单相桥式全控整流电路实验
单相桥式全控整流电路实验
一.实验目的:1,熟悉Matlab 仿真软件和Simulink 模块库。
模块库。
2,掌握单相桥式全控整流电路的工作原理、工作情况和工作波形。
形。
二.实验器材:MATLAB 仿真软件仿真软件三.实验原理:VT1 VT3 VT2 VT4触发器1 触发器2 四.实验步骤: 电阻负载:一、仿真步骤一、仿真步骤1.启动MATLAB MATLAB,进入,进入SIMULINK 后新建一个仿真模型的新文件。
并布置好各元器件。
器件。
2.参数设置。
.参数设置。
各模块参数的设置基本与上一实验相同,各模块参数的设置基本与上一实验相同,但要注意触发脉冲的给定。
但要注意触发脉冲的给定。
但要注意触发脉冲的给定。
互为对角的互为对角的两个示波器的控制角设置必须相同,否则就会烧坏晶闸管。
二、模型仿真二、模型仿真设置好后,即可开始仿真。
设置好后,即可开始仿真。
点击开始控件。
点击开始控件。
点击开始控件。
仿真完成后就可以通过示波器来观察仿真完成后就可以通过示波器来观察仿真的结果。
仿真的结果。
电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法基本相同,但须将RLC 的串联分支设置为电阻电感负载。
本例中设置的电阻R =1,L =0.01H 0.01H,电容为,电容为inf inf。
五.实验数据:v +-Voltage Measurement1v+-Voltage MeasurementSeries RLC BranchScopePulse Generator3Pulse Generator2Pulse Generator1Pulse GeneratorDetailed Thyristor3Detailed Thyristor2Detailed Thyristor1Detailed Thyristori+-Current MeasurementAC Voltage Source电源电压触发信号1触发信号1触发信号2触发信号2流过晶闸管电流负载电流晶闸管端电压负载电压电阻负载:α=0度α=60度α=120度阻感负载:α=30度α=60度。
单相桥式全控整流电路实验心得体会
单相桥式全控整流电路实验心得体会篇一:单相桥式全控整流电路实验单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理二、研究相桥式全控整流电路在电阻负载、电感性负载的工作二、实验线路及工作原理图一、单相全控桥式整流器图和工作波形(电阻性负载)二、单相全控桥式整流器图和工作波形(电感性负载)三、实验(转载于: 小龙文档网:单相桥式全控整流电路实验心得体会)分析一、实验波形(上图所示,纯电阻)注意:大体数量关系及公式(1)输出电压平均值Ud为1?22U21?cos?1?cos?U2U2sin?td??t??? d???ππ22(2)输出电流平均值Id为UdU21?cos?Id??(3)输出电压有效值U21?1π??U??2Usin?td??t??U2sin2??2π?2ππ2实验波形(上图所示,感性负载)(1) 输出电压平均值Ud1???22U2Ud??2U2sin?td??t??cos???π?π(2) 输出电流平均值Id和变压器副边电流I2Id?Ud?I2R(3) 晶闸管的电流平均值IdT由于晶闸管连番导电,因此流过每一个晶闸管的平均电流只有负载上平均电流的一半。
1IdT?Id2四、实验心得体会自己完成。
篇二:上海交大电力电子技术实验+单相桥式全控整流电路实验电力电子技术基础实验报告实验一单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理。
二、研究单相桥式全控整流电路在电阻负载,电阻-电感性负载时的工作。
3、熟悉MCL-05锯齿波触发电路的工作。
二、实验线路三、实验内容一、单相桥式全控整流电路供电给电阻负载。
二、单相桥式全控整流电路供电给电阻-电感性负载。
四、实验设备一、MLC系列教学实验台主操纵屏。
二、MLC-01组件。
3、MLC-02组件。
4、MEL-03可调电阻器。
五、MEL-02芯式变压器。
六、二踪示波器。
7、万用表。
五、实验数据和波形单相桥式全控整流电路供电给电阻负载。
实验一-单相桥式全控整流电路
实验一-单相桥式全控整流电路实验一单相桥式全控整流电路姓名:王栋班级:15级自动化(2)班学号:1520301081一、实验目的1.加深理解单相桥式全控整流电路的工作原理2.研究单相桥式变流电路整流的全过程3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。
二、预习内容要点1. 单相桥式全控整流带电阻性负载的运行情况2. 单相桥式全控整流带阻感性负载的运行情况3. 单相桥式全控整流带具有反电动势负载的运行情况三、实验仿真模型图 1.1 单相桥式阻性负载整流电路四、实验内容及步骤1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
