生活中的圆周运动——竖直平面内的圆周运动实例分析

合集下载

生活中的向心力和竖直平面内的圆周运动

生活中的向心力和竖直平面内的圆周运动

【2.9rad/s 6.5rad/s】
m
连体圆周运动 线段OB=AB,A、B两球的质量相等,它们绕O点在 光滑的水平面上以相同的角速度转动时,如图所示,两段 线拉力之比TAB:TOB=__________.
O
B
A
FN
F
o
G
让重力和支持力的合力提供向心力,来减 少外轨对轮缘的挤压。
讨论:由
F弹
知:当v=v0时: 轮缘不受侧向压力 当v>v0时:
F弹
轮缘受到外轨向内的挤压力 当v<v0时:
轮缘受到内轨向外的挤压力
二、物体在竖直平面内的圆周运动 竖直平面内的圆周运动一般情 况下是变速圆周运动,中学阶段只 研究物体通过最高点或最低点的情 况,并且经常出现临界状态。
B L O V1
V2
A
F3
mg
F1
o
F2
v v1 最高点:mg +F1 (拉力) m L 2 v1 mg -F3 (支持力) m L 2
v2 最低点:F2 mg m L
思考:过最高点的最小速度是多大?何 时杆子表现为拉力,何时表现为支持力? (1)最小速度v0 =0
2 1
v2
mg
v12 (4)当v1 v0时, 杆对物有向上的支持力, F支 mg m L
B mg
(1)当FN 0, v Rg (临界速度)
(2)当v v2 Rg , 可通过最高点且FN m mg R
(3)当v gR时, 物体离开圆轨道做曲线运动
无支持物的情况 v
mg 绳 O mg O 轨道
V
(1)过最高点临界条件: mg=mv2/R
v临界 gR
(2)能过最高点条件:v≧ v临界 (3)不能过最高点条件:v<v临界

