安徽2020中考数学第一轮复习-相似三角形

合集下载

人教版2020年九年级中考数学一轮复习 第15讲 三角形(有答案)

人教版2020年九年级中考数学一轮复习  第15讲 三角形(有答案)

第十五节三角形【知识点梳理】一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做(简称)。

2.三角形的中位线三角形的中位线平行于,并且等于.3.三角形的三边关系定理及推论三角形三边关系:任意两边之和第三边;任意两边之差第三边.4、三角形的内角和定理及推论1.三角形内角和:三角形三内角之和等于.2.三角形外角的性质:(1)三角形的一个外角任何一个和它不相邻的内角;(2)三角形的一个外角与它不相邻的两内角之和.1.三角形的分类:(1)按边分:三角形分为和等腰三角形;等腰三角形又分为及 .(2)按角分:三角形和斜三角形;斜三角形又分为:和 .答案:一、三角形1、三角形中的主要线段(1)三角形的角平分线。

(2)三角形的中线。

(3)三角形的高线(简称三角形的高)。

2.三角形的中位线:三角形的第三边,并且等于第三边长的一半.3.三角形的三边关系定理及推论:任意两边之和大于第三边;任意两边之差小于第三边.4、三角形的内角和定理及推论1. 180°.2.三角形外角的性质:(1)大于;(2)等于.1.三角形的分类:(1)按边分:三角形分为不等边三角形和等腰三角形;等腰三角形又分为底和腰不等的三角形及等边三角形.(2)按角分:三角形直角三角形和斜三角形;斜三角形又分为:锐角三角形和钝角三角形.【课堂练习】一.选择题(共9小题)1.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.2.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:16【考点】K3:三角形的面积.【分析】根据三角形面积求法进而得出S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,即可得出答案.【解答】解:∵AD:DB=CE:EB=2:3,∴S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC=3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.3.如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.3C.32D.2【考点】K5:三角形的重心;KW:等腰直角三角形.【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【考点】K5:三角形的重心.【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.5.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.54C.23D.33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值.【解答】解:∵点O是△ABC的重心,∴OC=CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=CE,∴OM=CE﹣CE=CE,即OM=AE,∵BE=AE,∴EF=AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=EF,∴MF=AE,∴==.故选:D.6.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.7.已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.8.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【考点】K6:三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.9.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【考点】K7:三角形内角和定理;JA:平行线的性质.【分析】根据平行线的性质得到∠C=∠AED=54°,根据三角形的内角和即可得到结论.【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选C.二.填空题(共5小题)10.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【考点】K5:三角形的重心;KQ:勾股定理.【分析】连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE==2,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=4,O是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=BC=2,∵O是△ABC的重心,∴AO=2OH=4,故答案为:4.11.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.12.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).13.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.14.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三.解答题(共9小题)15.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)16.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)17.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边角边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.18.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)19.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.20.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△MEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.【解答】解:(1)∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α;(2)PQ=MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△MEB是等腰直角三角形,∴PQ=MB,∴PQ=MB.21.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.22.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t,QD=3(2﹣t),再由运动得出AP=3t,CR=4t,BP=3(2﹣t),AR=4(2﹣t),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S△PQR=18(t﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,sin∠B===,sin∠C=,过点Q作QE⊥AB于E,在Rt△BQE中,BQ=5t,∴sin∠B==,∴QE=4t,过点Q作QD⊥AC于D,在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,∴QD=CQ•sin∠C=(10﹣5t)=3(2﹣t),由运动知,AP=3t,CR=4t,∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),∴S△APR=AP•AR=×3t×4(2﹣t)=6t(2﹣t),S△BPQ=BP•QE=×3(2﹣t)×4t=6t(2﹣t),S△CQR=CR•QD=×4t×3(2﹣t)=6t(2﹣t),∴S△APR=S△BPQ=S△CQR,∴△APR,△BPQ,△CQR的面积相等;(2)由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),∵AB=6,AC=8,∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)=×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,∵0≤t≤2,∴当t=1时,S△PQR最小=6;(3)存在,由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),过点Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,∴四边形APQD是矩形,∴AE=DQ=3(2﹣t),AD=QE=4t,∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=|4(2t﹣2)|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=|3(2t﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP,∴tan∠DQR=tan∠EQP,在Rt△DQR中,tan∠DQR==,在Rt△EQP中,tan∠EQP==,∴,∴16t=9(2﹣t),∴t=.23.如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S△ABC=absin∠C同理S△ABC=bcsin∠AS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.解:S△DEF=EF×DFsin∠F=;DE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【考点】KY:三角形综合题.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,∴S△DEF=EF×DFsin∠F=×3×8×sin60°=6,DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.。

2020初中数学中考一轮复习基础达标训练:相似三角形4(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形4(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形4(附答案)1.若两个圆的周长比为3:7,则它们的面积比为( )A .3:7B . 3:7C .9:49D .7:32.△ABC 和△A ′B ′C ′是位似图形,且面积之比为1∶9,则△ABC 和△A ′B ′C ′的对应边AB 和A ′B ′的比为( )A .3∶1B .1∶3C .1∶9D .1∶273.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A .(A )B .(B )C .(C )D .(D )4.如图,已知像这样由7个全等的正六边形组成的图形叫做“二环蜂窝”,每个正六边形的顶点叫做格点,顶点都在格点上的三角形叫做格点三角形.已知△ABC 为该二环蜂窝一个格点三角形,则在该二环蜂窝中,以点A 为顶点且与△ABC 相似(包括全等但不与△ABC 重合)的格点三角形最多能作的个数为( )A .18B .23C .25D .285.如图,已知123////l l l ,4DE =,6DF =,那么下列结论正确的是( )A .BC :EF=1:1B .BC :AB=1:2 C .AD :CF=2:3 D .BE :CF=2:36.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC7.两个相似三角形的一组对应边分别为6cm和8cm,如果较小三角形的周长为27cm,那么较大三角形的周长为()A.30cm B.36cm C.45cm D.54cm8.在比例尺为1:38 000的城市交通地图上,某条道路的长为5 cm,则它的实际长度为( )A.0.19 km B.1.9 km C.19 km D.190 km9.已知△ABC∽△DEF,若∠A=30°,∠B=80°,则∠F的度数为()A.30°B.80°C.70°D.60°10.如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G,当14FHHG时,DE的长为()A.2 B.125C.185D.411.如图,G为△ABC的重心,DE过点G,且DE∥BC,交AB、AC,分别于D、E 两点,若△ADE的面积为5,则四边形BDEC的面积为__________.12.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm,到屏幕的距离为30cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为_____.13.如图,若△ABC 内一点P 满足∠PAC=∠PCB=∠PBA ,则称点P 为△ABC 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC 中,CA=CB ,∠ACB=120°,P 为△ABC 的布罗卡尔点,若PA=3,则PB+PC=_____.14.已知x :y=1:2,则(x+y ):y=_____.15.如图,已知ABC ACD V V ∽,且相似比是2,已知AB 8=,则AD =________.16.如图,已知△ABC 与△A′B′C′是以坐标原点O 为位似中心的位似图形,且'OA OA =12,若点A (﹣1,0),点C (12,1),则A′C′=_____.17.如图中两三角形相似,则x =________.18.已知a :2=b :3=c :4,则a b c c++=_____. 19.如图,在正方形ABCD 中,AB=6,E 是BC 边的中点,F 是CD 边上的一点,且DF=2,若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为 .20.若0234a b c ==≠,则a b c+=_____. 21.已知:如图,在Rt ABC V 中,90C o ∠=,D 、E 分别为AB 、AC 边上的点,且35AD AE =,连接DE .若3AC =,5AB =,猜想DE 与AB 有怎样的位置关系?并证明你的结论.22.如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,∠C=∠ABD ,AC=5cm ,AB=4cm ,求AD 的长.23.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P .点C 在OP 上,且BC=PC .(1)求证:直线BC 是⊙O 的切线;(2)若OA=3,AB=2,求BP 的长.24.如图,已知AO 为Rt △ABC 的角平分线,∠ACB=90°,43AC BC =,以O 为圆心,OC 为半径的圆分别交AO ,BC 于点D ,E ,连接ED 并延长交AC 于点F .(1)求证:AB是⊙O的切线;(2)求tan CAO的值。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