以延迟角30°为例(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources 中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。
(3)参数设置1.双击交流电源把电压设置为311V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为1Ω;4.双击示波器把Number of axes设为7;5.在“Power Electronics”库中选择‘Universal Bridge’模块,选择桥臂数为2,器件为晶闸管,晶闸管参数保持默认即可(4)仿真波形及分析当α=30°时,当α=60°时,当α=90°时,2. 对单相桥式全控整流带阻感性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
将阻性负载改为阻感负载,即参数设置,双击负载把电阻设为1Ω,电感设为0.01H仿真波形及分析当α=30°时,电感设为0.01H,此时电流处于连续状态图:阻感负载且电流连续时波形将电感值改为0.001H,可以看到电流不连续时的波形如下:图:阻感负载且电流不连续时波形当α=60°时,电感设为0.01H,此时电流处于连续状态将电感值改为0.001H,可以看到电流不连续时的波形如下:当α=90°时,电感设为0.01H,此时电流处于连续状态将电感值改为0.001H,可以看到电流不连续时的波形如下:3. 对单相桥式全控整流带具有反电动势负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告实验目的:通过实验,了解单相全控桥式整流电路的工作原理,掌握其控制特性和输出特性,加深对电力电子器件的认识。
实验设备和器件:1. 单相变压器。
2. 电阻箱。
3. 电容器。
4. 交流电压表。
5. 直流电压表。
6. 电压调节器。
7. 全控桥式整流电路实验箱。
8. 示波器。
9. 电流互感器。
10. 电阻负载。
11. 电感负载。
12. 电容负载。
13. 三通电压表。
14. 三通电流表。
15. 三通功率表。
16. 三相交流电源。
17. 直流电源。
18. 电子开关管(可控硅)。
实验原理:单相桥式全控整流电路是一种能够实现交流电能转换为直流电能的电路。
其工作原理是通过控制可控硅的导通角来控制整流电路的输出电压和电流。
当可控硅导通角为0时,整流电路输出电压和电流为最大值;当可控硅导通角为π时,整流电路输出电压和电流为0。
通过不同的控制方式,可以实现对输出电压和电流的精确控制。
实验步骤:1. 将实验箱连接好,接通交流电源和直流电源。
2. 调节电压调节器,使得交流电源输出额定电压。
3. 调节电阻箱和电容器,接入电路,使得整流电路工作在不同的负载条件下。
4. 调节可控硅的触发脉冲,观察输出电压和电流的变化。
5. 使用示波器观察整流电路的输入和输出波形,并记录数据。
6. 尝试不同的控制方式,比较输出特性的变化。
实验结果分析:通过实验,我们观察到了单相桥式全控整流电路在不同控制条件下的输出特性。
当可控硅的导通角变化时,输出电压和电流呈现出不同的变化规律。
在不同负载条件下,整流电路的输出特性也有所不同。
通过实验数据的记录和分析,我们可以得出结论,单相桥式全控整流电路可以实现对输出电压和电流的精确控制,适用于不同的负载条件。
实验总结:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。
掌握了实验中所用到的各种设备和器件的使用方法,加深了对电力电子器件的认识。
同时,通过实验数据的记录和分析,我们对单相桥式全控整流电路的特性有了更深入的理解。
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告实验目的:
1.了解单相桥式全控整流电路的原理和工作方式
2.学习使用半导体器件的控制技术
3.掌握实验操作的方法和技巧
实验材料:
1.单相桥式全控整流电路板
2.数字万用表
3.直流电源
4.交流电源
实验步骤:
1.将单相桥式全控整流电路板连接到交流电源上,注意正负极的正确连接。
2.将数字万用表连接到电路板上,测量电路板的交流电压和输出电压。
3.通过控制半导体器件的指令输入,分别实验控制电路板的直流输出电流和电压。
4.通过观察电路板的反馈信号,了解整个控制过程及其影响因素,并优化电路板的性能。
实验结果:
1.我们成功实现了单相桥式全控整流电路的输出,可以实现正负半周期的控制,提高了能量利用效率。
2.通过对控制电流和电压的实验,我们发现电路板的控制灵活性很强,可以满足不同场合的应用要求。
3.通过对反馈信号的观察,我们优化了电路板的输出特性,提高了电路板的效率和稳定性。
实验思考:
1.单相桥式全控整流电路的实际应用很广泛,常见于电动机驱动、电源稳定等领域。
2.电路板的控制比较复杂,需要进一步学习和练习。