圆周运动的实例分析

圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0

R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题5 竖直面内的圆周运动(解析版)一、目标要求目标要求重、难点向心力的来源分析重难点水平面内的圆周运动重难点火车转弯模型难点二、知识点解析1.汽车过桥模型(单轨,有支撑)汽车在过拱形桥或者凹形桥时,桥身只能给物体提供弹力,而且只能向上(如以下两图所示).(1)拱形桥(失重)汽车在拱形桥上行驶到最高点时的向心力由重力和桥面对汽车的弹力提供,方向竖直向下,在这种情况下,汽车对桥的压力小于汽车的重力:mg-F=2mvR,F ≤ mg,汽车的速度越大,汽车对桥的压力就越小,当汽车的速度达到v max=gR,此时物体恰好离开桥面,做平抛运动.(2)凹形路(超重)汽车在凹形路上行驶通过最低点的向心力也是由重力和桥面对汽车的弹力提供,但是方向向上,在这种情况下,汽车对路面的压力大于汽车的重力:2-=mvF mgR,由公式可以看出汽车的速度越大,汽车对路面的压力也就越大.说明:汽车过桥模型是典型的变速圆周运动.一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题.2.绳模型(外管,无支撑,水流星模型)(1)受力条件:轻绳对小球只能产生沿绳收缩方向的拉力,圆形轨道对小球只能产生垂直于轨道向内的弹力,故这两种模型可归结为一种情况,即只能对物体施加指向轨迹圆心的力.(2)临界问题:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)如果刚好等于零,小球的重力充当圆周运动所需的向心力,这是小球能通过最高点的最小速度,则:2=v mg m R,解得:0=v gR说明:如果是处在斜面上,则向心力公式应为:20sin v mg m R α=,解得:0sin v gR α=②能过最高点的条件:v ≥0v .③不能过最高点的条件:v <0v ,实际上小球在到0v 达最高点之前就已经脱离了圆轨道,做斜上抛运动.3.杆模型(双管,有支撑)(1)受力条件:轻杆对小球既能产生拉力又能产生支持力,圆形管道对其内部的小球能产生垂直于轨道用长为L 的轻绳拴着质量为m 的小球 使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直外管内侧做圆周运动用长为L 的轻杆拴着质量为m 的小球使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直双管内做圆周运动向内和向外的弹力.故这两种模型可归结为一种情况,即能对物体施加沿轨道半径向内和向外的力.(2)临界问题:①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度0=v 临,此时轻杆或轨道内侧对小球有向上的支持力:0-=N F mg .②当0<v gR N F .由-mg N F 2=v m R 得:N F 2=-v mg m R.支持力N F 随v 的增大而减小,其取值范围是0<N F <mg .③当=v gR 时,重力刚好提供向心力,即2=v mg m R,轻杆或轨道对小球无作用力.④当v gR F 或轨道外侧对小球施加向下的弹力N F 弥补不足,由2+=v mg F m R 得:2=-v F m mg R,且v 越大F (或N F )越大.说明:如果是在斜面上:则以上各式中的mg 都要改成sin mg α. 4.离心运动做匀速圆周运动的物体,在合外力突然消失或者减小的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.(1)离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向.当2F mr ω=时,物体做匀速圆周运动;当0F =时,物体沿切线方向飞出;当2F mr ω<时,物体逐渐远离圆心.F 为实际提供的向心力.如图所示.(2)离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的.离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴所受的附着力不足以提供其维持圆周运动所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,使物体甩去多余的水分.(3)离心运动的防止有时离心运动也会给人们带来危害,如汽车、摩托车、火车转弯时若做离心运动则易造成交通事故;砂轮转动时发生部分砂块做离心运动而造成人身伤害.因此应对它们进行限速,这样所需向心力mvr2较小,不易出现向心力不足的情况,从而避免离心运动的产生.(4)几种常见的离心运动物理情景实物图原理图现象及结论洗衣机脱水筒当水滴跟物体之间的附着力F不能提供足够的向心力(即2ω<F m r))时,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力(即2max<vF mr))时,汽车做离心运动三、考查方向题型1:汽车过桥模型典例一:如图所示,质量为m的滑块与轨道间的动摩擦因数为μ,当滑块从A滑到B的过程中,受到的摩擦力的最大值为Fμ,则( )A.Fμ=μmg B.Fμ<μmgC.Fμ>μmg D.无法确定Fμ的值【答案】:C【解析】在四分之一圆弧底端,根据牛顿第二定律得:2vN mg mR-=,解得:N=mg+ 2vmR,此时摩擦力最大,有:2>v F N mg m mg R μμμμ⎛⎫==+ ⎪⎝⎭.故C 正确确,ABD 错误.题型2:绳模型典例二:如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A gLB 2g LC 5gLD 10gL【答案】:B【解析】:据题知,杯子圆周运动的半径2=Lr ,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得:22Lmg m ω= 解得:2g L ω=题型3:杆模型典例三:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】:A【解析】:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v gR A正确,B错误;若v gR最高点对小球的弹力竖直向上,mg-F=m2vR,随v增大,F减小,若v gR高点对小球的弹力竖直向下,mg+F=m2vR,随v增大,F增大,故C、D均错误。

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析1.当气车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.增大速度通过桥顶C.使通过桥顶的向心加速度尽可能小D.和通过桥顶的速度无关【答案】B【解析】当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则,解得:,根据牛顿第三定律可知:汽车对桥的压力等于桥顶对汽车的支持力,为使通过桥顶时减小汽车对桥的压力,可以增大速度通过桥顶,故B正确,A、C错误;向心加速度小,桥顶对汽车的支持力就大,故C错误。

【考点】考查了圆周运动实例分析2.如图所示,拱桥的外半径为40m。

问:(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力(g=10m/s2)【答案】(1)7500N(2)20m/s【解析】(1)小车受到的mg 和N的合力提供向心力-----------------------------------------------4分带入数据得: N=7500N-----------------------------------1分由牛顿第三定律得: 小车对桥的压力N’=N=7500N------1分(2)当重力完全充当向心力时,车对桥顶没哟偶作用力,即,解得20m/s-4分【考点】考查了圆周运动实例分析3.图示小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况()A.重力、支持力、摩擦力B.重力、支持力、向心力C.重力、支持力D.重力、支持力、向心力、摩擦力【答案】A【解析】因为小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则在竖直方向,A受到重力和圆盘的支持力;水平方向受静摩擦力作用,用来提供做圆周运动的向心力,故答案A 正确.【考点】受力分析;向心力。