考点19 相似三角形模型-备战2023届中考数学一轮复习考点梳理(原卷版)

考点19 相似三角形模型-备战2023届中考数学一轮复习考点梳理(原卷版)

考点19 相似三角形基本模型相似三角形在初中数学中因为不同类型的规律比较明显,所以被总结了很多的模型,比如:A 字图、8字图、母子三角形、一线三等角、手拉手相似等。

而掌握了这类模型的套路后,可以更快的应对相似三角形类的应用。

所以考生需要对该考点完全掌握。

一、A 字图及其变型二、8字图及其变型三、一般母子型四、一线三等角五、手拉手模型考向一、A 字图及其变型“斜A 型”型在圆中的应用:如图可得:△PAB ∽△PCD1.如图,在△ABC中,DE∥BC,DE=2,BC=6,则的值为( )A.B.C.D.2.如图,在△ABC中,DE∥FG∥BC,AD:AF:AB=1:2:5,则S△ADE:S四边形DEGF:S四边形FGCB=( )A.1:2:5B.1:4:25C.1:3:25D.1:3:213.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是 平方厘米.4.如图,矩形DEFG的边DE在△ABC的边BC上,顶点G、F分别在边AB、AC上.已知BC=6cm,DE =3cm,EF=2cm,那么△ABC的面积是 cm2.5.如图▱ABCD 中,点E 在BA 的延长线上,连接EC 、BD 交于点G ,EC 交AD 于F ,已知EA :AB =1:2.(1)求EF :EC ;(2)求FG :GC .考向二、8字图及其变型“蝴蝶型”变型1.如图,在△ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是( )A .B .C .D .2.如图,在平行四边形ABCD 中,F 为BC 的中点,延长AD 至点E ,使DE :AD =1:3,连接EF 交DC 于点G ,则S △CFG :S △DEG 等于( )A .9:4B .2:3C .4:9D .3:23.如图,在正方形ABCD 中,E 为AD 上的点,连接CE .以点E 为圆心,以任意长为半径作弧分别交EC ,ED 于点N ,M ,再分别以M ,N 为圆心,以大于MN 长为半径作弧,两弧在∠CED 内交于点P ,连接EP 并延长交DC 于点H ,交BC 的延长线于点G .若AB =16,AE :AD =1:4,则EH 的长为 .4.如图,在▱ABCD 中,G 是CD 延长线上一点,连接BG 交AC ,AD 于E ,F .(1)求证:△ABE ∽△CGE ;(2)若AF =2FD ,求的值.5.以下各图均是由边长为1的小正方形组成的网格,A ,B ,C ,D 均在格点上.(1)在图①中,的值为 ;(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB 上找一点P ,使AP =3;②如图③,在BD 上找一点P ,使△APB ∽△CPD .考向三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,其中:∠A 是公共角AB 是公共边BD 与BC 是对应边则:△PAB∽△PBC得:1.如图,在△ABC中,CD⊥AB于点D,有下列条件:①∠A=∠BCD;②∠A+∠BCD=∠ADC;③;④BC2=BD•BA.其中能判断△ABC是直角三角形的有( )A.0个B.1个C.2个D.3个2.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E为斜边AB的中点,则=( )A.B.C.D.3.如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 .4.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.考向四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型1.如图,AB⊥BD于点B,ED⊥BD于点D.AB=2,DE=4,BD=6.点C为BD上一点,连接AC、CE.当BC=( )时,可使AC⊥CE.A.3B.2或4C.D.2或32.如图,点A,B,C在同一直线上,∠A=∠DBE=∠C,则下列结论:①∠D=∠CBE,②△ABD∽△CEB,③=,其中正确的结论有( )个.A .0B .1C .2D .33.如图,在矩形ABCD 中,点E 是对角线上一点,连接AE 并延长交CD 于点F ,过点E 作EG ⊥AE 交BC 于点G ,若AB =8,AD =6,BG =2,则AE =( )A .B .C .D .4.如图,在△ABC 中,AB =10,BC =34,cos ∠ABC =,射线CM ∥AB ,D 为线段BC 上的一动点且和B ,C 不重合,联结DA ,过点D 作DE ⊥DA 交射线CM 于点E ,联结AE ,作EF =EC ,交BC 的延长线于点F ,设BD =x .(1)如图1,当AD ∥EF ,求BD 的长;(2)若CE =y ,求y 关于x 的函数解析式,并写出定义域;(3)如图2,点G 在线段AE 上,作∠AGD =∠F ,若△DGE 与△CDE 相似,求BD 的长.考向五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC ∽△ADEA 、D 、E 逆时针A 、B 、C 逆时针连结BD 、CE ①△ABD ∽△ACE ②△AOB ∽△HOC ③旋转角相等④A 、B 、C 、H 四点共圆“反向”相似型手拉手△ABC ∽△ADE A 、D 、E 顺时针A 、B 、C 逆时针A 、D 、E`逆时针作△ADE 关于AD 对称的△ADE`性质同上①②③1.如图,△ABC 中,∠BAC =30°,∠ACB =90°,且△ABC ∽△AB 'C ',连接CC ',将CC ′沿C ′B ′方向平移至EB ',连接BE ,若CC '=,则BE 的长为( )A .1B .C .D .22.如图,在△ABC 中,AB =AC =3,BC =6,点P 在边AC 上运动(可与点A ,C 重合),将线段BP绕点P 逆时针旋转120°,得到线段DP ,连接BD ,CD ,则CD 长的最小值为 .3.已知在Rt △ABC 中,CD ⊥AB 于点D .(1)在图1中,写出其中两对相似三角形.(2)已知BD=1,DC=2,将△CBD 绕着点D 按顺时针方向进行旋转得到△C 'BD ,连接AC ',BC .①如图2,判断AC '与BC 之间的位置及数量关系,并证明;②在旋转过程中,当点A ,B ,C '在同一直线时,求BC 的长.1.(2022秋•泗阳县期末)如图,利用标杆BE测量建筑物的高度,已知标杆BE高2m,测得AB=3m,BC =6m.则建筑物CD的高是( )A.4m B.9m C.8m D.6m2.(2022秋•成华区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC 上,连接DE,EF,已知四边形BDEF是平行四边形,.若△ADE的面积为1,则平行四边形BDEF的面积为( )A.3B.4C.5D.63.(2022秋•海淀区校级月考)如图,在等腰△ABC中,AB=AC=9,BP=BC=2,D在AC上,且∠APD =∠B,则CD= .4.(2022秋•万州区期末)如图,矩形ABCD中,AB=6,BC=9,E为CD的中点,F为BC上一点,BF<FC,且AF⊥FE.对角线AC与EF交于点G,则GC的长为 .5.(2022•安徽模拟)在数学探究活动中,小明进行了如下操作:如图,将两张等腰直角三角形纸片ABC 和CDE如图放置(其中∠ACB=∠E=90°,AC=BC,CE=DE).CD、CE分别与AB边相交于M、N 两点.请完成下列探究:(1)若AC=2,则AN•BM的值为 ;(2)过M作MF⊥AC于F,若=,则的值为 .6.(2022秋•驻马店期末)如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.7.(2022秋•开化县期中)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若AC:DC=2:3,BC=6,求EC的长.8.(2022秋•奉贤区期中)如图,已知在四边形ABCD中,AD∥BC.E为边CB延长线上一点,联结DE 交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AE2=AG•AC,求证:=.9.(2022秋•长安区校级月考)如图,已知AB∥EF∥CD,AC,BD相交于点E,EF:AB=2:3.(1)若CE=4,求AE的长;(2)若CD=6,求AB的长;(3)若四边形ABFE的面积为8,直接写出△CEF的面积.10.(2022•文山州模拟)如图,在△ABC中,∠A=90°,D、E分别是AB、BC上的点,过B、D、E三点作⨀O,交CD延长线于点F,AC=3,BC=5,AD=1.(1)求证:△CDE∽△CBF;(2)当⨀O与CD相切于点D时,求⨀O的半径;(3)若S△CDE=3S△BDF,求DF的值.1.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )A.4B.5C.6D.72.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )A.9cm B.12cm C.15cm D.18cm3.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )A.B.4C.D.64.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )A.B.C.D.5.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC 边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③6.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F 处,若CD=3BF,BE=4,则AD的长为( )A.9B.12C.15D.187.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=( )A.B.C.D.8.(2022•锦州)如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF 的面积为 .9.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D 在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .10.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .11.(2022•上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.1.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )A.B.C.D.2.(2022•南岗区三模)如图,点E在菱形ABCD的边CD的延长线上,连接BE交AD于点F,则下列式子一定正确的是( )A.B.C.D.3.(2022•南岗区校级二模)如图,在▱ABCD中,点E在CD边上,连接AE、BE,AE交BD于点F,则下列结论正确的是( )A .B .C .D .4.(2022•鹿城区校级三模)如图,正方形ABCD 由四个全等的直角三角形拼接而成,连结HF 交DE 于点M .若,则的值为( )A .B .C .D .5.(2022•瑶海区三模)如图,△ABC 中,∠BAC =30°,∠ACB =90°,且△ABC ∽△AB 'C ',连接CC ',将CC ′沿C ′B ′方向平移至EB ',连接BE ,若CC '=,则BE 的长为( )A .1B .C .D .26.(2022•瓯海区模拟)如图来自清朝数学家梅文鼎的《勾股举隅》,该图由四个全等的直角三角形围成,延长BC 分别交AG ,HG 于点M ,N ,梅文鼎就是利用这幅图证明了勾股定理.若图中记△MNG 的面积为S ,△GDF 的面积为9S ,则阴影部分的面积为( )A .20SB .21SC .22SD .24S7.(2022•婺城区校级模拟)如图是一个5×6的正方形网格,点A ,B ,C ,D 都在格点上,且线段AB ,CD 相交于点P ,则tan ∠BPC 的值为 .8.(2022•东城区二模)据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了世界上第1个“小孔成像”的实验,阐释了光的直线传播原理,如图(1)所示.如图(2)所示的小孔成像实验中,若物距为10cm,像距为15cm,蜡烛火焰倒立的像的高度是6cm,则蜡烛火焰的高度是 cm.9.(2022•太原二模)如图,在△ABC中,AC=3,BC=4,∠C=90°,过CB的中点D作DE⊥AD,交AB 于点E,则EB的长为 .10.(2022•嘉兴一模)如图,在△ABC中,D,E分别是AB,AC边上的点,且AD:DB=AE:EC=2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.11.(2022•金华模拟)在矩形ABCD中,AB=4,点P是直线CD上(不与点C重合)的动点,连结BP,过点B作BP的垂线分别交直线AD、直线CD于点E、F,连结PE.(1)如图,当AD=4,点P是CD的中点时,求tan∠EBA的值;(2)当AD=2时,①若△DPE与△BPE相似,求DP的长.②若△PEF是等腰三角形,求DE的长.。