3.在实验的过程中,需要注意安全措施,避免因操作不当导致危险发生。
结论:
我们通过对单相桥式全控整流电路的实验,深入了解了其原理和应用,掌握了使用半导体器件进行控制的技术,提高了实验操作的技能。
希望今后能继续深入学习和研究,为提高能源利用效率和电力质量做出更大贡献。
单相桥式全控整流电路实验心得体会.doc
单相桥式全控整流电路实验心得体会.doc
本次实验是实验四之全控单相桥式整流电路的实验,目的是让我们了解桥式整流电路
的工作原理及其工作法则。
在实验前,我们先要对桥式整流电路有足够的了解,包括其电
路工作原理,再根据实验文件和学习理论来构建实验原理图,因为实验原理图中部件的位
置会影响实验结果。
该实验电路中,用到了振荡器和开关管SCR。
振荡器的输出信号用于控制SCR的反向
极性,由此可使SCR导通后,桥式整流电路就能够正常工作。
系统极性切换也由控制器实现,易于变化,提高了全控整流电路的可靠性。
整流电路产生了差动脉冲,用以调节电源
输出电压,有效降低了正弦输入电压波动,保证了功率放大器稳定运行,优化了桥式整流
电路。
经过对实验装置的组装后,我们采用示波器对全控单相桥式整流电路的波形进行观察,观察了直流量变化以及交流输入的波形变化。
经过实验发现,系统直流量随着控制信号的
变化而变化,同时随着输入交流电压大小,负载电流也会发生变化。
其次,实验结果表明,当系统正向导通和反向导通时,桥式整流电路能够有效地将交流信号转换成直流信号,交流电压的波形变化也有效地反映出全控整流电路的工作原理。
本次实验中,我学习到全控单相桥式整流电路的工作原理及其工作法则,了解了振荡
器的作用及其实现的正弦变频技术,以及SCR的电路结构;进一步学习了电力系统中的桥
式整流电路应用。
本次实验也提高了我的综合实践能力,让我不断总结经验,做到理论与
实践相结合,以不断提高自身的能力,从而为以后研究解决复杂问题奠定坚实的基础。
单相桥式全控整流电路实验报告上海理工大学
单相桥式全控整流电路实验报告上海理工大学题目:单相桥式全控整流电路实验报告学校:上海理工大学实验目的:本实验旨在通过搭建单相桥式全控整流电路,研究和掌握全控整流电路的工作原理及其特性。
实验设备:1.单相桥式全控整流电路实验板2.变压器3.直流电源4.示波器5.电阻、电容等辅助元件实验原理:单相桥式全控整流电路是一种常用的电力电子变流器,可以实现交流电的直流化。
该电路由四个可控硅组成的桥式整流电路和一个触发电路组成。
在正半周和负半周的不同工作状态下,通过控制可控硅的导通时间,可以实现对输出电压的控制。
实验步骤:1.将实验设备接线正确连接,确保电路的安全性。
2.调节变压器的输入电压,使其输出适宜的交流电压。
3.打开直流电源,将其正负极分别接入桥式整流电路的两侧。
4.使用示波器测量输出电压的波形,并记录数据。
5.通过调节触发电路的触发角,改变可控硅的导通时间,观察输出电压的变化,并记录数据。
6.反复进行步骤4和步骤5,获得不同工作状态下的输出电压波形和特性。
实验结果:通过实验测量和记录,我们得到了不同触发角下的输出电压波形和特性曲线。
根据曲线分析,我们可以得出单相桥式全控整流电路在不同控制条件下的工作特性,如输出电压的平均值、脉动系数等。
实验结论:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。
我们成功地搭建了实验电路,并通过实验数据分析得出了电路的输出特性。
实验结果证明了该电路在不同工作状态下具有可控的输出特性,可广泛应用于交流电的直流化领域。
注意事项:在进行实验过程中,要注意电路的安全性和稳定性。
遵循实验室的操作规范,正确使用实验设备。
实验结束后,注意及时清理实验现场,并关闭相关设备。
单相桥式全控整流电路仿真建模分析实验报告
一.实验目的1)不同负载时,三相可控整流电路的结构、工作原理、波形分析。
2) 在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容单相桥式全控整流电路仿真建模分析一、单相桥式全控整流电路(电阻性负载)1.电路的结构与工作原理1.1电路结构R图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图1.2 工作原理在电源电压正半波,在wt<α时,晶闸管VT1,VT4承受正向电压,晶闸管VT2,VT3承受反向电压,此时4个晶闸管都不导通,且假设4个晶闸管的漏电阻相等,则ut1(4)=ut2(3)=1/2U2;在wt=α时,晶闸管VT1,VT4满足晶闸管导通的两条件,晶闸管VT1,VT4导通,负载上的电压等于变压器两端的电压U2;在wt=π时,因电源电压过零,通过晶闸管VT1,VT4的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断;在电源负半波,在wt<α+π时,触发晶闸管VT2,VT3使其元件导通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(Ud=-U2)和电流,且波形相位相同。
