《大学物理》测试题(一二章一套)答案
湖南大学大学物理练习册答案(一、二两册全)
![湖南大学大学物理练习册答案(一、二两册全)](https://img.taocdn.com/s3/m/785ef346be1e650e52ea9966.png)
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). sin 2t A ωω,()π+1221n (n = 0,1,… ),(2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R .(7). 2.24 m/s 2,104o(8). )5cos 5sin (50j t i t+-m/s ,0,圆. (9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v() 2 213 x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt yy t a d d d d d d d d vvv v===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C kyy ky 222121, d d vv v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb cR t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//sRttk ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i、j 表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rs i n c o s ωω+=+=(2) j t r i t r t rc o s s i nd d ωωωω+-==v j t r i t r tas i n c o s d d 22ωωωω--==v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r 方向相反,即a指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022v v v =-=FEAFAE() 4.19/tg1==-AEFEv v θ(飞机应取向北偏东19.4︒的航向).西北θFEv vAF v vAEvv四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答:(1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心; (4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时: 第一种方法是,先求出22yx r +=,然后根据 td d r =v 及 22d d tr a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 22)d d ()d d (ty t x +=v 和 222222)d d ()d d (ty tx a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
大学物理第二版答案(北京邮电大学出版社)
![大学物理第二版答案(北京邮电大学出版社)](https://img.taocdn.com/s3/m/a6720ff0ba0d4a7302763aa1.png)
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。
大学物理力学一、二章作业答案
![大学物理力学一、二章作业答案](https://img.taocdn.com/s3/m/4d7a7c47b9d528ea81c779f0.png)
大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。
3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。
A .2R ;B .R π;C . 0;D .ωπR 。
4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。
A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。
2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。
该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。
3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。
4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。
《大学物理》各章练习题及答案解析
![《大学物理》各章练习题及答案解析](https://img.taocdn.com/s3/m/cb32f832fd4ffe4733687e21af45b307e871f9d6.png)
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理题库第二章(一)南京工程学院
![大学物理题库第二章(一)南京工程学院](https://img.taocdn.com/s3/m/922c7464360cba1aa911da0b.png)
1【单选题】质量分别为m A和m B (m A>m B)、速度分别为和(v A> v B)的两质点A和B,受到相同的冲量作用,则•A、A的动量增量的绝对值比B的小.•B、A的动量增量的绝对值比B的大.•C、A、B的动量增量相等.•D、A、B的速度增量相等.正确答案:C2【单选题】质量为m的小球,沿水平方向以速率v与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为•A、mv.•B、0.•C、2mv•D、-2mv正确答案:D3【单选题】质量为20 g的子弹沿X轴正向以500 m/s的速率射入一木块后,与木块一起仍沿X轴正向以50 m/s的速率前进,在此过程中木块所受冲量的大小为•A、9 N·s .•B、-9 N·s.•C、10 N·s.•D、-10 N·s.正确答案:A4【单选题】{质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时, 作用于质点的冲量的大小为:}•A、mv.•B、•C、•D、2mv.正确答案:C5【单选题】一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块, 其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)•A、比原来更远.•B、比原来更近.•C、仍和原来一样远.•D、条件不足,不能判定.正确答案:A6【单选题】在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)()A、总动量守恒.B、总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.C、总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.D、总动量在任何方向的分量均不守恒.正确答案:C7【单选题】一质点在几个外力同时作用下运动时,下述哪种说法正确? •A、质点的动量改变时,质点的动能一定改变.•B、质点的动能不变时,质点的动量也一定不变.•C、外力的冲量是零,外力的功一定为零.•D、外力的功为零,外力的冲量一定为零.正确答案:C8【单选题】已知两个物体A和B的质量以及它们的速率都不相同,若物体A的动量在数值上比物体B的大,则A的动能E KA与B的动能E KB之间()•A、E KB一定大于E KA.•B、E KB一定小于E KA.•C、E KB=E KA.•D、不能判定谁大谁小.正确答案:D9【简答题】质量m=1 kg的物体,在坐标原点处从静止出发在水平面内沿x轴运动,其所受合力方向与运动方向相同,合力大小为F=3+2x (SI),那么,物体在开始运动的3 m内,合力所作的功W=___________J。