4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h.L为两轨间的距离,且L>h.如果列车转弯速率大于,则( )A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内、外铁轨与轮缘间均有挤压【答案】A【解析】设轨道平面与水平面的夹角为θ,如果列车所受的重力和支持力恰好提供转弯的向心力,=mgtanθ,θ很小的情况下,sinθ≈tanθ,即则F向,如果列车转弯速率大于v,列车所受重力和支持力的合力将不足以提供所需的向心力,会挤压外轨,A正确,BCD错误。

2.3圆周运动实例分析(竖直面)

2.3圆周运动实例分析(竖直面)

F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力

圆周运动实例分析

圆周运动实例分析

质量为m的汽车以速度 通过半径为 的凹型桥。 质量为 的汽车以速度V通过半径为 的凹型桥。它经桥 的汽车以速度 通过半径为R的凹型桥 的最低点时对桥的压力为多大?比汽车的重量大还是小? 的最低点时对桥的压力为多大?比汽车的重量大还是小? 速度越大压力越大还是越小? 速度越大压力越大还是越小?
解: 根据牛顿第二定律
N
v F合 = N − m = m g R
2
v N= m +m g R
2
mg
的增大, 如何变化? 随V的增大,N如何变化? N逐渐增大
拓展:汽车以恒定的速率 通过半径为 的凹型桥面, 拓展 汽车以恒定的速率v通过半径为 的凹型桥面,如图 汽车以恒定的速率 通过半径为r的凹型桥面 所示,求汽车在最底部时对桥面的压力是多少? 所示,求汽车在最底部时对桥面的压力是多少?
V2 F向=N1 G =m R V2 N1 =m +G R 由上式和牛顿第三定律可知 由上式和牛顿第三定律可知 牛顿第三定律 汽车对桥的压力N ( 1 )汽车对桥的压力 1´= N1 (2)汽车的速度越大 R
O
N1
V
G
汽车对桥的压力越大
比较三种桥面受力的情况
N
G N
v N = G- m r
2
v N = G+ m r
N
Fn
mg
竖直平面内的变速圆周运动
1、竖直平面内圆周运动的类型: (1)、拱形桥问题:
(2)、轻杆支撑型的圆周运动:
(3)、轻绳牵拉型的圆周运动:
黄 石 长 江 大 桥
N
桥面的圆心在无穷远处
mg
v F 心 = m −N= m = 0 g 向 R
N=mg
2

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。

高考物理 专题集锦(一)圆周运动实例分析与临界问题

高考物理 专题集锦(一)圆周运动实例分析与临界问题

圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。

一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。

设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmg B.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足gr μω≤D.转台的角速度一定满足23grμω≤【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,g rμω=,所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是g rμω≤;对于本题,物体C 需要满足的条件23grμω≤,物体A 和B 需要满足的条件均是g rμω≤所以, 要使三个物体都能够随转台转动,转台的角速度一定满足23grμω≤, C 项错误,D 项正确。

【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。

常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度cos g lθω>,b 绳将出现弹力 D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得cot g lθω=,可知当角速度cot g lθω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。

物理课STEAM案例《生活中的圆周运动》

物理课STEAM案例《生活中的圆周运动》

物理课STEAM案例《生活中的圆周运动》就物理学科而言,其本身就与技术和工程有潜在的联系。

在中学物理教学中开展STEM教育模式:学生通过教师创设的物理情境,经历理论回顾、问题分析、方案设计、模型制作以及改进应用等步骤,逐步学会运用物理学知识解决实际的工程技术问题。

教学目标情境引入设置问题播放视频:教师播放胶济铁路脱轨事故新闻,通过新闻案例,创设物理情境,引导学生思考为何火车超速会引起脱轨。

设计意图:利用真实的新闻案例,给学生强烈的视觉冲击,激发研究兴趣。

知识讲解理清思路演示实验1:教师演示水流星实验,即提着水桶使其在竖直平面内做圆周运动。

学生观察桶内水的运动状态。

教师提问:水为什么没有洒出来?受力分析:教师带领学生以桶运动至最高点为例进行受力分析(如图1),引导学生得出重力,桶底的弹力提供了向心力,且重力全部提供了向心力,因此水未洒出。