此时电源电压反向施加到晶闸管VT1,VT4,使其承受反向电压而处于关断状态;在wt=2π时,因电源电压过零,通过晶闸管VT2,VT3的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断。
1.3基本数量关系a.直流输出电压平均值2cos 19.02cos 122)(sin 21222απωωπαπα+=+==⎰U U t d t U U db.输出电流平均值2cos 1.9.02aR U R U I d d +==c.负载电压有效值πππaa U U -+=22sin .2 d.负载电流有效值πππaa R U I -+=22sin 22. 单相桥式全控整流电路建模在MA TLAB 新建一个Model ,命名为quankong1,同时模型建立如下图所示:图 2 单相桥式全控整流电路(电阻性负载)的MATLAB仿真模型2.1模型参数设置在此电路中,输入电压的电压设置为220V,频率设置为50Hz,电阻阻值设置为1欧姆,电感设置为1e-3H,脉冲输入的电压设置为3V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为20°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周琴应相差180°。
实验二 单相桥式全控整流电路 一、实验目的
图 2 单相桥式全控整流电路
五、实验方法 (1)锯齿波触发电路的调试 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为 200V,用两 根导线将 200V 交流电压接到 DJK03-1 的 “外接 220V” 端, 按下 “启动” 按钮, 打开 DJK03-1 电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。调节 RP1、RP2、RP3 观察对各点波形的影响。利用示波器观察同步电压信号和“TP6”点触发信号,调节 RP3 到 适量的值,保证只调整 RP2 调相范围可达到 0°~180°。 (2)单相全桥可控整流电路的调试 按图 2 接线,按下“启动”按钮,保持 RP2 或 RP3 中一个不变(由第一个调试结果而 定) ,调整另外一个变阻器,在α=60°、90°、120°时,用示波器观察电阻负载两端电压 波形,并记录电源电压 U2 和负载电压 Ud 的数值于下表中。 表 1 电源电压 U2 和负载电压 Ud α U2 Ud(计算值) Ud(记录值) 其中 Ud 的计算值应为: 60° 90° 120°
1 cos U d 0.9U 2 2
(1-1)
六、实验报告撰写要求 (1) 写出实验目的、实验所需挂件及附件; (2) 画出实验整体原理图; (3) 画出α=60°时,锯齿波触发电路的 TP1、TP2、TP3、TP4、TP5、TP6 的波形; (4) 填写表 1 中的数据; (5) 画出α=60°时,电阻性负载 Ud 的波形; (6) 回答思考题: a. 在锯齿波触发电路中,在控制移相电压端,为什么需要有两个变阻器(RP2、RP3) 来控制? 七、注意事项 (1) 示波器在没有“共地”的情况下,不能同时直接测量两处信号,尤其是控制电路和 主电路; (2) 在实验中,触发脉冲是从外部接入 DJK02 面板上晶闸管的门极和阴极,此时,应将 所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误 触发。 (3) 在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通 主电路。
单相桥式全控整流电路实验
单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。
二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。
通过控制晶闸管的触发角,可以调节输出电压的大小。
三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。
四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。
根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。
2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。
当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。
同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。
但是,当触发角较小时,整流效率较高。
五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。