2020年智慧树知道网课《大学物理(一)》课后章节测试满分答案》课后章》课后章
![2020年智慧树知道网课《大学物理(一)》课后章节测试满分答案》课后章》课后章](https://img.taocdn.com/s3/m/dd3e2e659e314332396893e7.png)
第一章测试1【判断题】(1分)物体的速率在减小,其加速度必在减小。
A.错B.对2【判断题】(1分)作曲线运动的质点的速度和位置矢量必定垂直。
A.对B.错3【判断题】(1分)作曲线运动的物体,必有向心加速度。
A.错B.对4【判断题】(1分)位移是位置矢量的增量。
A.对B.错5【判断题】(1分)质点运动的速率必等于速度的大小。
A.错B.对6【单选题】(1分)A.抛体运动.B.变速直线运动.C.一般曲线运动.D.匀速直线运动.7【单选题】(1分)几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选A.60°.B.15°.C.30°.D.45°.【单选题】(1分)A.匀加速运动.B.匀减速运动.C.变加速运动.D.变减速运动.9【单选题】(1分)以下能够看作是质点的物体是A.在研究的问题中,物体的大小和形状都可以忽略不计的物体.B.质量很轻的物体一定可以当作质点.C.体积不大的物体D.太阳一定不能当作质点.10【单选题】(1分)物体作曲线运动时A.一定是速度大小变化的运动.B.一定有加速度.C.加速度可为零.D.可作匀速运动.第二章测试1【判断题】(1分)质点的动量发生了变化,则它的动能也一定发生变化。
A.对B.错2【判断题】(1分)物体的运动方向与合外力的方向总是相同的。
A.对B.错3【判断题】(1分)质点受到外力作用时,则它的动能一定会发生变化。
A.错B.对4【判断题】(1分)物体沿铅直平面内的光滑圆轨道作圆周运动,机械能守恒。
A.对B.错5【判断题】(1分)质点的动能大小跟所选择的惯性参考系无关。
A.错B.对6【单选题】(1分)一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?A.汽车的加速度与它的速度成正比。
B.汽车的加速度是不变的。
大学物理(2-1)(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)
![大学物理(2-1)(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)](https://img.taocdn.com/s3/m/184c1cc9aff8941ea76e58fafab069dc5022472a.png)
绪论单元测试1.大学物理是面向理工科大学生的一门重要的必修基础课,该课程讲授的物理学知识、思想和方法是构成学生科学素养的重要组成部分.A:对B:错答案:A第一章测试1.质点由一点运动到另外一点,则下列说法正确的是A:各点的位置矢量是唯一的B:位移的大小等于路程C:路程是唯一的D:位移是唯一的答案:D2.以下关于加速度的说法中错误的是A:物体加速度大小越来越小时,物体的速度仍将可能增加B:加速度为零的物体速度不一定为零C:加速度决定了物体速度的变化D:物体速度大,加速度一定大答案:D3.质点沿半径为R的圆周作匀速率运动,每T秒转一圈。
在2T时间间隔中,其平均速度大小与平均速率大小分别为A:0 ,2πR/TB:2πR/T , 0C:2πR/T ,2πR/TD:0 , 0答案:A4.气球正在上升,气球下系有一重物,当气球上升到离地面100m高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m高处自由落到地面的运动相比,下列哪一个结论是正确的A:下落的路程相同B:下落的时间相同C:下落的位移相同D:落地时的速度相同答案:C5.某人骑自行车以速率v向正西方向行驶,遇到由北向南刮的风(设风速大小也是v),则他感到风是从A:西南方向吹来B:东南方向吹来C:东北方向吹来D:西北方向吹来答案:D6.电子很小可以视为质点,而太阳很大不能视为质点.A:对B:错答案:B7.质点做匀加速运动,其轨迹一定是直线.A:错B:对答案:A8.物体具有恒定的速度,但仍有变化的速率是不可能的.A:错B:对答案:B9.质点作匀速圆周运动时速度一定不变.A:对B:错答案:B10.同一物体的运动,如果选取的参考系不同,对它的运动描述也不同.A:对B:错答案:A第二章测试1.在下列关于力与运动关系的叙述中,正确的是A:若质点从静止开始,所受合力恒定,则一定作匀加速直线运动B:若质点所受合力越大,则质点速度必定越大C:若质点所受合力的大小不变,则一定作匀加速直线运动D:若质点所受合力恒定,肯定不会作曲线运动E:若质点所受合力的方向不变,则一定作直线运动答案:A2.质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是A:B:C:D:答案:A3.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是A:甲先到达B:同时到达C:乙先到达D:谁先到达不能确定答案:B4.功的概念有以下几种说法:1)保守力作正功时,系统内相应的势能增加.2)质点运动经一闭合路径,保守力对质点做的功为零.3)作用力与反作用力大小相等,方向相反,所以两者所做功的代数和必为零.上列说法中A:2)、3)正确B:3)正确C:1)、2)正确D:2)正确答案:D5.在下列关于动量的表述中,不正确的是A:系统的内力无论为多大,只要合外力为零,系统的动量必守恒B:动量守恒是指运动全过程中动量时时(处处)都相等C:内力对系统内各质点的动量没有影响D:内力不影响系统的总动量,但要影响其总能量答案:C6.物体只有作匀速直线运动和静止时才有惯性.A:错B:对答案:A7.摩擦力总和物体运动的方向相反.A:对B:错答案:B8.质量为m的质点以速度v沿一直线运动,则它对空间任一点的角动量都为零.A:对B:错答案:B9.牛顿运动定律在任何参考系中都成立.A:对B:错答案:B10.一个不受外力作用的系统,它的动量和机械能都守恒.A:错答案:A第三章测试1.下面几种运动属于定轴转动的是A:陀螺的运动B:滚动车轮的运动C:抽油机活塞的运动D:电风扇叶片的运动答案:D2.刚体绕定轴作匀变速转动时,刚体上距轴为r的任一点的A:切向、法向加速度的大小均随时间变化B:切向加速度的大小恒定,法向加速度的大小变化C:切向、法向加速度的大小均保持恒定D:法向加速度的大小恒定,切向加速度的大小变化答案:B3.刚体角动量守恒的充分而必要的条件是A:刚体所受的合外力和合外力矩均为零B:刚体的转动惯量和角速度均保持不变C:刚体不受外力矩的作用D:刚体所受合外力矩为零答案:D4.有两个力作用在一个有固定转轴的刚体上(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中A:(1) 、(2)正确,(3) 、(4) 错误B:(1) 、(2) 、(3) 、(4)都正确C:(1)、(2) 、(3) 都正确,(4)错误D:只有(1)是正确的答案:A5.一个人站在有光滑固定转轴的转动平台上,双臂水平地拿着二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的A:机械能不守恒,角动量也不守恒B:机械能不守恒,角动量守恒C:机械能守恒,角动量不守恒D:机械能守恒,角动量守恒答案:B6.刚体的转动惯量只与转轴和刚体总质量有关.A:错答案:A7.一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒作匀角加速转动.A:对B:错答案:B8.刚体定轴转动时所有质点的角速度和角加速度都相同.A:错B:对答案:B9.刚体作定轴转动时,刚体角动量守恒的条件是刚体所受的合外力等于零.A:对B:错答案:B10.一个质量为m的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,此时圆盘转动的角速度为ω.