‎,总伴随着有吸‎热或放热的现‎象。

两种混合物若‎发生固相反应‎,也有热效应产‎生。

因此,在体系的温度‎——时间曲线上就‎会发生顿、折,但在许多情况‎下(例如在试样的‎来源有限,量很少),体系中发生的‎热效应相当小‎,不足以引起体‎系温度有明显‎的突变,从而温度——时间曲线的顿‎、折并不显著,甚至根本显不‎出来。

在这种情况下‎,常将有物相变‎化的物质和一‎个基准物质(或参比物,即在实验温度‎变化的整个过‎程中不发生相‎变、没有任何热效‎应产生,如Al2O3‎、MgO等)在相同的条件‎下进行加热或‎冷却时,一旦样品发生‎相变,则在样品和基‎准物之间产生‎温度差。

测定这种温度‎差,用于分析物质‎变化的规律,称为差热分析‎。

本实验采用热‎分析法绘制相‎图,其基本原理:先将体系加热‎至熔融成一均‎匀液相,然后让体系缓‎慢冷却,①体系内不发生‎相变,则温度--时间曲线均匀‎改变;②体系内发生相‎变,则温度--时间曲线上会‎出现转折点或‎水平段。

根据各样品的‎温度--时间曲线上的‎转折点或水平‎段,就可绘制相图‎。

纯物质的步冷‎曲线如①、⑤所示,如①从高温冷却,开始降温很快‎,a b线的斜率‎决定于体系的‎散热程度,冷到A的熔点‎时,固体A开始析‎出,体系出现两相‎平衡(液相和固相A‎),此时温度维持‎不变,步冷曲线出现‎水平段,直到其中液相‎全部消失,温度才下降。

物理化学实验讲义

物理化学实验讲义

实验一二组分金属相图的绘制一、实验目的1.用热分析法绘制二组分金属相图。

2.掌握数字控温仪和可控升降温电炉的基本原理和使用方法。

二、实验原理将纯Pb或纯Sn以及不同含量的Pb-Sn混合物熔化后,冷却的过程中温度-时间曲线(步冷曲线)斜率发生改变,表明有相变热放出。

根据相律F=C–P+2,压强一定,单组分发生相变时F=1–2+1=0,步冷曲线斜率发生改变处应为平台。

而双组分发生相变析出一种固体时,F=2–2+1=1;步冷曲线斜率发生改变处为转折,两种固体同时析出时,F=2–3+1=0,步冷曲线斜率发生改变处为平台。

因而,从步冷曲线上有无转折或平台就可知道系统在冷却过程中有无相变化。

测定一系列组成不同样品的步冷曲线,在其上面找出发生相变时的温度,就可绘出温度-组成图。

三、实验仪器和试剂1.KWL-09可控升降温电炉---金属固体的熔化与金属熔融液的冷却装置2.SWKY-ⅠA数字控温仪---金属固体的熔化温度控制与显示装置3.含Sn0%、20%、40%、61.9%、80%、100%的Pb-Sn六个样品管。

四、实验步骤(一)数字控温仪操作步骤1、接通电源2、按压“工作/置数”键,使“置数”灯亮。

(二)可控升降温电炉操作步骤1. 将数字控温仪与可控升降温电炉进行连接。

将―冷风量调节‖逆时针旋转到底;―加热量调节‖ 逆时针旋转到底。

将装有金属的样品管放到电炉样品管摆放区。

2. 将样品管插入控温区―7‖,温度传感器Ⅰ插入控温传感器插孔―6‖,温度传感器Ⅱ插入测试区炉膛内。

3. 按数字控温仪使用说明设置控制温度、定时。

4. 当温度显示I达到所设定的温度并稳定10分钟,把温度传感器Ⅱ放入样品管内,再稳定5分钟,待样品管内试剂完全熔化后,用钳子取出样品管连同温度传感器Ⅱ一起放入测试区炉膛内。

5. 采用自然降温法冷却样品,效果比较好。

6. 数字控温仪置于“置数”状态,设置控温仪的时间间隔(20秒)按设置的控温时间间隔记录温度,直到步冷曲线的平台(注意:含Sn20%、40%、80%的样品有拐点和平台各一个)以下20℃~30℃,结束一组实验,得出该配比样品的步冷曲线数据。

冶金物理化学--相图

冶金物理化学--相图

基本概念回顾v自由度:体系的总变量数减去独立方程数的式,为 独立变量数,也即体系的自由度。

----计算方法冶金物理化学—相图体系总变量数为:(m-1)r+2(考虑温度和压力条件下)其中:假设体系有m个组元,存在r个相,则其中m-1个组元应为独立组 元。