实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。
在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。
单相桥式可控整流电路实验报告
开课学院及实验室: 实验时间:年月日一、实验目的通过本实验,加深对单相桥式可控整流电路的工作原理的理解,增强对电路工作过程的分析能力。
二、实验原理单相桥式全控整流电路带电阻感负载时的原理接线图如图1.1所示,VT1和VT4组成一对桥臂,在此正半周承受电压S,得到触发脉冲即导通,当6过零时关断。
VT2和VT3组成另一对桥臂,在此负半周承受电压-a,得到触发脉冲即导通,当此过零时关断,带电阻负载。
根据原理图利用SIMU1INK中电力电子模块库建立相应的仿真模型如图1.2所示。
三、实验设备、仪器及材料PC机一台,MAT1AB软件四、实验步骤(按照实际操作过程)1 .打开MAT1AB,点击上方的simu1ink图标,进入SimUIink1ibraryBroWSer模式。
2 .新建mode1文件,从Simu1ink1ibraryBrowser选择元器件,分别从sinks和SimPowerSystems中选择,powergui单元直接搜索选取3 .根据电路电路模型正确连线五、仿真参数及结果仿真参数设置:UAC=IOOV(有效值),R=IoQ,晶闸管参数为默认值。
选择仿真终止时间为0.06s,采用变步长算法。
de23tb(stiff∕TR.BDF2),给出不同开通控制角(如,20°,40°,60°,90。
,150。
等)的情况下,直流端电压Ud和电流Id的波形。
1.控制角为20度3控制角为60度5.控制角为150度六、仿真结果分析根据前面的仿真结果,分析单相桥式可控整流电路中,开通控制角对输出直流电压值的影响。
在单项桥式全控带电阻负载整流电路中,在触发延迟角处给触发脉冲,当U2为为正半周期时,VT1和VT4导通,。
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告单相桥式全控整流电路实验报告引言:单相桥式全控整流电路是电力电子技术中常用的电路之一。
它能够将交流电转换为直流电,并且能够通过控制开关器件的导通角度来实现对输出电压的调节。
本实验旨在通过搭建单相桥式全控整流电路并进行实际操作,来深入了解该电路的工作原理和性能特点。
一、实验装置和原理本实验所使用的实验装置包括变压器、单相桥式全控整流电路、交流电源和直流负载。
变压器的作用是将输入的交流电压降低到适合实验的电压范围,同时也能够提供所需的电流。
单相桥式全控整流电路由四个可控硅组成,通过控制可控硅的导通角度来实现对输出电压的调节。
交流电源提供输入电压,直流负载则用于测量输出电压和电流。
二、实验步骤1. 搭建实验电路:将变压器的输入端接入交流电源,输出端接入单相桥式全控整流电路的输入端,输出端接入直流负载。
注意接线的正确性和稳固性。
2. 调节变压器输出电压:通过旋转变压器的调节旋钮,逐渐调节变压器的输出电压,使其达到实验所需的电压范围。
3. 接通电源:将交流电源的开关打开,此时电路开始供电,但是输出电压为零。
4. 控制可控硅导通角度:通过控制可控硅的触发脉冲,来调节可控硅的导通角度。
当触发脉冲的时间提前时,可控硅的导通角度变大,输出电压也随之增大;当触发脉冲的时间延后时,可控硅的导通角度变小,输出电压也随之减小。
5. 测量输出电压和电流:使用直流电压表和直流电流表来测量输出电压和电流的数值。
根据实验需求,可以调节可控硅的导通角度,来获得不同的输出电压和电流数值。
6. 记录实验数据:将测得的输出电压和电流数值记录下来,并进行整理和分析。
三、实验结果和分析通过实验,我们可以得到不同可控硅导通角度下的输出电压和电流数值。
根据实验数据,我们可以绘制出输出电压和电流随导通角度变化的曲线图。
从曲线图中可以看出,当导通角度增大时,输出电压和电流也随之增大;当导通角度减小时,输出电压和电流也随之减小。
单相桥式全控整流电路实验报告
竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉mcL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.mcL系列教学实验台主控制屏。
2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。
3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。
6.meL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。
2.电阻Rp的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
单相桥式全控整流电路仿真实验