若小虫沿着半径向圆盘中心爬行,则圆盘的角速度变大.A:对B:错答案:A第四章测试1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中说法是正确的是A:全部说法都是正确的B:只有(1)、(3)是正确的C:只有(1)、(2)是正确的D:只有(2)、(3)是正确的答案:A2.在狭义相对论中,下列说法中正确的是:(1)一切运动物体相对于观察者的速度都不能大于真空中的光速;(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的;(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的;(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.A:(2),(3),(4)B:(1),(3),(4)C:(1),(2),(4)D:(1),(2),(3)答案:C3.宇宙飞船相对于地面以速度0.8c直线飞行,一光脉冲从船尾传到船头.飞船的静止长度是100m,则地球观察者测出光脉冲从船尾到船头两个事件的空间间隔为A:60mB:100mC:500/3mD:300m答案:D4.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)A:(1/5) cB:(3/5) cC:(2/5) cD:(4/5) c答案:B5.粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的A:3倍B:5倍C:2倍D:4倍答案:C6.经典力学中的所有基本定律,如动量守恒定律,角动量守恒定律,机械能守恒定律都具有伽利略变换不变性.A:错B:对答案:B7.狭义相对论的两条基本原理是狭义相对性原理和光速不变原理.A:对B:错答案:A8.我们把与物体保持静止的参考系所测得的长度称为物体的固有长度.A:对B:错答案:A9.光子的静止质量为零.A:错答案:B10.在某个惯性系中有两个同时同地发生的事件,在对该系有相对运动的其他惯性系中,这两个事件不一定是同时同地发生的.A:对B:错答案:B第五章测试1.一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为f ,若把此弹簧分割成四等份,将物体m挂在分割后的一根弹簧上,则振动角频率是A:3fB:0.5fC:2fD:f答案:C2.一质点作简谐振动,周期为T. 质点由平衡位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为A:T/8B:T/4C:T/12D:T/6答案:C3.一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的A:竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动B:竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动C:两种情况都不能作简谐振动D:两种情况都可作简谐振动答案:D4.一弹簧振子作简谐振动,总能量为E,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量变为A:E/4B:E/2C:2ED:4E答案:D5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的A:1/2B:3/4C:3/2答案:B6.质点作简谐振动时,从平衡位置运动到最远点需时1/4周期,因此走过该距离的一半需时1/8周期.A:对B:错答案:B7.一个作简谐振动的物体,其位移与加速度的相位始终相差π.A:对B:错答案:A8.一个作简谐振动的物体处于平衡位置处时具有最大的速度和最大的加速度.A:错B:对答案:A9.简谐运动的动能和势能都随时间作周期性的变化,且变化频率与位移变化频率相同.A:对B:错答案:B10.两个相同的弹簧挂着质量不同的物体,当它们以相同的振幅作简谐振动时,振动总能量相同.A:对B:错答案:A第六章测试1.在相同的时间内,某种波长的单色光在空气中和在玻璃中A:传播的路程不相等,走过的光程不相等B:传播的路程不相等,走过的光程相等C:传播的路程相等,走过的光程相等D:传播的路程相等,走过的光程不相等答案:B2.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则A:不产生干涉条纹B:干涉条纹的宽度将发生改变C:干涉条纹的亮度将发生改变D:产生红光和蓝光两套彩色条纹答案:A3.在双缝干涉实验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄(缝中心位置不变),则A:不再发生干涉现象B:干涉条纹的间距变宽C:干涉条纹的间距不变D:干涉条纹的间距变窄答案:C4.在光栅衍射实验中,与缺级级数有关的量为A:入射光波长B:屏到光栅的距离C:光栅常数D:入射光强度答案:C5.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是A: 红光B:绿光C:黄光D:紫光答案:A6.获得相干光源只能用波阵面分割和振幅分割这两种方法来实现.A:错B:对答案:A7.发光的本质是原子、分子等从具有较高能级的激发态到较低能级的激发态跃迁过程中释放能量的一种形式.A:错B:对答案:B8.光波的相干叠加服从波的叠加原理,不相干叠加不服从波的叠加原理.A:对B:错答案:B9.光程是将光在不同介质中走过的实际路程折合成在真空中走过的路程.A:错B:对答案:A10.双折射现象是光从光疏介质进入光密介质时发生的一种现象.A:错B:对答案:A第七章测试1.水蒸气分解成同温度的氢气和氧气,内能增加了A:66.7%B: 0C:25%D:50%答案:C2.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们A:温度相同,但氦气的压强小于氮气的压强B:温度、压强都不相同C:温度相同,但氦气的压强大于氮气的压强D:温度相同、压强相同答案:C3.关于温度的意义,有下列几种说法:(1)气体的温度是分子平均平动动能的量度.(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3)温度的高低反映物质内部分子热运动剧烈程度的不同.(4)从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是A:(1)、(3) 、(4)B:(1)、(2)、(4)C:(2)、(3)、(4)D:(1)、(2)、(3)答案:D4.下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线A:B:C:D:答案:D5.玻尔兹曼分布律表明:在某一温度的平衡态,(1)分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比. (2)在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多. (3)在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些. (4)分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关.以上四种说法中A:只有(2)、(3)是正确的B:只有(1)、(2)、(3)是正确的C:只有(1)、(2)是正确的D:全部是正确的答案:A6.只有对大量分子的集体,温度的微观意义才成立.A:错B:对答案:B7.物体的熔解、凝固、蒸发等现象都属于热现象.A:对B:错答案:A8.一切互为热平衡的热力学系统不一定具有相同的温度.A:错B:对答案:A9.表征系统热平衡的宏观性质的物理量为压强.A:错B:对答案:A10.每个分子的质量、速度和能量属于微观量.A:对B:错答案:A第八章测试1.关于可逆过程和不可逆过程的判断: (1)可逆热力学过程一定是准静态过程. (2)准静态过程一定是可逆过程. (3)不可逆过程就是不能向相反方向进行的过程. (4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是A: (1)、(2)、(3)B: (2)、(4)C: (1)、(2)、(4)D: (1)、(4)答案:D2.