教师追问:如果减慢环绕速度,实验能否成功?演示实验2:教师减慢速度环绕水桶,环绕过程中水洒出。

教师提问:为何速度减慢,水会洒出来?回顾知识:教师在学生思考时予以提示,向心力的表达式这个式子表示了一定质量的物体,以一定的线速度,一定的轨道半径做匀速圆周运动时,需要向心力的大小,即体现出向心力的需求量。

但要解决实际问题,重要的是把向心力的来源分析清楚,即分析向心力的提供量。

水流星实验中,只有当向心力的需求量等于提供量,实验才能成功,减慢了环绕速度,使得减小,重力不需要全部用来提供向心力,因此水洒了出来。

教师提问:根据这一思路,能否解决火车脱轨问题?形成初步猜想:教师引导学生思考,火车本身质量很大,又以高速经过弯道,即很大,按照上述思路,一定是给火车提供向心力的“源头”出现了问题。

火车在铁轨上行驶,那么向心力的来源一定与铁轨有关。

设计意图:注重学生的前认知,引导学生在前认知基础上进行深层加工。

通过分析生活中的物理情景和两次实验现象,对向心力概念、公式进行回顾,强化其科学基础(S),再将公式与实际问题相结合,帮助学生理清解决圆周运动问题的基本思路,即①找到向心力的来源即提供量;②计算向心力的需求量;③根据提供量、需求量的关系判定能否做圆周运动。

物理5.7生活中的圆周运动

物理5.7生活中的圆周运动
由于压力小于重力,属于失重现象。
r
v2 (1)由 FN mg m 可知汽车的速度越大对桥的压力越小。 r (2)当v gr 时汽车对桥的压力为零。(临界速度)
(3)当v大于v临界时,汽车将出现飞车现象,所以最大 速度不能超过该值。
拓展:质量为m的汽车以恒定的速率v通过半 径为r的凹形桥面,如图所示,求汽车在最低 点时对桥面的压力是多大?
θ
G
v gr tan
此为火车转弯 时的设计速度
L h
θ
如果实际速度太大, 外 轨对外轮缘有向里的侧压力; 如果实际速度太小, 内 轨对内轮缘有向外的侧压力。
基础训练1:在水平铁路转弯处,往往
使外轨略高于内轨,这是为了(ACD ) A.减轻火车轮子挤压外轨 B.减轻火车轮子挤压内轨 C.使火车车身倾斜,利用重力 和支持力 的合力提供转弯所需向心力 D.限制火车向外脱轨
.
a:此时火车受三个力:重力、支持力、外轨对轮缘的弹力。 b:外轨对轮缘的弹力F提供向心力。 c:由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量 很大,故轮缘和外轨间的相互作用力很大,易损坏铁轨。
【最佳方案】
外轨略高于内轨
N
当把外轨垫高一定高度时:
恰好由重力和支持力的合力提供向心力
Fn
r
v2 m g tan m r
2
v FN = mg - m r
2
当 v = gr 时,座舱对他的支持力 FN=0,航天员处于完全失重状态
离心运动
做匀速圆周运动的物体,由于惯性总有沿切线方向 飞去的倾向,在合外力突然消失或者不足以提供圆周运 动所需的向心力的情况下,做逐渐远离圆心的离心运动; 当合外力大于物体做圆周运动所需的向心力时,物体做 离圆心越来越近的向心运动;只有当合外力等于所需的 向心力时,物体才可能做匀速圆周运动。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