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形2(附答案)1.如图,P 为平行四边形ABCD 边AB 上一点,E 、F 分别为PD 、PC 的三等分点(靠近P ),则阴影部分的面积与四边形CDEF 的面积比为( )A .12B .103C .98D .542.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE=B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 3.有一个正六边形,将其按比例缩小,使得缩小后的正六边形的面积为原正六边形面积的,已知原正六边形一边为3,则后来正六边形的边长为( ) A .9B .3C .D .4.如图,BD 、CE 是ABC △的两条高,BD 、CE 相交于O ,则下列结论不正确的是( ).A .ADE V ∽ABC △B .DOE △∽COB △C .BOE △∽COD △D .BOE △∽BDE V5.如图,已知12∠∠=,若再增加一个条件不一定能使结论ADE ABC V V ∽成立,则这个条件是( )A .DB ∠∠= B .AEDC ∠∠=C .AD AEAB AC=D .AD DEAB BC=6.如图DE // BC ,AD :DB=2:1,那么△ADE 与△ABC 的相似比为( )A .16B .23C .14D .27.如图,的高AD ,BE 交于点0,连接DE ,则图中相似三角形共有( )A .4对B .6对C .7对D .8对8.如图,在△ABC 中,AC =15,BC =18,cos C =35,DE ∥BC ,DF ⊥BC ,若S △BFD =2S △BDE ,则CD 长为( )A .7.5B .9C .10D .59.已知线段a ,b ,c ,d 是比例线段,其中b 2cm =,c 3cm =,d 6cm =,则a 等于( )A .1cmB .4cmC .9cmD .36cm10.在比例尺为1:100000的地图上,相距3m 的两地,它们的实际距离为_____km . 11.如图,直线112y x =+与x 轴,y 轴分别相交于A ,B 两点,与双曲线4y x=(0x >)相交于点P ,过P 作PC x ⊥轴于点C ,2OC =,在点P 右侧的双曲线上取一点M ,作MH x ⊥轴于H ,当以点M ,C ,H 为顶点的三角形与AOB ∆相似,则点M 的坐标是__________.12.如图,已知D 是BC 边延长线上的一点,DF 交AC 边于E 点,且AF =1,BC =3CD ,AE =2EC ,则FB 长为_____.13.如果两个相似三角形的面积比是1:9,那么这两个三角形的相似比是______. 14.如图,在ABC V 中,AB AC ,M 为AC 边上一点.要使ABC BCM V V ∽,还需要添加一个条件,这个条件可以是________.(只需填写一个你认为适当的条件即可)15.如图,在矩形中,E 是边的延长线上一点,连接交边于点F 若AB =4,BC =6,DE =2,则AF 的长为___.16.若两个三角形的相似比为3:4,则这两个三角形的面积比为________. 17.如图,直线y =12x+1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1:3,则点B 的对应点B′的坐标为_____.18.如图,A ,B 两点分别位于一个池塘的两端,为了测量A 、B 之间的距离,小天想了一个办法:在地上取一点C ,使它可以直接到达A 、B 两点,连接AC ,BC ,在AC上取一点M,使AM=3MC,作MN//AB交BC于点N,测得MN=36m,则A、B两点间的距离为_____.19.如图,将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M 处.点D落在点D'处,MD'与AD交于点G,则△AMG的内切圆半径的长为______.20.如图,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.求证:CD CB CE CA⋅=⋅21.一天晚上,小颖由路灯A下的B处向正东走到C处时,测得影子CD的长为1米,当她继续向正东走到D处时,测得此时影子DE的一端E到路灯A的仰角为45°,已知小颖的身高为1.5米,那么路灯AB的高度是多少米?22.如图,AD DE AEAB BC AC==,求证:ABD ACE∠=∠.23.如图,AD 为ABC △的角平分线,BE AD ⊥的延长线于E ,CF AD ⊥于F ,BF 、EC 的延长线交于点P ,求证:CF//AP24.在ABC V 中,ACB 90∠=o ,AC BC 2==,点C 在直线m 上,m//AB ,DBE 45∠=o ,其中点D 、E 分别在直线AC 、m 上,将DBE ∠绕点B 旋转(点D 、E都不与点C 重合).()1当点D 在边AC 上时(如图1),设CE x =,CD y =,求y 关于x 的函数解析式,并写出定义域;()2当BCE V 为等腰三角形时,求CD 的长.25.如图,四边形ABCD 中,AB =AD ,边BC 、CD 的垂直平分线交于四边形内部一点O ,连接BO 、DO ,已知BO ∥AD .(1)判断四边形ABOD 的形状?并证明你的结论;(2)连接AO 并延长,交BC 于点E ,若CE =25,BE =65,∠ODC =45°. ①求AB 的长.②若∠BAD =135°,求AO•AE 的值.26.如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE ,AD 与BE 相交于点F.AEF V 与ABE △相似吗?说说你的理由.27.《九章算术》有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好有望见这棵树.请解答上述问题(注:1里=300步).参考答案1.D 【解析】 【分析】根据平行四边形的性质和相似三角形的判定和性质定理即可得到结论. 【详解】解:∵四边形ABCD 是平行四边形, ∴S △CPD =12S 四边形ABCD , ∵E 、F 分别为PD 、PC 的三等分点, ∴13PE PF PD PC ==, ∵∠EPF =∠DPC , ∴△PEF ∽△PDC ,∴19PEF PDC S S =n n , ∴CDEF 89PDC S S n 四边形=,∴CDEF ABCD49S S =四边形四边形, ∴阴影部分的面积与四边形CDEF 的面积比为54, 故选:D . 