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍,那么气体温度的改变(绝对值)在A:等压过程中最大,绝热过程中最小B:绝热过程中最大,等压过程中最小C:绝热过程中最大,等温过程中最小D:等压过程中最大,等温过程中最小答案:D3.两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递的热量是A:6JB:5JC:2JD:3J答案:D4.1mol的单原子分子理想气体从状态A变为状态B,如果不知是什么气体,变化过程也不知道,但A、B两态的压强、体积和温度都知道,则可求出A:气体所作的功B:气体的质量C:气体传给外界的热量D:气体内能的变化答案:D5.一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1)绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3)等温压缩到原来体积V,则此整个循环过程中A:气体内能减少B:气体对外界作正功C:气体向外界放热D:气体内能增加答案:C6.用旋转的叶片使绝热容器中的水温上升(焦耳热功当量实验),这一过程是可逆的.A:对B:错答案:B7.不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则外界对系统作功,系统的内能增加.A:对B:错答案:A8.热力学系统的状态发生变化时,其内能的改变量只决定于初末态的温度而与过程无关.A:错B:对答案:B9.不作任何热交换也可以使系统温度发生变化.A:错B:对答案:B10.对物体加热也可以不致升高物体的温度.A:对B:错答案:A。
大学物理试题及答案(1-4章)
![大学物理试题及答案(1-4章)](https://img.taocdn.com/s3/m/bc2c1432312b3169a551a462.png)
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hl t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv 2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x-t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和。
《大学物理》各章练习题库
![《大学物理》各章练习题库](https://img.taocdn.com/s3/m/7a1e62d2c9d376eeaeaad1f34693daef5ef7130b.png)
《大学物理》各章练习题库第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。
2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。
3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。
6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。
7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。
8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
《新编大学物理》(上、下册)教材习题答案
![《新编大学物理》(上、下册)教材习题答案](https://img.taocdn.com/s3/m/ec0882bda5e9856a561260d7.png)
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
大学物理1-1测试题及答案(1,2)
![大学物理1-1测试题及答案(1,2)](https://img.taocdn.com/s3/m/b3665907b8f67c1cfbd6b879.png)
大学物理1-1测试题及答案(第一,二章)班级:姓名:得分:一、简答题(每题5分,共20分)(1)什么情况下可以把待研究的物体抽象为质点?不能抽象为质点时该怎么办?答:当物体运动的尺度远大于物体本身的尺寸时可将其看成质点。
若物体不能被抽象为一个质点,则可将物体分成很多部分,使得每一部分足够小,以至于可将其看成质点;这样,便可将物体看成是由若干质点组成的质点系。
(2)什么是质点的运动方程,它与质点的瞬时速度及瞬时加速度有何关系?答:质点运动方程是质点位置矢量与时间的函数关系,即()r t。
瞬时速度()v t是()r t关于时间的一阶微商,即()()dr tv tdt=;瞬时加速度()a t是()r t关于时间的二阶微商,即22() ()d r ta tdt=。
(3)描述质点圆周运动的线量与角量有哪些,它们有何关系?答:描述质点圆周运动的线量有:路程ds、速率v、切向加速度ta、法向加速度na;角量有:角位移dθ、角速度ω、角加速度α。
它们之间有如下关系:ds Rdθ=、dsv Rdtω==、t dva Rdtα==、22nva RRω==。
(4) 什么是惯性系和非惯性系,试举例说明?牛顿定律成立的条件是什么?答:惯性系是指牛顿定律在其中严格成立的参考系,否则为非惯性系;地球、太阳就近似为惯性系。
牛顿定律成立的条件是:针对宏观低速运动的物体;针对惯性系中的质点。
二、 选择题(每题4分,共20分)(1)下列说法正确的是:( D )(A)加速度恒定不变时,物体的运动方向也不变 (B)平均速率等于平均速度的大小(C)当物体的速度为零时,加速度必定为零(D)质点作曲线运动时,其速度大小的变化产生切向加速度,速度方向变化产生法向加速度(2)质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程。
对下列表达式, [1]dv dt a = [2]dr v = [3]ds dt v = [4]dv dt a =下述判断正确的是( C )(A) [1]、[4]正确 (B) [2]、[4]正确 (C) [3]、[4]正确(D) 只有[3]正确(3)在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?( C )(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g .(4)如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为1m 和2m 的重物,且12m m >。
大学物理答案第1~2章
![大学物理答案第1~2章](https://img.taocdn.com/s3/m/83ddcc8383d049649b6658d7.png)
第一章 质点的运动1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。
解:cos ,sin x y dx dy v Rw wt v Rw wt dt dt v Rw==-==-∴==222sin ,cos y xx y dv dv a Rw wt a Rw wt dt dt a Rw ====∴==sin ,(1cos )x R wt y R wt ==-222()x y R R ∴+-=轨迹方程为质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω21-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则012132012221201112()0,2()/2()1122212v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=-=-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =-kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e -kx .解:取汽艇行驶的方向为正方向,则0200,,ln v xv kxdvdx a kv v dtdtdv dv kvdt kdx v v dv kdx v vkx v v v e -==-=∴=-=-∴=-=-∴=⎰⎰ 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。