生活中的圆周运动2

生活中的圆周运动2

应用: 应用:四、杆拉小球竖直面转动 例:长为0.5m,质量可忽略的杆,其下端固定于 长为 ,质量可忽略的杆, O点,上端连有质量 的小球, 点 上端连有质量m=2kg的小球,它绕 点做圆 的小球 它绕O点做圆 周运动,当通过最高点时,如图所示, 周运动,当通过最高点时,如图所示,求下列情 况下,杆受到的力(说明是拉力还是压力): 况下,杆受到的力(说明是拉力还是压力): (1)当v1=1m/s时; ) 时 (2)v2=4m/s时。( 取10m/s2) ) 时。(g取
FN = mg
v = Rg
时,杆对小球的支持力 杆对小球的支持力
FN = 0
B、当 V > Rg 时,杆对小球有指向圆心的拉力,其大小随速 、 杆对小球有指向圆心的拉力 拉力, 度的增大而增大。 度的增大而增大。 C、 0 < v < Rg 时,对小球的支持力方向竖直向上,大小随速度的 、 对小球的支持力方向竖直向上,大小随速度 支持力方向竖直向上 随速度的 增大而减小,取值范围是: 增大而减小,取值范围是: mg > F > 0
1、离心干燥器
2、洗衣机脱水桶
离心运动的应用
3、用离心机把体 温计的水银柱甩回 下面的液泡内
4、制作“棉花”糖 制作“棉花”
离心运动的危害: 5. 离心运动的危害:
高速转动的砂轮、飞轮等, 高速转动的砂轮、飞轮等,都不得超过允许的最大转 转速过高时,砂轮、 速。转速过高时,砂轮、飞轮内部分子间的相互作用力不 足以提供所需的向心力,离心运动会使它们破裂, 足以提供所需的向心力,离心运动会使它们破裂,酿成事 故。
mg O R
小结: 小结:二、有支撑的物体
(例:小球与杆相连,球在光滑封闭管中运动) 小球与杆相连,球在光滑封闭管中运动) 1、临界条件: 临界条件: 由于支撑作用,小球恰能到达最高点的临界速度V =0,此时弹力 由于支撑作用,小球恰能到达最高点的临界速度V临界=0,此时弹力 等于重力 2、小球过最高点时,轻杆对小球的弹力情况: 小球过最高点时,轻杆对小球的弹力情况: A、当 、