一.实验目的:1. 熟悉Matlab 仿真软件和Simulink 模块库。
2. 掌握单相桥式全控整流电路的工作原理、工作情况和工作波形。
二.实验器材:电子计算机及仿真软件三.实验原理:单相桥式全控整流电路如图所示,电路由交流电源u1、整流变压器T 、晶闸管VT1-4、负载R 以及触发电路组成。
在变压器二次电压u2的正半周触发晶闸管VT1和VT4,在u2的负半周触发晶闸管VT2和VT3,由于晶闸管的单向可控导电性,在负载上可以得到方向不变的直流电,改变晶闸管的控制角,可以调节输出直流电压和电流大小。
晶闸管触发电路输出脉冲与电源同步是电路正常工作的重要条件。
电路:四.实验步骤1、建立仿真模型(1)打开Simulink 仿真平台 (2)提取电路元件模块(3)将电路元件模块按单项整流电路的原理连接成仿真电路 2.、设置模块参数(1)交流电压源AC ,电压为220V (有效值),频率为50Hz ,初始相位为0° (2)变压器参数,一次电压为220V (有效值),二次电压为100V (有效值) (3)晶闸管VT1-4直接使用模型默认参数(4)负载RCL 设置为纯电阻R=500Ω;与阻感R=500Ω,L=10H (5)脉冲发生器同步频率为50Hz ,脉冲宽度取10° 3、设置仿真参数 4、启动仿真ud1udContinuous powerguiidiVTuVTcolsev +-Voltage Measurement1v +-Voltage MeasurementgmakVT4gmakVT3gmakVT2gmak VT1alpha_deg AB BC CABlockpulsesSynchronized 6-Pulse Generator+RLMeanMean Value12++Linear Transformeri +-120Constant20Constant1AC220v5、查看波形,检查无误后保存波形五.实验数据:一、纯电阻负载(1)α=0°负载电压ud波形负载电流id波形晶闸管VT1、4电流电压波形(2)α=60°负载电压ud波形负载电流id波形晶闸管VT1、4电流电压波形(3)α=120°负载电压ud波形负载电流id波形晶闸管VT1、4电流电压波形二、阻感负载(1)α=30°负载电压ud波形负载电流id波形(2)α=60°负载电压ud波形负载电流id波形六.数据处理及分析各试验数据、波形处理过程由仿真软件自动完成,所得结果与理论计算误差在合理范围内,实验成功。
单相桥式全控整流电路实验
单相桥式全控整流电路实验一、实验目的1.加深理解单相桥式全控整流及逆变电路的工作原理。
2.研究单相桥式变流电路整流的全过程。
二、实验所需挂件及附件序号型号备注1 PE01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2 PE-11三相可控整流电路该挂件包含“晶闸管”3 PE-12 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。
4 PE-25实验元器件该挂件包含“二极管”5 PE-43变压器、可调电阻模块6 双踪示波器自备7 万用表自备三、实验线路及原理本实验线路如图所示,两组锯齿波同步移相触发电路均在PE-12挂件上,它们由同一个同步变压器保持与输入的电压同步,锯齿波触发脉冲G1,K1加到VT1的控制极和阴极,锯齿波触发脉冲G4,K4加到VT6控制极和阴极。
锯齿波触发脉冲G2,K2加到VT4的控制极和阴极,锯齿波触发脉冲G3,K3加到VT3控制极和阴极。
,晶闸管主电路的“触发脉冲输入”端的扁平电缆不要接,并将相应的触发脉冲的钮子开关关闭(防止误触发),图为单相桥式整流带电阻电感性负载,其输出负载R用电源控制屏三相可调电阻器,将两个900Ω接成并联形式,电抗L d用电源控制屏面板上的700mH,直流电压、电流表均在电源控制屏面板上。
触发电路采用PE-12组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图2-7 单相桥式整流实验原理图四、实验内容1.单相桥式全控整流电路带电阻负载。
2.单相桥式全控整流电路带电阻电感负载。
五、实验方法1.触发电路的调试将PE01电源控制屏的电源使输出线电压为220V,用两根导线将220V交流电压接到PE-12的“外接220V”端(电源控制屏的“A”用导线接到PE-12挂件的“外接220V”端的下端,电源控制屏的“B”用导线接到PE-12挂件的“外接220V”端的上端),按下“启动”按钮,打开PE-12电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。
单相桥式全控整流电路实验报告
一、实验目的1. 理解单相桥式全控整流电路的工作原理。
2. 掌握单相桥式全控整流电路的搭建方法。
3. 分析单相桥式全控整流电路在不同负载条件下的性能。
4. 学习使用示波器等实验仪器进行电路测试。
二、实验原理单相桥式全控整流电路由四个晶闸管(VT1、VT2、VT3、VT4)和负载组成。