解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,22220222203/222220()()()l v t H h dldt H h v d l dt H h v t =+-∴=-=⎡⎤-+⎣⎦所以小车移动的速度220220)(tv h H tv v --=小车移动的加速度[]2/3220222)()(tv h H v h H a +--=1-5一质点由静止开始作直线运动,初始的加速度a 0,以后加速度以t ba a a 00+=均匀增加(式中b 为一常数),求经t 秒后,质点的速度和位移。
大学物理(一)智慧树知到答案章节测试2023年上海电力大学
![大学物理(一)智慧树知到答案章节测试2023年上海电力大学](https://img.taocdn.com/s3/m/c460c1b5ed3a87c24028915f804d2b160b4e86cf.png)
绪论单元测试1.关于科学和技术,下列说法不正确的是()A:科学与技术之间既有联系,又有差异。
B:技术的目的是利用自然规律来改造和利用自然;C:科学是如实反映客观事物及其运动变化规律的系统知识;D:科学活动以发明为核心,技术活动以发现为核心;答案:D2.下列关于科学探究方法的说法正确的是()A:科学观察是科学探究的唯一方法;B:李时珍在研究药物时,采用的方法主要是调查法;C:观察时要积极思考,多问几个为什么;D:科学观察必须借助有关用具才能进行。
答案:C3.关于科学研究方法,以下说法不正确的是()A:电场力做功可以与重力做功类比,两种力做功都与路径无关;B:利用速度一时间图象推导匀变速直线运动的位移公式时,使用了微元法;C:法拉第在研究电磁感应现象时,利用了理想实验的方法。
D:在探究加速度与力、质量三者关系的实验中,应用了控制变量法;答案:C第一章测试1.下列说法正确的是()。
A:平均速率等于平均速度的大小B:当质点的速度为零时,其加速度必为零C:质点作曲线运动时, 质点速度大小的变化是因为有切向加速度,速度方向的变化是因为有法向加速度D:加速度恒定不变时,质点的运动方向也不变答案:C2.质点作曲线运动,某时刻的速度为,切向加速度的大小是()A:B:C:D:答案:D3.一质点从静止出发绕半径R的圆周作匀变速圆周运动,角加速度为,当该质点走完一周回到出发点,所经历的时间为()。
A:;B:条件不够不能确定。
C:;D:;答案:C4.一质点从静止出发绕半径R=2m的圆周运动,切向加速度为2m/s,经过多长时间它的法向加速度的大小等于切向加速度的大小()。
A:;B:;C:1s ;D:;答案:C5.一质点作定向直线运动,下列说法正确的是()。
A:质点位置矢量的方向不一定恒定,位移方向一定恒定;B:质点位置矢量的方向一定恒定,位移方向一定恒定;C:质点位置矢量的方向一定恒定,位移方向不一定恒定;D:质点位置矢量的方向不一定恒定,位移方向不一定恒定。
大学物理力学一、二章作业答案
![大学物理力学一、二章作业答案](https://img.taocdn.com/s3/m/aed4047fbd64783e09122bc9.png)
第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为,式中a 、b 、c 均为常数。
当运动质点得运动方向与x 轴成450角时,它得速率为[ B ]。
A 。
a ; B.; C.2c; D 。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系得曲线就是图1—1中得[ D ]。
3、一质点得运动方程就是,R 、为正常数。
从t =到t =时间内该质点得路程就是[ B ]。
A 。
2R;B .; C. 0; D 。
4、质量为0、25kg 得质点,受(N)得力作用,t =0时该质点以=2m/s 得速度通过坐标原点,该质点任意时刻得位置矢量就是[ B ]。
A.2+2m ; B .m;C 。
; D.条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为(x 以米为单位,t 以秒为单位)。
质点得初速度为2m/s ,第4秒末得速度为 -6m /s ,第4秒末得加速度为 —2m/s2 .2、一质点以(m/s)得匀速率作半径为5m 得圆周运动。
该质点在5s 内得平均速度得大小为 2m/s ,平均加速度得大小为 .3、一质点沿半径为0、1m 得圆周运动,其运动方程为(式中得θ以弧度计,t 以秒计),质点在第一秒末得速度为 0、2m/s ,切向加速度为 0、2m/s 2 。
4、一质点沿半径1m 得圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T=2s 时质点得切向加速度为 36m/s 2 ;当加速度得方向与半径成45º角时角位移就是ra d 。
5、飞轮半径0、4m ,从静止开始启动,角加速度β=0、2rad /s 2。
t =2s 时边缘各点得速度为 0、16m /s ,加速度为 0、102m/s 2 。
6、如图1—2所示,半径为R A 与RB得两轮与皮带连结,如果皮带不打滑,则两轮得角速度 ,两轮边缘A 点与B 点得切向加速度 1:1 。
三、简述题1、给出路程与位移得定义,并举例说明二者得联系与区别。
大学物理(二)智慧树知到答案章节测试2023年上海电力大学
![大学物理(二)智慧树知到答案章节测试2023年上海电力大学](https://img.taocdn.com/s3/m/e8d5dbd70342a8956bec0975f46527d3250ca676.png)
第一章测试1.设速率分布函数为,在个理想气体分子的容器中,气体分子速率在间的分子数为()A:B:C:D:答案:D2.用分子质量,总分子数,分子速率和速率分布函数表示的分子平动动能平均值为()A:B:C:D:答案:A3.下列对最概然速率的表述中,不正确的是()A:在相同速率间隔条件下分子处在所在的那个间隔内的分子数最多B:分子速率分布函数取极大值时所对应的速率就是C:就单位速率区间而言,分子速率取的概率最大D:是气体分子可能具有的最大速率答案:D4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是()A:两种气体的压强相同B:氧气的温度比氢气的高C:两种气体的温度相同D:氢气的温度比氧气的高答案:B5.已知,氢气和氧气的温度相同,下列说法哪个是正确的?()A:氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度B:氧分子的质量比氢分子大,所以氢分子的方均根速率比氧分子方均根速率大C:氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强D:氧分子的质量比氢分子大,所以氢气分子的速率一定大于氧分子的速率答案:B6.已知一定量的某种理想气体,在温度为与时的分子最可几速率分别为和,分子速率分布函数的最大值分别为和,若, 则()A:B:C:D:答案:C7.理想气体状态方程适用于()A:理想气体B:的理想气体C:的理想气体D:任意体积的理想气体答案:A8.刚性双原子分子理想气体,当温度为时,其内能为()A:B:C:D:答案:C9.关于温度的意义,下列几种说法正确的是()(1)气体的温度是分子平均平动动能的量度;(2)气体的温度是大量气体分子热运动的集中体现,具有统计意义;(3)温度的高低反映物质内部分子热运动剧烈程度的不同;(4)从微观上看,气体的温度表示每个分子的冷热程度。