【点睛】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题. 2.A 【解析】 【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB ∥CD ∥EF ,DF CE故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.3.C【解析】【分析】先由位似图形的性质可得这两个正六边形相似;再由缩小后的正六边形的面积为原正六边形面积的可得相似比为1:,进而求解即可.【详解】∵这两个正六边形是位似图形,∴这两个正六边形相似.∵缩小后的正六边形的面积为原正六边形面积的,∴相似比为1:.∵原正六边形的边长为3,∴后来正六边形的边长为=.故选C.【点睛】本题考查本题考查位似图形的应用,需掌握位似图形的性质.4.D【解析】【分析】根据相似三角形的判定定理,找出图中的全等三角形,即可得到答案.【详解】∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,又∵∠A=∠A∴△ADB∽△AECAE AC又∵∠A=∠A∴△ADE∽△ABC,故A正确;∵BD、CE是△ABC的高,∴∠OEB=∠ODC=90°,又∵∠EOB=∠DOC∴△BOE∽△COD,故C正确;∵△BOE∽△COD∴OE OB= OD OC又∵∠DOE=∠COB∴△DOE∽△COB,故B正确;无法判定△BOE∽△BDE,故D错误;故选D.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解决本题的关键. 5.D【解析】【分析】根据12∠=∠可得∠DAE=∠BAC,因此只要再找一组角相等或一组对应边成比例即可. 【详解】解:∵12∠=∠,∴∠DAE=∠BAC.选项A、B中,根据两角分别相等的两个三角形相似可得△ADE∽△ABC;选项C中根据两边成比例且夹角相等的两个三角形相似可得△ADE∽△ABC;选项D中,由于∠DAE与∠BAC,不是成比例两边的夹角,所以不一定能使△ADE∽△ABC. 故选D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.6.B【解析】【分析】 先求出ADAB的值,再由相似三角形的对应边成比例即可得出结论. 【详解】解:∵AD :DB=2:1,23∴=AD AB ∵DE ∥BC , ∴△ADE ∽△ABC ,∴△ADE 与△ABC 的相似比= 23AD AB = 故选:B . 【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应边的比等于相似比是解答此题的关键. 7.D 【解析】 【分析】根据相似三角形的判定定理解答即可. 【详解】 解:∵的高AD ,BE 交于点O ,∴.又∵,,,∴.∵,∴,∴,又∵,∴,∴,则,∴.又∵,∴.故选D. 【点睛】本题考查了相似三角形的性质及其判定,解题的关键是熟练掌握这些性质. 8.C 【解析】【分析】设CD=5x ,CF=3x ,先证△AED ∽△ABC ,得到ED BC =AD AC,又由S △BFD =2S △BDE ,即12ED•DF=12×12BF•DF ,解得x=2,即可求CD=5×2=10. 【详解】设CD=5x ,CF=3x ,则AD=15-5x ,BF=18-3x ,∵DE ∥BC ,∴△AED ∽△ABC , 即ED BC =AD AC , 即18ED =15515x -, ED=18(155)15x -(1) ∵S △BFD =2S △BDE , 即12ED•DF=12×12BF•DF , 即ED=12(18-3x )(2) 由(1)(2)得x=2,故CD=5×2=10. 故选:C .【点睛】本题较复杂,涉及到三角形相似及平行线的性质,需同学们熟练掌握.9.A【解析】【分析】根据a 、b 、c 、d 是成比例线段,得a :b c =:d ,再根据比例的基本性质,求出a 的值即可.【详解】a Q 、b 、c 、d 是成比例线段,a ∴:bc =:d ,b 2cm =Q ,c 3cm =,d 6cm =,a1cm∴=;故选A.【点睛】本题考查了比例线段,写比例式的时候一定要注意顺序,再根据比例的基本性质进行求解.10.300.【解析】【分析】首先根据地图的比例尺,求出在地图上相距3m的两地的实际距离,然后将实际距离的单位换算为km即可.【详解】3÷1100000=300000(m),300000m=300km;答:它们的实际距离为300km;故答案为:300.【点睛】本题考查比例尺的应用,学会换算单位也是本题的难点.11.(4,1)或(12)+【解析】【分析】先求出点A、点B的坐标,设点M的坐标为(m,n),分两种情况:当△MCH∽△BAO和△MCH∽△ABO时,由相似得比例求出m的值,即可得出点M的坐标.【详解】解:直线y=12x+1与x轴,y轴分别相交于A,B两点,令x=0得y=1,令y=0得x=-2,∴A(-2,0),B(0,1).设点M的坐标为(m,n),∵点M在双曲线4yx=上,∴n=4m.当△MCH∽△BAO时,可得CH MH AO BO=,即221 m n -=,∴m-2=2n,即m-2=8m,∴m2-2m-8=0,解得:m1=4,m2=-2(舍去),∴n=4m=1,∴M(4,1);当△MCH∽△ABO时,可得CH MH BO AO=,即212 m n -=整理得:2m-4=4m,∴m2-2m-2=0,解得:m1m2,∴n=,∴M(,).综上,M(4,1)或M().故答案为:(4,1)或(,).【点睛】此题属于反比例函数综合题,涉及的知识有:相似三角形的判定和性质,一次函数图象与性质,反比例函数图象上点的坐标特征,设出点M的坐标然后分两种情况进行讨论是解本题的关键.12.2.【解析】【分析】过C作CG∥AB交DF于G,于是得到△CDG∽△BDF,△CEG∽△AFE,根据相似三角形的性质得CGBF=CDBD,CGAF=CEAE,求得BF=4CG,AF=2CG,即可得到结论.