数学实验(第二版)课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州师范学院
2012级数本一班李刚
数学实验课后练习答案
习题2.1
1. syms x y;
>> x=-5:0.01:5;
>> y=x.^1/2;
>> plot(x,y)
2. f plot('exp(-x.^2)',[-5,5])
3. ezplot('x.^3+y.^3-3*x*y',[-5,5])
4 . ezplot('y.^2-x.^3/(1-x)',[-5,5])
5.t=0:0.1:2*pi;
x=t-sin(t);
y=2*(1-cos(t));
plot(x,y)
6. t=0:0.1:2*pi; x=cos(t).^3; >> y=sin(t).^3;
>> plot(t,y)
>>
7: t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z)
8: x =0:0.1:2*pi; r=x; polar(x,r)
9: x =0:0.1:2*pi; r=exp(x); polar(x,r)
10: x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)
11: x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)
12: x =0:0.1:2*pi; r=1+cos(x); polar(x,r)
练习2.2 1:(1)
(2):syms n; limit('sqrt(n+2)-2*(sqrt(n+1))+sqrt(n)',n,inf)
Ans= 0 (3):
: (4):
(5):
(6):
2:
3:
fplot('x.^2*sin(x.^2-x-2)',[-2,2])
练习2.3 1:
(2):
2:
练习2.4 1:
(1)
(2):
(3)
(4):
2:(1):syms x;
int(x^(-x),x,0,1)
ans =
int(x^(-x),x = 0 .. 1)
vpa(ans,10)
ans =
1.291285997
(2):
syms x;
int(exp(2*x)*cos(x)^3,x,0,2*pi)
ans =
-22/65+22/65*exp(4*pi)
(3):
syms x; int(exp(x^2/2)/sqrt(2*pi),x,0,1)
ans =
-1125899906842624/5644425081792261*i*erf(1/2*i*2^(1/2))*pi^(1/2)*2^(1/2) >> vpa(ans,10)
ans =
.4767191345
(4):
syms x;
int(x*log(x^4)*asin(1/x^2),x,1,3)
ans =
int(x*log(x^4)*asin(1/x^2),x = 1 .. 3)
>> vpa(ans,10)
ans =
2.459772128
(5):
syms x ;
int(exp(x^2/2)/sqrt(2*pi),x,-inf,inf)
ans =
Inf
(6):
syms x ;
int(sin(x)/x,x,0,inf)
ans =
1/2*pi
(7):
syms x ;
int(tan(x)/sqrt(x),x,0,1)
Warning: Explicit integral could not be found. > In sym.int at 58
ans =
int(tan(x)/x^(1/2),x = 0 .. 1)
>> vpa(ans,10)
ans =
.7968288892
(8):
syms x ;
int(exp(-x^2/2)/(1+x^4),x,-inf,inf)
ans =
1/4*pi^(3/2)*2^(1/2)*(AngerJ(1/2,1/2)-2/pi^(1/2)*sin(1/2)+2/pi^(1/2)*cos(1/2)-WeberE(1/2,1/2 ))
>> vpa(ans,10)
ans =
1.696392536
(9):
syms x ;
int(sin(x)/sqrt(1-x^2),x,0,1)
ans =
1/2*pi*StruveH(0,1)
>> vpa(ans,10)
ans =
.8932437410
练习2.5(1):syms n;
symsum(1/n^2^n,n,1,inf)
ans =
sum(1/((n^2)^n),n = 1 .. Inf)
(2):s yms n ;
symsum(sin(1/n),n,1,inf)
ans =
sum(sin(1/n),n = 1 .. Inf)
(3):
syms n ;
symsum(log(n)/n^3,n,1,inf) ans =
-zeta(1,3)
(4):
syms n ;
symsum(1/(log(n))^n,n,3,inf) ans =
sum(1/(log(n)^n),n = 3 .. Inf)(5):
syms n;
symsum(1/(n*log(n)),n,2,inf) ans =
sum(1/n/log(n),n = 2 .. Inf)