A:(1)、(2)、(4)B:(2)、(3)、(4)C:(1)、(2)、(3)D:(1)、(3)、(4)答案:C第二章测试1.某理想气体经恒温膨胀后()A:B:=0C:=0D:=0答案:B2.恒容下,一定量的理想气体,当温度升高时内能将()A:不变B:降低C:增加D:增加、减少不能确定答案:C3.某绝热封闭体系在接受了环境所做的功后,其温度()A:一定不变B:不一定改变C:一定降低D:一定升高答案:D4.某理想气体的,则该气体为几原子分子气体?()A:三原子分子气体B:双原子分子气体C:单原子分子气体D:四原子分子气体答案:B5.关于物体内能的变化情况,下列说法中正确的是()A:吸热的物体,其内能一定增加B:绝热压缩的物体,其内能一定减少C:放热的物体,其内能也可能增加D:体积膨胀的物体,其内能一定减少答案:C6.理想气体经历了一个由等温过程、绝热过程和等压过程组成的逆循环,在此循环过程中,理想气体()A:向外界放出热量B:内能减少C:对外界作功D:从外界吸收热量答案:A7.设热源的热力学温度是冷源的热力学温度的倍,则一卡诺循环中,气体将把从热源得到的热量交给冷源()A:倍B:倍C:倍D:倍答案:B8.对任一热机的效率,下面的说法中正确的是()A:不可能小于可逆热机B:可能等于1C:可能等于可逆热机D:可能大于可逆热机答案:C9.一大温泉的温度为,周围大气温度为,假设一卡诺热机在上述两个热源间工作,若热机对环境作功100kJ,则从温泉吸热()A:142.9kJB:923.4kJC:10.8kJD:823.4kJ答案:B第三章测试1.一弹簧振子系统竖直挂在电梯内,当电梯静止时,振子谐振频率为。
智慧树知到答案 大学物理(上海理工大学)章节测试答案
![智慧树知到答案 大学物理(上海理工大学)章节测试答案](https://img.taocdn.com/s3/m/ef384df7db38376baf1ffc4ffe4733687e21fcc5.png)
第一章单元测试1、单选题:一质点沿x轴作直线运动,其v-t曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5 s时,质点在x轴上的位置为选项:A:5mB:2mC:0D:-2mE:-5m答案: 【2m】2、单选题:一条河在某一段直线岸边同侧有A、B两个码头,相距1 km。
甲、乙两人需要从码头A到码头B,再立即由B返回。
甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为2 km/h, 方向从A到B,则()选项:A:甲和乙同时回到AB:甲比乙早10分钟回到AC:甲比乙早2分钟回到AD:甲比乙晚10分钟回到A答案: 【甲比乙晚10分钟回到A】3、单选题:如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率收绳,绳不伸长、湖水静止,则小船的运动是选项:A:匀速直线运动B:匀加速运动C:变减速运动D:匀减速运动E:变加速运动答案: 【变加速运动】4、单选题:质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间间隔中,其平均速度大小与平均速率大小分别为选项:A:0 , 2πR/TB:2πR/T, 2πR/TC:0 , 0D:2πR/T, 0答案: 【0 , 2πR/T】5、单选题:某物体的运动规律为式中的k为大于零的常量.当时,初速为v0,则速度与时间t的函数关系是()A. B.C.D.选项:A:BB:AC:CD:D答案: 【C】6、单选题:一根细绳跨过一光滑的定滑轮,一端挂一质量为的物体,另一端被人用双手拉着,人的质量.若人相对于绳以加速度a0向上爬,则人相对于地面的加速度(以竖直向上为正)是()选项:A:B:C:D:答案: 【】7、单选题:如图2-14,物体A、B质量相同,B在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A下落的加速度是()选项:A:4g/5.B:g/3.C:g/2.D:g.答案: 【4g/5.】8、单选题:质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图2-22所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将()选项:A:先是增加,后又减小.压力增减的分界角为α=45°.B:减少.C:增加.D:不变.答案: 【减少.】第二章单元测试1、单选题:如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为()选项:A:B:.C:0.D:2mv.答案: 【.】2、单选题:机枪每分钟可射出质量为20g的子弹900颗,子弹射出的速率为800m/s,则射击时的平均反冲力大小为()选项:A:16N.B:0.267N.C:14400N.D:240N.答案: 【240N.】3、单选题:质量为20 g的子弹,以400 m/s的速率沿图3-17射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为()选项:A:2m/s.B:7m/s.C:4m/s.D:8m/s.答案: 【4m/s.】4、单选题:体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是()选项:A:谁先到达不能确定.B:乙先到达.C:同时到达.D:甲先到达.答案: 【同时到达.】5、单选题:一竖直向上发射之火箭,原来静止时的初质量为m0经时间t燃料耗尽时的末质量为m,喷气相对火箭的速率恒定为u,不计空气阻力,重力加速度g恒定.则燃料耗尽时火箭速率为()选项:A:.B:.C:.D:.答案: 【.】6、单选题:一质点在如图4-5所示的坐标平面内作圆周运动,有一力作用在质点上.在该质点从坐标原点运动到(0,2R)位置过程中,力对它所作的功为()选项:A:.B:.C:.D:.答案: 【.】7、单选题:如图所示,木块m沿固定的光滑斜面下滑,当下降h高度时,重力作功的瞬时功率是:()选项:A:.B:.C:.D:.答案: 【.】8、单选题:速度为v的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是()选项:A:.B:.C:.D:.答案: 【.】9、单选题:一特殊的轻弹簧,弹性力F=kx3,k为一常量系数,x为伸长(或压缩)量.现将弹簧水平放置于光滑的水平面上,一端固定,一端与质量为m的滑块相连而处于自然长度状态.今沿弹簧长度方向给滑块一个冲量,使其获得一速度v,压缩弹簧,则弹簧被压缩的最大长度为()选项:A:.B:C:.D:.答案: 【】10、单选题:在如图4-16所示系统中(滑轮质量不计,轴光滑),外力通过不可伸长的绳子和一劲度系数k=200 N/m的轻弹簧缓慢地拉地面上的物体.物体的质量M=2 kg,初始时弹簧为自然长度,在把绳子拉下20 cm的过程中,所做的功为(重力加速度g取10 m/s2)()选项:A:2J.B:4J.C:3J.D:1J.E:20J.答案: 【3J.】11、单选题:一水平放置的轻弹簧,劲度系数为k,其一端固定,另一端系一质量为m的滑块A,A旁又有一质量相同的滑块B,如图4-19所示.设两滑块与桌面间无摩擦.若用外力将A、B一起推压使弹簧压缩量为d而静止,然后撤消外力,则B离开时的速度为()选项:A:B:0C:D:答案: 【】第三章单元测试1、单选题:一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力()图5-7选项:A:右边大于左边.B:哪边大无法判断.C:左边大于右边.D:处处相等.答案: 【右边大于左边.】2、单选题:如图所示,一质量为m的匀质细杆AB,A端靠在粗糙的竖直墙壁上,B端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A端对墙壁的压力大()选项:A:为mgcosθ.B:为mgsinθ.C:为mgtgθ.D:不能唯一确定答案: 【不能唯一确定】3、单选题:一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度()选项:A:增大.B:减小.C:不变.D:不能确定.答案: 【减小.】4、单选题:(自测提高4)光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为mL2,起初杆静止.桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为()选项:A:.B:.C:.D:.E:.答案: 【.】5、单选题:质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为()选项:A:,逆时针.B:,逆时针.C:,顺时针.D:,顺时针.