则变量数为:(m-1)r独立方程数:(r-1)m 故自由度: f=m+2-r相律:若C表示组元的数量,P表示相的数量,则 相律常写为f=C-P+2。

冶金物理化学(相图)基本概念回顾 几个定义:v组元:组成系统的独立化学组成物。

合金中元素 视为组元,陶瓷中某一化合物视为组元。

v相:在一个多相体系中由界面分开的物质的均匀 部分,它们具有相同的物理、化学性质和晶体结 构。

v自由度:平衡状态下,在不改变相的类型和数目 时,可以独立变化的状态函数的数量。

冶金物理化学(相图)二元相图的类型v十二个基本类型1、具有最低共溶点或称简单共晶; 2、具有稳定化合物或称同分熔点化合物; 3、具有异分熔点化合物; 4、具有固相分解的化合物; 5、固相晶型转变; 6、液相分层; 7、形成连续固溶体; 8、具有最低点或最高点的连续固溶体; 9、具有低共熔点并形成不连续固溶体; 10、具有转熔反应并形成有限固溶体; 11、具有共析反应; 12、具有包析反应。

冶金物理化学(相图)二元相图的几何元素---面、线v 二元相图由曲线、水平线、垂直线和斜线组成,这些 线把整个图面分成若干区域 区域,形成若干交点 交点。

从而形成相 图中的基本几何元素点、线、面。

v二元相图的几何元素---线二元相图的垂直线:是两组分形成化合物的组成线,可以是 稳定化合物也可以是不稳定化合物。

在化合物的熔点温度,液相和固相有相同的组成,此种化合物 即为稳定化合物,又称同分熔点化合物 同分熔点化合物;若化合物没有固定熔点 仅有分解温度,作为分解产物的固相和液相组成都与原固相化合 物不同,此化合物即为不稳定化合物,也称为异分熔点化合物 异分熔点化合物。

如何测绘二元合金相图

如何测绘二元合金相图

《物理化学实验》讲义 第三部分 实验 德州学院化学系 王敦青二组分固---液相图的绘制一、实验目的1.学会用热分析法测绘Sn —Bi 二组分金属相图。

2.了解热分析法测量技术。

3.掌握SWKY 数字控温仪和KWL-08可控升降温电炉的基本原理和使用。

二、预习要求了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。

三、实验原理测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。

当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。

利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。

二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1 根据步冷曲线绘制相图 拐点后,开始有固体凝固出来,液相成分不断变化,平衡温度也不断随之改变,直到达到其低共熔点温度,体系平衡,温度保持不变(平台);直到液相完全凝固后,温度又迅速下降。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。

此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。

见图2。

遇此情况,可延长DC 线与AB 线相交,交点E 即为转折点。

图3是二元金属体系一种常见的步冷曲线。

当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2段)。

若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 测样品的步冷曲线 将电炉的冷风量调节至最小,内外控开关位 于外控,将样品用坩埚钳放入炉膛,探头放 入样品管,打开电炉和控温仪的开关,置数 (330℃),将工作置数开关位于工作,调 节加热量调节旋钮加热至所需温度。当工作 置数开关位于置数时,停止加热。调节冷风 量旋钮,使温度的下降速度为5--8℃/分,每 分钟记录温度一次至金属完全凝固为止(要 求130℃)。用坩埚钳将样品管取出,放到窗 台上。用坩埚钳将另一个样品放入炉膛,测 下一个步冷曲线。
五、数据记录及处理
1. 作不同样品的步冷曲线,并根据步冷曲线 作出Pb-Sn体系的相图 2. 找出最低共熔温度与共熔组成。
六、注意问题
1. 注意使用坩埚钳,避免烫伤 2. 本实验所需时间较长,可以合作,每小组 测2个样品 3. 样品勿倒掉,下一组继续使用 4. 用热分析法绘制相图时,被测定的体系必 须处于或接近于平衡状态,因此,体系的 冷却速度必须足够慢,才能得到较好的结 果。
三、仪器与试剂
1. 可控升降温电炉 2. 控温仪 3. Pb,Sn,石墨粉
SWky数字控温仪。该控温仪的特点是通过探 头可测定实时温度,又可以对升降温电炉 的温度进行控制。
四、实验步骤
1. 称量样品 用天平称量含S n量分别为20%,40%, 61.9%,80%的Pb-Sn混合物各100克,装入4 个样品管,并在样品管上方覆盖一层石墨 粉。 2. 仪器安装 将控温仪与可控升降温电炉相连
金属相图的绘制(基础)
一、实验目的 1. 学会利用热分析法测绘Pb-Sn二组分体系的 相图 2. 掌握热分析法的测量技术
二、实验原理
Pb-Sn二组分体系是固态部分互溶的体系,相图 为:
本实验是利用热分析法绘Pb-Sn相图。先将体 系加热至熔融的状态,然后记录温度随时间 的变化,做步冷曲线,然后,根据步冷曲线 绘制相图。 Pb的熔点:327℃,Sn的熔点:232℃
相关文档
最新文档