【详解】过C作CG∥AB交DF于G,∴△CDG∽△BDF,△CEG∽△AFE,∴CGBF=CDBD,CGAF=CEAE∵BC=3CD,∴CDBD=14,∴CGBF=14,∴BF=4CG,∵AE=2EC,∴CGAF=12,∴AF=2CG,∵AF=1,∴BF=2;故答案为:2.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据相似三角形的性质列出比例式求解.13.1:3【解析】【分析】由两个相似三角形的面积比是1:9,根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的面积比是1:9,∴这两个三角形的相似比是:1:3.故答案为:1:3.【点睛】本题考查了相似三角形的性质.此题比较简单,注意掌握定理的应用是解此题的关键. 14.BM BC =或ABC BMC ∠∠=或A MBC ∠∠=(答案不唯一)【解析】【分析】要使△ABC ∽△BCM ,可以再添加BM =BC 或∠ABC =∠BMC 或∠A =∠MBC 从而根据有两组角对应相等的两个三角形相似来判定.【详解】因为AB =AC ,所以∠ABC =∠C ,若BM =BC 或∠ABC =∠BMC 或∠A =∠MBC (答案不唯一),则△ABC ∽△BCM .故答案为BM =BC 或∠ABC =∠BMC 或∠A =∠MBC (答案不唯一).【点睛】这是一道考查相似三角形的判定的开放性的题,答案不唯一.15.4【解析】【分析】由四边形ABCD是矩形,推出,,设,则由,可得,由此构建方程即可解决问题.【详解】解:四边形ABCD是矩形,,,设,则,,∽,,,,.故答案为4.【点睛】本题考查相似三角形的判定和性质,矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.9:16【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个三角形的相似比为3:4,∴这两个三角形的面积比为9:16,故答案为:9:16.【点睛】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.17.(﹣8,﹣3)或(4,3).【解析】【分析】先解得点A 和点B 的坐标,再利用位似变换可得结果.【详解】解:∵直线y =12x+1与x 轴交于点A ,与y 轴交于点B 令x=0可得y=1;令y=0可得x=-2,∴点A 和点B 的坐标分别为(-2,0);(0,1),∵△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1:3,13OB OA O B AO ∴==′′′ ∴O′B′=3,AO′=6,∴B′的坐标为(-8,-3)或(4,3).故答案为:(-8,-3)或(4,3).【点睛】本题主要考查了位似变换和一次函数图象上点的坐标特征,得出点A 和点B 的坐标是解答此题的关键.18.144m【解析】【分析】根据MN ∥AB ,可得△CMN ∽△CAB ,然后再根据相似三角形的性质可得MN CM AB AC =,再代入数进行计算即可.【详解】解:∵MN ∥AB ,∴△CMN ∽△CAB , ∴MN CM AB AC=, ∵AM=3MC ,MN=36m ,∴3614 AB,AB=144m,故答案为144m.【点睛】此题主要考查了相似三角形的判定和性质,关键是掌握相似三角形对应边成比例.19.4 3【解析】【分析】由勾股定理可求ME=5,BE=3,通过证明△AMG∽△BEM,可得AG=163,GM=203,即可求解.【详解】∵将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M处.∴ME=CE,MB=12AB=4=AM,∠D'ME=∠C=90°,在Rt△MBE中,ME2=MB2+BE2,∴ME2=16+(8-ME)2,∴ME=5,∴BE=3,∵∠D'ME=∠DAB=90°=∠B∴∠EMB+∠BEM=90°,∠EMB+∠AMD'=90°∴∠AMD'=∠BEM,且∠GAM=∠B=90°∴△AMG∽△BEM∴AM AG GM BE MB ME ==∴4345AG GM==,∴AG=163,GM=203∴△AMG的内切圆半径的长=423 AG AM GM+-=故答案为:4 3 .【点睛】此题考查三角形内切圆和内心,勾股定理,相似三角形的判定和性质,熟练运用相似三角形的性质求AG,GM的长度是本题的关键.20.证明见详解【解析】【分析】根据垂直得出∠BEC=∠ADC=90°,求出∠CBE=∠DAC,根据相似三角形的判定定理得出即可.【详解】证明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°,∵∠BCE=∠ACD(公共角),∴∠CBE=∠CAD,∴△CBE∽△CAD,∴CE CB CD CA=即:CD CB CE CA⋅=⋅【点睛】本题考查了相似三角形的判定和性质的应用,能熟练地运用定理进行推理是解此题的关键.21.AB=4.5m【解析】【分析】如图,根据已知可得AB=BE,再证明△DCM∽△DBA,然后利用相似三角形的性质得出DC BDMC AB=,设AB=x,代入数据后解方程即可求出AB的高度.【详解】解:如图,∵∠ABE =90°,∠E =45°,∴∠E =∠EAB =∠EFD =45°, ∴AB =BE ,DE =DF =1.5,∵MC ∥AB ,∴△DCM ∽△DBA ,∴DC BD MC AB=, 设AB =x ,则BD =x ﹣1.5, ∴1 1.51.5x x -=, 解得:x =4.5.∴路灯A 的高度AB 为4.5m .【点睛】此题主要考查了相似三角形的应用和投影问题,根据已知得出AB =BE 、熟练掌握相似三角形的判定和性质是解题关键.22.见解析【解析】【分析】由AD DE AE AB BC AC==,得到△ADE ∽△ABC ,根据相似三角形的性质得到∠DAE=∠BAC ,根据角的和差得到∠DAB=∠EAC ,推出△ADB ∽△AEC ,即可得到结论.【详解】证明:∵AD DE AE AB BC AC==, ∴ADE ABC ∆∆∽.∴DAE BAC ∠=∠.∴DAB EAC ∠=∠. ∵AD AE AB AC=, ∴ADBC AEC ∆∆∽.∴ABD ACE ∠=∠.【点睛】考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 23.