电容的选取与充放电时间的计算

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容的选取与充放电时

间的计算

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电容的选取与充放电时间的计算电容的选取:

电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的倍。使用电解电容的时候,还要注意正负极不要接反。

不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。

电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。电容的原理:

在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。

把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。

举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致的充电电流和放电电流。

电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为,10V,16V,25V,50V等。

电容充放电时间的计算:

1. L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长”,不讲电阻,就不能回答。

RC电路的时间常数:τ=RC

充电时,uc=U×[1-e^(-t/τ)]U是电源电压

放电时,uc=Uo×e^(-t/τ) Uo是放电前电容上电压

RL电路的时间常数:τ=L/R

LC电路接直流,i=Io[1-e^(-t/τ)]Io是最终稳定电流

LC电路的短路,i=Io×e^(-t/τ)] Io是短路前L中电流

2. 设V0 为电容上的初始电压值;V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。则:

Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或

t = RC × Ln[(V1 - V0)/(V1 - Vt)]

例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t

时刻电容上的电压为:

Vt=E × [1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 , V0=E,V1=0,故放到t时刻电容上

的电压为:Vt=E × exp(-t/RC)

又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少

V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =

注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数

3.提供一个恒流充放电的常用公式:⊿Vc=I*⊿t/C.再提供一个电容充电的常用公式:Vc=E(1-e-(t/R*C))。RC电路充电公式Vc=E(1-e-(t/R*C))中的:-(t/R*C)是e的负指数项。关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。供参考。

E是一个电压源的幅度,通过一个开关的闭合,形成一个阶跃信号并通过电阻R

对电容C进行充电。E也可以是一个幅度从0V低电平变化到高电平幅度的连续脉冲信号的高电平幅度。电容两端电压Vc随时间的变化规律为充电公式Vc=E(1-e-

(t/R*C))。其中的:-(t/R*C)是e的负指数项,这里没能表现出来,需要特别注意。式中的t是时间变量,小e是自然指数项。举例来说:当t=0时,e的0次方为1,算出Vc等于0V。符合电容两端电压不能突变的规律。对于恒流充放电的常用公式:⊿Vc=I*⊿t/C,其出自公式:Vc=Q/C=I*t/C。举例来说:设

C=1000uF,I为1A电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为1V/mS。这表示可以用5mS的时间获得5V的电容电压变化;换句话说,已知Vc变化了2V,可推算出,经历了2mS的时间历程。当然在这个关系式中的C和I 也都可以是变量或参考量。详细情况可参考相关的教材看看。供参考。

4.首先设电容器极板在t时刻的电荷量为q,极板间的电压为u.,根据回路电压方程可得:

U-u=IR(I表示电流),

又因为u=q/C,I=dq/dt(这儿的d表示微分哦),

代入后得到:

U-q/C=R*dq/dt,

也就是Rdq/(U-q/C)=dt,然后两边求不定积分,并利用初始条件:t=0,q=0就得到q=CU【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间t的变化关系函数。顺便指出,电工学上常把RC称为时间常数。

相关文档
最新文档