当交流电源电压为正半周时,晶闸管VT1和VT4导通,电流从电源正极流向负载;当交流电源电压为负半周时,晶闸管VT2和VT3导通,电流从电源负极流向负载。
通过调节晶闸管的触发角,可以控制输出电压的大小。
三、实验器材1. 单相桥式全控整流电路实验装置2. 晶闸管模块3. 负载电阻4. 负载电感5. 电源6. 示波器7. 万用表8. 交流电源9. 接线板四、实验步骤1. 搭建单相桥式全控整流电路,确保电路连接正确。
2. 使用示波器观察交流电源电压波形。
3. 调节晶闸管的触发角,观察输出电压波形。
4. 测试不同负载条件下的输出电压和电流。
5. 记录实验数据,进行分析。
五、实验结果与分析1. 观察到当晶闸管的触发角为0度时,输出电压为0;当触发角为180度时,输出电压为交流电源电压的峰值。
2. 当负载为电阻时,输出电压和电流的波形基本一致,且电压和电流的平均值随触发角的增大而减小。
3. 当负载为电感时,输出电压和电流的波形存在相位差,且电流的峰值滞后于电压的峰值。
4. 当负载为电阻-电感时,输出电压和电流的波形与电阻负载相似,但电流的峰值滞后于电压的峰值。
六、实验结论1. 单相桥式全控整流电路可以将交流电转换为直流电,且输出电压大小可调。
2. 不同负载条件下,输出电压和电流的波形存在差异。
3. 通过调节晶闸管的触发角,可以控制输出电压的大小。
七、心得体会1. 通过本次实验,加深了对单相桥式全控整流电路工作原理的理解。
2. 学会了使用示波器等实验仪器进行电路测试。
3. 了解了不同负载条件下电路性能的变化。
八、注意事项1. 在搭建电路时,注意晶闸管的正确连接。
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。
2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。
3、学会使用示波器等仪器观测电路中的电压、电流波形。
二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。
通过控制触发角α的大小,可以改变输出直流电压的平均值。
三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告侧桥式全控整流电路实验一共分为六个部分:一、实验原理侧桥式全控整流电路是一种典型的三相整流电路,它由3个外接N次管、3个可控硅三端管和6个二极管组成。
它采用特别的电路构造,使正位及负位电源自动交互切换,从而实现整流控制。
其基本电路如下图所示:二、实验操作1、起先把实验台接上实验装置,并电源供应上图中所示的侧桥式全控整流电路原理图,然后旋转DR1的调节旋钮,微调V值到19V,等待V值稳定;2、逐步调节DR2的调节旋钮,观察负载电压和A,B,C相电压的变化,当DR2的值调节到670V时,就达到了单相整流的状态;3、关闭DR2的电源,再调节DR1的调节旋钮改变V值,记录下每次调节V值时,正负载电压及三相电压各线电压,其结果如表1所示;4、断开DR1的电源,以UI测量此时正负载桥的电压,记录下数据,其结果如表2所示sc翡翠三、实验结果实验中可观察到整流桥正负三相有所改变、正负电流不断交替互变,说明侧桥式全控整流电路能够有效控制和调整整流桥电压。
四、实验解释由实验结果可见,当DR2值调整至670V时,负载电压为2.6V,A,B,C相电压每相相等且都为520V,这说明侧桥全控整流电路已经达到了三相单相整流的状态。
另外从实验结果来看,当DR1的调节电流不断变化时,负载电压和三相电压也发生了变化。
这是因为当DR1三端添加调节电流时,三端电流机构不断发生变化,电容C1通过对桥9,12对管的电压发生控制,从而引起三相电压的变化,这样就可以实现对整流桥的有效控制。
五、总结本次实验确认了侧桥式全控整流电路能够有效控制和调整整流桥电压。
通过实践,我们更加深入地了解了三相整流器的工作原理和控制原理。
表1V值正负载电压三相电压(A) 三相电压(B) 三相电压(C)18v 36v 270V 540V 270V 19v 39v 520V 520V 520V 20v 41V 780V 270V 780V 表2正负载桥电压3.2V。
单相桥式全控整流电路实验
(1)分析不同控制角时,单相桥式全控整流电路中各电路波形的变化原因。
(2)验证实际波形与理论波形是否一致,如不一致,则说明造成不一致的原因。
(3)讨论、分析实验中出现的各种现象。
七、注意事项
(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。
(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路。
二、实验所需仪器
序号
型号
备注
1
电力电子实验装置(三相可控整流主电路板)
单相桥式全控整流电路板
2
示波器
3
万用表
4
PC机及MATLAB仿真软件
三、实验线路及原理
1、实验线路及原理