见解析【解析】【分析】由条件可得CF ∥BE ,结合条件可证明△BAE ∽△ACF ,可得到CP AF PE AE =,则有CF ∥AP . 【详解】证明:∵CF ⊥AE ,BE ⊥AE ,∴CF ∥BE , ∴CP CF PE BE=,∠AFC =∠AEB =90°, ∵AD 是∠BAC 的平分线,∴∠BAE =∠EAC ,∴△BAE ∽△CAF , ∴AF CF AE BE=, ∴CP AF PE AE =, ∴CF ∥AP .【点睛】本题主要考查平行线分线段成比例的逆定理及相似三角形的判定和性质,掌握相似三角形的对应边成比例是解题的关键,注意由线段对应成比例也可以证明平行.24.(1)y 2x =<<;(2)当BCE V 为等腰三角形时,CD 的长为2或2或2.【解析】【分析】(1)证明△ADB ∽△CEB ,通过比例式找到y 与x 的关系;(2)分情况讨论,①当BE=CE 时,C 、D 重合,不符合题意,舍去;②当BC=BE 时,如图1;③当BC=CE 时,有两种图形(如图2、3).画出对应图形后,根据等腰三角形的性质,求出底角度数,再转化为边之间的关系即可求解.【详解】解:()1m //AB Q ,ECB CBA 45∠∠∴==o .A ECB 45∠∠∴==o .DBA 45CBD ∠∠=-o Q ,EBC 45CBD ∠∠=-o ,DBA EBC ∠∠∴=.ADB V ∴∽CEB V.AD AB CE BC ∴=,即2y x -=.y 2x ∴=-<<;()2①当BE CE =时,C 、D 重合,不符合题意,舍去;②当BC BE =时,如图1,ECB 45∠=o Q ,CEB 45∠∴=o ,CBE 90∠∴=o .则CBD 90DBE 45∠∠=-=o o .ABD 454590∠∴=+=o o o .A 45∠=o Q ,ABD ∴V 是等腰直角三角形.AD 4∴=,CD 422∴=-=;③当BC CE =时,Ⅰ.如图2,ECB 45∠=o Q ,CBE 67.5∠∴=o .ABD CBE 67.5∠∠∴==o .ADB 1804567.567.5o o o o ∠∴=--=.ABD ADB ∠∠∴=,AD AB 22∴==.CD 222∴=-;Ⅱ.如图3,则BCE 135∠=o ,CBE 22.5∠∴=o .ABD 22.5o ∠∴=,CAB 45∠=o Q ,ADB 4522.522.5∠∴=-=o o o .AD AB 22∴==.CD 222∴=+.所以当BCE V 为等腰三角形时,CD 的长为2或222或222.【点睛】本题主要考查相似三角形的判定和性质、等腰三角形的判定和性质,还考查了分类讨论思想,解题的关键是画出对应图形进行求解.25.(1)证明见解析(2)10(3)100【解析】【分析】(1)连接AO 、CO ,根据中垂线知OB =OC =OD ,证△ABO ≌△ADO 得∠BAO =∠DAO ,由BO ∥AD 知∠BOA =∠DAO ,从而得∠BAO =∠BOA ,据此知AB =BO ,继而得证;(2)连接CO 、DE ,设DE 交OC 于点P ,先证△BOE ≌△DOE 得BE =DE 、∠OBE =∠ODE ,结合∠OBC =∠OCB 知∠OCE =∠ODE ,由∠EPC =∠OPD 知∠CEP =∠DOP =90°,根据CE 2+DE 2=DC 2知CE 2+BE 2=2AB 2,代入计算可得;(3)由△BOE ≌△DOE ,∠DEB =90°知∠OEB =∠OED =45°,结合四边形ABOD 是菱形,∠BAD =135°知∠ABO =45°,从而得∠ABO =∠AEB ,证△ABO ∽△AEB 得AO•AE =AB 2,代入计算可得.【详解】解:(1)四边形ABOD 是菱形,理由如下:如图1,连接AO、CO,∵边BC、CD的垂直平分线交于点O,∴OB=OC=OD,又AB=AD,AO=AO,∴△ABO≌△ADO(SSS),∴∠BAO=∠DAO,∵BO∥AD,∴∠BOA=∠DAO,∴∠BAO=∠BOA,∴AB=BO,∴AB=BO=OD=AD,∴四边形ABOD是菱形;(2)如图2,连接CO、DE,设DE交OC于点P,∵∠ODC=45°,OC=OD,∴∠COD=90°,△OCD是等腰直角三角形,∴CD22AB,∵四边形ABOD是菱形,∴∠DOA=∠BOA,∴∠BOE=∠DOE,在△BOE和△DOE中,∵B0D0BOE DOE0E0E=⎧⎪∠=∠⎨⎪=⎩,∴△BOE≌△DOE(SAS),∴BE=DE、∠OBE=∠ODE,∵∠OBC=∠OCB,∴∠OCE=∠ODE,又∵∠EPC=∠OPD,∴∠CEP=∠DOP=90°,在Rt△DCE中,CE2+DE2=DC2,即CE2+BE2=2AB2,∵CE=BE=∴2AB2=(2+(2=200,∴AB=10;(3)由(2)知△BOE≌△DOE,∠DEB=90°,∴∠OEB=∠OED=45°,∵四边形ABOD是菱形,∠BAD=135°,∴∠ABO=45°,∴∠ABO=∠AEB,又∵∠BAO=∠EAB,∴△ABO∽△AEB,∴AB AD AE AB=,∴AO•AE=AB2,∵AB=10,∴AO•AE=100.【点睛】本题是相似三角形的综合问题,解题的关键是掌握菱形的判定与性质、全等三角形和相似三角形的判定与性质及等腰直角三角形的性质等知识点.26.答案见解析【解析】【分析】证ABD BCE ∽△△,得BAD CBE ∠=∠,再证ABE FAE ∠=∠,可进一步证AEF BEA ∽△△.【详解】解:相似.理由如下:∵BD CE =,60ABC C ∠=∠=︒,AB BC =,∴ABD BCE ∽△△,∴BAD CBE ∠=∠,∵60ABC BAC ∠=∠=︒,∴ABE FAE ∠=∠.又∵AEF BEA ∠=∠,∴AEF BEA ∽△△.【点睛】考核知识点:相似三角形的判定和性质.熟记相似三角形的判定和性质的内容是关键. 27.315步【解析】【分析】根据题意写出AB 、AC 、CD 的长,根据相似三角形的性质得到比例式,计算即可.【详解】解:由题意,得15AB =里, 4.5AC =里, 3.5CD =里,∵DE CD ⊥,AC CD ⊥∴//AC DE ,易得ACB ∆∽DEC ∆, ∴DE DC AC AB=, 即 3.54.515DE =, 解得 1.05DE =(里)315=(步)∴走出南门315步恰好能望见这棵树.【点睛】本题考查了相似三角形的应用,根据题意得出相似三角形是解决此题的关键.。