答案: 【,顺时针.】第四章单元测试1、单选题:宇宙飞船相对于地面以速度v作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c表示真空中光速)().选项:A:c·ΔtB:C:v·ΔtD:答案: 【c·Δt】2、单选题:在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对于甲作匀速直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)()选项:A:(1/5)c.B:(4/5)c.C:(2/5)c.D:(3/5)c.答案: 【(3/5)c.】3、单选题:K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿Ox轴正方向匀速运动.一根刚性尺静止在K'系中,与O'x'轴成30°角.今在K系中观测得该尺与Ox轴成45°角,则K'系相对于K系的速度是:()选项:A:(2/3)1/2c.B:(1/3)c.C:(2/3)c.D:(1/3)1/2c.答案: 【(2/3)1/2c.】4、单选题:设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小为(以c表示真空中的光速)()选项:A:.B:C:.D:.答案: 【.】5、单选题:一匀质矩形薄板,在它静止时测得其长为a,宽为b,质量为m0.由此可算出其面积密度为m0/ab.假定该薄板沿长度方向以接近光速的速度v作匀速直线运动,此时再测算该矩形薄板的面积密度则为()选项:A:B:C:D:答案: 【】第五章单元测试1、单选题:三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根速率之比为=1∶2∶4,则其压强之比∶∶为():选项:A:1∶2∶4.B:4∶2∶1.C:1∶4∶16.D:1∶4∶8.答案: 【1∶4∶16.】2、单选题:一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m.根据理想气体分子模型和统计假设,分子速度在x方向的分量的平均值()选项:A:.B:.C:.D:0 .答案: 【0 .】3、单选题:设某种气体的分子速率分布函数为f(v),则速率分布在v1~v2区间内的分子的平均速率为()选项:A:/.B:.C:.D:/.答案: 【/.】4、单选题:在容积V=4×10-3m3的容器中,装有压强P=5×102Pa的理想气体,则容器中气体分子的平动动能总和为()选项:A:5J.B:2J.C:9J.D:3J.答案: 【3J.】5、单选题:假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的()选项:A:倍.B:倍.C:4倍.D:2倍.答案: 【2倍.】第六章单元测试1、单选题:一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m.根据理想气体分子模型和统计假设,分子速度在x方向的分量的平均值()选项:A:.B:.C:0 .D:.答案: 【0 .】2、单选题:设某种气体的分子速率分布函数为f(v),则速率分布在v1~v2区间内的分子的平均速率为()选项:A:.B:.C:/.D:/.答案: 【/.】3、单选题:在容积V=4×10-3m3的容器中,装有压强P=5×102Pa的理想气体,则容器中气体分子的平动动能总和为()选项:A:9J.B:3J.C:2J.D:5J.答案: 【3J.】4、单选题:假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的()选项:A:倍.B:倍.C:4倍.D:2倍.答案: 【2倍.】5、单选题:一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程()选项:A:C.是A→B:B.是A→C:是A→D:D.既是A→B也是A→C,两过程吸热一样多。
2020年智慧树知道网课《大学物理》课后章节测试满分答案1
![2020年智慧树知道网课《大学物理》课后章节测试满分答案1](https://img.taocdn.com/s3/m/7d1b96a30066f5335b81214a.png)
第一章测试1【单选题】(10分)A.B.C.D.2【单选题】(10分)A.8,8;B.10,10;C.8,10;D.10,8;3【单选题】(10分)一支长为100米的队伍直线前进,通信兵从队尾跑到队首又返回队尾,队伍前进了200米,则通信兵的位移大小为()。
A.200米;B.100米;C.300米;D.400米。
4【单选题】(10分)质点在二维直角坐标系里做平面曲线运动,则质点速率的正确表达式为()。
A.B.C.D.5【单选题】(10分)一辆轿车以72km/h的速度在水平路面上直线行驶,突然发现前方100米有一辆自行车以10m/s的速度沿同方向匀速行驶,如轿车刹车作匀减速行驶,加速度至少为多大时才不会撞上自行车()。
A.0.2m/s2;B.2.0m/s2;C.5.0m/s2;D.0.5m/s2;6【单选题】(10分)质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的最小速度是v,则当小球以2v的速度经过最高点时,对轨道压力的大小是()。
A.0;B.2mg;C.3mg;D.mg;7【单选题】(10分)如图所示,质量为m的木块放置在粗糙水平面上,二者之间摩擦系数为μ,重力加速度为g,现对木块施加斜向上的拉力F,与水平面的夹角为θ,物体可以在地面上运动的最小拉力为()。
A.B.C.D.8【单选题】(10分)A.B.C.D.9【单选题】(10分)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。
若在某转弯处规定行驶的速度为v,则下列说法中正确的是()。
①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力。
②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力。
③当火车速度大于v时,轮缘挤压外轨。
④当火车速度小于v时,轮缘挤压外轨。
A.①②;B.①③;C.②④;D.②③;10【单选题】(10分)质点作半径为R的变速率圆周运动,v为任一时刻质点的速率,则该质点的加速度大小是()。
大学物理习题册及解答(第二版)第一章 质点的运动
![大学物理习题册及解答(第二版)第一章 质点的运动](https://img.taocdn.com/s3/m/fceb17ecf8c75fbfc77db2ff.png)
2 t =2
= −16m/s
2
dv a= =10 −18t dt
t =2
= −26m/s
2.一质点在 一质点在Oxy平面上运动,运动方程为 平面上运动, 一质点在 平面上运动 运动方程为x=3t, y=3t2-5(SI), 求(1)质 质 点运动的轨道方程,并画出轨道曲线 并画出轨道曲线;(2)t1=0s和 t2=120s时质点的 点运动的轨道方程 并画出轨道曲线 和 时质点的 的速度、加速度。 的速度、加速度。 解:(1)从运动方程中消去时间就得到轨道方程 从运动方程中消去时间就得到轨道方程
s = v2t
h = H 2,
1 ∴ H' = H 2
Qd s d h
2
2 H2
= −4 H < 0
所以上条件为S极大的条件
5.河水自西向东流动,速度为10km/h.一轮船在水中航行,船 相对于河水的航向为北偏西300,相对于水的航速为20km/h.此 时风向为正西,风速为10km/h.试求在船上观察到的烟囱冒出 的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)
dθ 则其切向加速度为 a = Rα = R = 0.1m/ s dt
2 t 2
π 1 θ = + t (SI) 4 2
2
2
6 在一个转动的齿轮上,一个齿尖P沿半径为R的圆周运动,其路 程S随时间的变化规律为 S = v 0 t + 1 2 bt 2 ,其中v0和b都是正的常 量.则t时刻齿尖P的速度大小为v0 + bt,加速度大小为 .