如图3-1所示,单相时:RL1合RL2分RL3合,即构成单相桥式全控整流电路,晶体管Q1、Q2和Q5、Q6组成a、b两个桥臂,当输入电压进入正半周期时,Q1、Q6同时承受正向电压,若门极无触发信号,Q1、Q6仍处于正向阻断状态,负载端电压为0。如果有触发信号,则晶体管导通,负载端具有输入电压,反之在电源电压负半周期,情况相反。
指导教师批阅及成绩
指导教师签名:
年月日
2、单相桥式全控整流电路实验
(4)合上电源开关S1、S2。
(5)点击显示屏,点击相控整流实验,点击单相桥式全控整流实验,点击电路原理图,了解单相桥式全控整流电路工作原理。
(6)依次点击返回,点击开环实验,点击相控触发角,改变触发角的大小。
(7)观测触发角为10%时输出电压波形,从图上观测控制角为多少,并记录此时输出电压波形和用万用表观测的输出电压大小。
(8)观测触发角为30%时输出电压波形,从图上观测控制角为多少,并记录此时输出电压波形和用万用表观测的输出电压大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验五单相桥式全控整流电路实验一.实验目的
1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉MCL—05锯齿波触发电路的工作。
二.实验线路及原理
参见图4-7。
三.实验内容
1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器
1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)
4.MCL—05组件或MCL—05A组件
5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.双踪示波器
8.万用表
五.注意事项
1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断
丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成
可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小
(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低
压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六.实验方法
1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的
U、V输出端相连),“触发电路选择”拨向“锯齿波”。
2.断开MEL-02和MCL-33的连接线,合上主电路电源,调节主控制屏输出电压
U uv至220V,此时锯齿波触发电路应处于工作状态。
MCL-18的给定电位器RP1逆时针调到底,使U ct=0。
调节偏移电压电位器RP2,使
=90°。
断开主电源,连接MEL-02和MCL-33。
注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。
以下均同
3.单相桥式全控整流电路供电给电阻负载。
接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波
电抗器。
合上主电路电源,调节U ct,求取在不同角(30°、60°、90°)时整流电
路的输出电压U d=f(t),晶闸管的端电压U VT=f(t)的波形,并记录相应时的
U ct、U d和交流输入电压U2值。
若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。
4.单相桥式全控整流电路供电给电阻—电感性负载。
断开平波电抗器短接线,求取在不同控制电压U ct时的输出电压U d=f(t),负载电
流i d=f(t)以及晶闸管端电压U VT=f(t)波形并记录相应U ct时的U d、U2值。
注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载
电流不能超过0.8A,U ct从零起调。
改变电感值(L=100mH),观察=90°,U d=f(t)、i d=f(t)的波形,并加以分
析。
注意,增加U ct使前移时,若电流太大,可增加与L相串联的电阻加以限流。
5.单相桥式全控整流电路供电给反电势负载。
把开关S合向左侧,接入直流电动机,短接平波电抗器,短接负载电阻Rd。
(a)调节U ct,在=90°时,观察U d=f(t),i d=f(t)以及U VT=f(t)。
注意,
交流电压U UV须从0V起调,同时直流电动机必须先加励磁。
(b)直流电动机回路中串入平波电抗器(L=700mH),重复(a)的观察。
七.实验报告
1.绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当=30°,60°,90°时的U d、U VT波形,并加以分析。
=30°U d
U VT。