第21讲 相似三角形-中考数学一轮复习知识考点习题课件

第21讲 相似三角形-中考数学一轮复习知识考点习题课件

∵四边形ABCD是正方形,∴∠DCG=90°. ∵CF平分∠DCG,∴∠FCG=21(1)∠DCG=
2 45°.
∵∠EGF=90°,∴∠GCF=∠CFG=45°,
∴FG=CG,∴EG=CE+CG=2+FG.
由(1A)B知=,△BEBA,E∽△1G0EF,= 8 ,
EG FG 2 FG FG

1
∴ CE FG
第四章 图形初步与三角形
第21讲 类似三角形
上一页 下一页
1.(202X·武威)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使
雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图
中b为2米,则a约为A( ) A.1.24米 B.1.38米 C.1.42米 D.1.62米
A.14
B.15
C. 8 3 D.6 5
上一页 下一页
15.(202X·乐山)把两个含30°角的直角三角板按如图所示拼接在一起,点E
为AD的中点,连接BE,交AC于点F,则AF
3
=__5______.
AC
上一页 下一页
16.(202X·湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶 点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知 Rt△ABC是6×6网格图中的格点三角形,则该图中所有与Rt△ABC类似的 格点三角形中,面积最大的三角形的斜边长是___5__2___.
2,A′D′=3,则△ABC与△A′B′C′的面积比为( A )
A.4∶9
B.9∶4
C.2∶3
D.3∶2
上一页 下一页
4.(202X·雅安)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴 影部分)与△A1B1C1类似的是( B )

中考数学第一轮复习 三角形

中考数学第一轮复习 三角形
正整数,则这样的三角形个数为( B ) A.2 B.3 C.5 D.13
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性