(物理)物理生活中的圆周运动易错剖析及解析

(物理)物理生活中的圆周运动易错剖析及解析

(物理)物理生活中的圆周运动易错剖析及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

教案《竖直平面内的圆周运动实例分析》

教案《竖直平面内的圆周运动实例分析》

教案《竖直平面内的圆周运动实例分析》教案:竖直平面内的圆周运动实例分析一、教学内容本节课我们将学习竖直平面内的圆周运动,并通过实例进行分析和讨论。

二、教学目标1.理解竖直平面内的圆周运动的基本概念。

2.掌握圆周运动的相关公式和计算方法。

3.能够通过实例分析得出相关结论。

三、教学步骤与内容安排步骤一:导入(10分钟)1.出示一个竖直平面内的圆周运动的动态图像,并引导学生观察。

2.导师提出问题:你们观察到了什么?这种运动有什么特点?3.学生回答并进行讨论。

导师帮助学生总结出竖直平面内的圆周运动的特点和规律。

步骤二:讲解与示范(20分钟)1.讲解圆周运动的基本概念:包括圆周运动的定义、圆周运动的参量以及圆周运动的几何性质。

2.讲解圆周运动的相对性质:包括角速度和角加速度定义、相关公式以及圆周运动的相对性质。

3.通过实例进行说明和示范,以便学生更好地理解圆周运动的概念和相关公式。

步骤三:实例分析与讨论(30分钟)1.提供几个具体的实例问题,要求学生根据所学知识进行分析和讨论。

2.引导学生按照已学公式计算实例问题中的相关数值,然后讨论结果的意义和与实际情况的关系。

3.导师通过指导和引导,帮助学生总结出实例问题中圆周运动的特点和规律。

步骤四:拓展应用(20分钟)1.提供一些较为复杂的实例问题,要求学生运用所学知识进行分析和计算。

2.鼓励学生自主思考和解决问题,加深对圆周运动的理解和掌握。

3.导师进行点评和总结,强调圆周运动的实际应用以及进一步深入学习的方向。

四、教学方法与手段1.讲授法:通过讲解、示范和实例分析等方式讲解基本概念和相关公式。

2.实践法:通过实例讨论和计算,加深学生对圆周运动的理解和应用。

3.提问法:通过提问调动学生的积极性,激发学生的思考和讨论。

四、教学资源与学具1.动态图像或视频,用于引导学生观察并理解圆周运动的特点和规律。

2.尺子、计算器等学具,用于实例问题的计算和分析。

五、教学评估1.导师观察学生在实例分析和讨论中的表现,包括积极参与、思考问题的能力和解决实际问题的能力等方面进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感谢下载
5
汽车过桥问题 典型实例
感谢下载
6
标杆情景一
一、汽车匀速过凹形桥
自学指导一
1.圆周运动一定需要哪种力?这种力有何特点?
2.汽车的运动轨迹是什么?可视为哪种运动?
3.汽车在最低点受到哪些力作用?画出受力分析图。
4.在该点汽车所需向心力由哪些力提供?
5.向心力表达式该如何书写?
6.凹形桥对汽车支持力为多大?
=ห้องสมุดไป่ตู้
=
感谢下载

4
学习目标 1.通过回顾圆周运动向心力方向的特点,对汽车过凹形桥最 低点进行受力分析,学会找竖直平面内圆周运动最低点向 心力来源,并会对向心力进行列式。
2.通过对汽车过拱形桥最高点进行受力分析,类比竖直平面 内圆周运动最低点向心力来源情况,总结找竖直平面内圆 周运动最低点和最高点向心力来源的方法,并学会求解与 向心力有关的力。
生活中的圆周运动
——竖直平面内圆周运动实例分析
高一物理备课组 王坤
感谢下载
1
感谢下载
2
感谢下载
3
预习检测 1.轨迹是 圆 的运动叫作圆周运动。
2.做圆周运动的物体都必须有力来提 供 向心力 。
3.向心力就是指向圆心的合力,总是 指向 圆心 ,即总是与速度方向 垂直 。
4.向心力的大小
Fn= man =
轻绳系住小桶在竖直平面内做“水流星”表演。小桶
过最高点时速度为v,过最低点时速度为v '。求:
(1)过最低点时,轻绳的拉力?
(2)过最高点时,轻绳的拉力?
(3)过最高点时,桶底对水的压力?
(4)为使小桶通过最高点时水不流出,
小桶在最高点时的最小速度 ?
感谢下载
11
课堂小结
学到了什么
1.解决竖直平面内圆周运动最高点和最低点向 心力的一般方法步骤是什么?
感谢下载
7
同型迁移
变式训练
质量为m的小孩坐在秋千板上,小孩离系绳子
的横梁距离为L,若秋千板摆到最低点时速度为v。
则秋千板对小孩的支持力是多大?
感谢下载
8
标杆情景二
二、汽车匀速过拱形桥
自学指导二
1.圆周运动一定需要哪种力?这种力有何特点?
2.汽车的运动轨迹是什么?可视为哪种运动?
3.汽车在最高点受到哪些力作用?画出受力分析图。
(小组长检查感谢预下习载 知识清单)
13
感谢下载
14
F拉
对桶和水整体分析
解:(1)
感谢下载
15
对桶和水整体分析
F拉
(2)
感谢下载
16
对水隔离分析
FN
(3)
感谢下载
17
对水隔离分析 (4)
感谢下载
18
.
2. 汽车过凹形桥最低点和拱形桥最高点的向心 力都由哪些力提供?向心力是一个具体的力还 是效果力?
3.速度大小对物体在竖直平面内做圆周运动过 最高点有何影响?
感谢下载
12
课后作业
1.巩固练习: 《讲练通》33页,典例2, 34页,2、3
2.预习任务: (1)阅读必修2课本28页,“航天器中 的失重现象”。 (2)复习必修1课本88页,“超重和失 重”,找到超重和失重的定义和判断标准。
4.在该点汽车所需向心力由哪些力提供?
5.向心力表达式该如何书写?
6.拱形桥对汽车支持力为多大?
感谢下载
9
拓展延伸
自学指导三
视频中汽车为什么会飞离地面?观察汽车经 过的地形,想一想相当于汽车经过哪种桥面。速 度至少多大才能飞离地面?
感谢下载
10
能力提升
素能训练
一质量为m的小桶里盛有质量为M的水,用长为L的
相关文档
最新文档