v1 = 2 gh
h
v v2
因为完全弹性碰撞,小 S 2 1 球弹射的速度大小为: v2的方向是沿水平方向,故小球与斜面碰撞后作平抛运动,弹出 的水平距离为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理》测试题(一、二章一套)
1. 在相对地面静止的坐标系内,A、B二船都以2m·的速率匀速行驶,A船沿x轴正向,B船沿y轴正向.今在A船上设置与静止坐标系方向相同的坐标系(x、y方向单位矢用i、j表示),那么在A船上的坐标系中,B
船的速度(以m· )为单位)为(恭喜,您选择了正确答案:B)
(A)2 i+2 j.(B)-2i+2j.
(C)-2 i-2 j.(D)2i-2j.
2. 一小球沿斜面向上运动,其运动方程为S=5+4t-(SI),则小球运动到最高点的时刻是(恭喜,您选择了正确答案:B)
(A)t=4s.(B)t=2s.
(C)t=8s.(D)t=5s.
3. 一条河在某一段直线岸边有A、B两个码头,相距1 k m.甲、乙两人需要从码头A到码头B,再立即由B返回.甲划船前去,船相对河水的速度4k m/h;而乙沿岸步行,步行速度也为4 k m/h.如河水流速为2k m/h,方向从A到B,则(恭喜,您选择了正确答案:A)
(A)甲比乙晚10 分钟回到A.(B)甲和乙同时回到A.
(C)甲比乙早10 分钟回到A.(D)甲比乙早2分钟回到A.
4. 质点沿半径为R的圆周作匀速率运动,每t秒转一圈.在 2 t时间间隔中,其平均速度大小与平均速率大小分别为(恭喜,您选择了正确答案:B)
(A),.(B)0,.
(C)0,0.(D),0.
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v收绳,绳不伸长、湖水静止,则小船的运动是(恭喜,您选择了正确答案:C)
(A)匀加速运动.(B)匀减速运动.
(C)变加速运动.(D)变减速运动.
(E)匀速直线运动.
6. 一质点在平面上运动,已知质点位置矢量的表示式为r=a t2i+b t 2j(其中a、b为常量)则该质点作(恭喜,您选择了正确答案:B)
(A)匀速直线运动.(B)变速直线运动.
(C)抛物线运动.(D)一般曲线运动.
7. 一光滑的内表面半径为10cm的半球形碗,以匀
角速度绕其对称轴OC旋转.已知放在碗内表面上
的一个小球P相对于碗静止,其位置高于碗底4cm,
则由此可推知碗旋转的角速度约为(恭喜,您选择了
正确答案:A)
(A) 13 rad/s.(B)17 rad/
s.
(C) 10 rad/s.(D) 18 rad/s.
8. 光滑的水平面上叠放着物体A和B,质量分别为m和M,如图所示.A与B之间的静摩擦系数为,若对物体B施以水平推力F,欲使A与B一起运动,则F应满足(恭喜,您选择了正确答案:C)
(A)0<F≤(m+M)g.(B)0<F≤(m+M)g.
(C)0<F≤(M+m)g.(D)0<F≤(m+M)g.9. 水平地面上放一物体A,它与地面间的滑动摩擦系数为.现加一恒力 F如
图所示.欲使物体A有最大加速度,则恒力 F与水平方向夹角应满足(恭喜,您选择了正确答案:C)
(A)sin=.(B)cos=
.
(C)tg=.(D)ctg=.
10. 如图所示,假设物体沿着铅直面上圆弧形轨道下滑,轨道是光滑的,在从A至C的下滑过程中,下面哪个说法是正确的?(恭喜,您
选择了正确答案:D)
(A)它的加速度方向永远指向圆心.
(B)它的速率均匀增加.
(C)它的合外力大小变化,方向永远指向圆心.
(D)轨道支持力的大小不断增加.
(E)它的合外力大小不变.
11. 如图,一质量为m的物体A,用平行于斜
面的细线拉着置于光滑的斜面上.若斜面向左
方作减速运动,当绳中张力为零时,物体的加
速度大小为(恭喜,您选择了正确答案:D)
(A)gsin.(B)gcos.
(C)gctg.(D)gtg.
12. 一个圆锥摆的摆线长为l,摆线与竖直方向的夹角恒为,如图所示.则
摆锤转动的周期为(恭喜,您选择了正确答案:D)
(A).(B).
(C).(D)
13. 质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用.比例系数为k,k为正常数.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(恭喜,您选择了正确答案:A)
(A).(B).
(C)gk.(D).
14. 一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?(恭喜,您选择了正确答案:B)
(A)汽车的加速度是不变的.(B)汽车的加速度不断减小.
(C)汽车的加速度与它的速度成正比.(D)汽车的加速度与它的速
度成反比.
15.一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦系数为R,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(恭喜,您选择了正确答案:B)
(A)不得小于.(B)不得大于.
(C)必须等于.(D)应由汽车质量决定.
16.在作匀速转动的水平转台上,与转轴相距R处有一体积很小的工件A,如图所示.设工件与转台间静摩擦系数为,若使工件在转台上无滑动,则转台的角速度应满足(恭喜,您选择了正确答案:A)
(A)(B)
(C)(D)。