2020届中考数学一轮复习新突破(人教通用版)第21课时 相似三角形及其应用

2020届中考数学一轮复习新突破(人教通用版)第21课时 相似三角形及其应用
第 21 课时
相似三角形及其应用
考点聚焦
考点一 比例线段的相关概念及性质 1.线段的比:两条线段的比是两条线段的长度之比. 2.比例中项:如果������������=������������,即 b2=① ac ,我们就把 b 叫做 a,c 的比例中项.
3.比例的基本性质
性质 1
a=c ⇔②
bd
中的相似三角形△ACD∽△ABC∽△CBD.Fra bibliotek图21-6
4. [九下P58复习题27第11题改编]如图21-7, [答案] 48
一块材料的形状是锐角三角形ABC,边
[解析]设正方形零件的边长为 x mm,
BC=120 mm,高AD=80 mm.把它加工成正方 ∵EF∥BC,∴△AEF∽△ABC,
形零件,使正方形的一边在BC上,其余两个顶
ad
=bc(bd≠0)
性质 2
如果a=c ,那么a±b=③
bd
b
������± ������ ������
性质 3
������
如果a =c =…=m (b+d+…+n≠0),那么a+c+…+m =④
bd
n
b +d +…+n
������
4.黄金分割:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC),如果 ������������������������=������������������������,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与
∴AC=6 5,BC=12 5, ∴剩余部分的面积=12×6 5×12 5-(4 5)2=100(cm2).故选 D.

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)1.如图,五边形ABCDE 和五边形11111A B C D E 是位似图形,点A 和点1A 是一对对应点,P 是位似中心,且123PA PA =,则五边形ABCDE 和五边形11111A B C D E 的相似比等于( )A .23B .32C .35D .532.下列三角形中,与下图中的三角形相似的是( )A .B .C .D .3.点C 是线段AB 的黄金分割点,且AB=6cm ,则BC 的长为( )cmA .353-B .935-C .656-或935-D .935-或353-4.如图,点O 是△ABC 内任一点,点D ,E ,F 分别为OA ,OB ,OC 的中点,则图中相似三角形有( )A .1对B .2对C .3对D .4对5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得4BC =米,2CA =米,则树的高度为( )A .6米B .4.5米C .4米D .3米6.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CD =4,BC =5,则AC 等于( )A .3B .4C .163D .2037.已知:如图,在▱ABCD 中,AE :EB=1:3,则FE :FC=( )A .1:2B .2:3C .3:4D .3:28.已知a ,d ,b ,c 依次成比例线段,其中3a cm =,4b cm =,6c cm =,则d 的值为( )A .8cmB .192 cm C .4cm D .92cm 9.如图,∠1=∠2=∠3,则下列结论不正确的是( )A .△DEC ∽△ABCB .△ADE ∽△BEAC .△ACE ∽△BEAD .△ACE ∽△BCA10.如图,BE ,CF 为△ABC 的两条高,若AB=6,BC=5,EF=3,则AE 的长为( )A .185B .4C .215D .24511.如图,ADE ACB V V ∽,则:DE BC =________.12.如图,在ABC ∆中,//,3cm,5cm,DE BC AD AB ADE ==∆与ABC ∆是否相似_________,相似比是__________.13.以原点O 为位似中心,将ABC V 缩小,使变换后得到的111A B C V 与ABC V 对应边的比为1:2.请在网格内画出111A B C V ,并写出点1A 的坐标________.14.已知在等腰△ABC 中,AB =AC =5,BC =4,点D 从A 出发以每秒5个单位的速度向点B 运动,同时点E 从点B 出发以每秒4个单位的速度向点C 运动,在DE 的右侧作∠DEF =∠B ,交直线AC 于点F ,设运动的时间为t 秒,则当△ADF 是一个以AD 为腰的等腰三角形时,t 的值为_____.15.如图,△ABC 是等边三角形,AB=3,E 在AC 上且AE=AC ,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转900,得到线段EF ,当点D 运动时,则线段AF 的最小值是_______16.如图,在四边形ABCD 中,,15A CBD AB ∠=∠=cm ,20AD =cm ,18BD =cm ,24BC =cm ,则CD 的长为__________cm .17.若a:b=1:3,b:c=2:5,则a:c=_____.18.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN⋅的最小值为______.19.A 城市的新区建设规划图上,新城区的南北长为120cm ,而该新城区的实际南北长为6km ,则新区建设规划图所采用的比例尺是__________.20.如图,ABC △与AEF V 中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是_____(填写所有正确结论的序号).21.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画圆,P 是⊙O 上一动点且在第一象限内,过点P 作⊙O 的切线,与x 、y 轴分别交于点A 、B .(1)求证:△OBP 与△OPA 相似;(2)当点P 为AB 中点时,求出P 点坐标;(3)在⊙O 上是否存在一点Q ,使得以Q ,O ,A 、P 为顶点的四边形是平行四边形.若存在,试求出Q 点坐标;若不存在,请说明理由.22.如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于D ,过点D 作DE ⊥AD 交AB 于点E ,以AE 为直径作⊙O(1)求证:点D 在⊙O 上;(2)求证:BC 是⊙O 的切线;(3)若AC=6,BC=8,求BE 的长度.23.已知O 是坐标原点,A 、B 的坐标分别为(3,1)、(2,−1).(1)画出V OAB 绕点O 顺时针旋转90°后得到的11△OA B ;(2)在y 轴的左侧以O 为位似中心作V OAB 的位似22OA B △(要求:新图与原图的相似比为2:1).24.如图,在68⨯的网格图中,每个小正方形边长均为1,原点O 和ABC V 的顶点均为格点.()1以O 为位似中心,在网格图中作A'B'C'V ,使A'B'C'V 与ABC V 位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)()2若点C 和坐标为()2,4,则点A'的坐标为(______ ,______ ),点C'的坐标为(______ ,______ ),A'B'C'S V :ABC S =V ______ .25.如图,在△ABC 中,AB=AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若32FD EF =,求证:A 为EH 的中点. (3)若EA=EF=1,求圆O 的半径.26.如图,在矩形ABCD 中,点E 为边AB 上一点,且AE=13AB ,EF ⊥EC ,连接BF . (1)求证:△AEF ∽△BCE ;(2)若AB=33,BC=3,求线段FB 的长.27.已知在ABC V 中,D 是边AC 上的一点,CBD ∠的角平分线交AC 于点E ,且AE AB =,求证:2AE AD AC =⋅.28.已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α,(1)如图1所示,当α=60°时,求证:△DCE 是等边三角形;(2)如图2所示,当α=45°时,求证:CD DE =2; (3)如图3所示,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系:CE DE =_____.参考答案1.B【解析】【分析】直接利用位似图形的性质得出五边形ABCDE和五边形A1B1C1D1E1的相似比为:1PAPA,进而求出即可.【详解】∵五边形ABCDE和五边形A1B1C1D1E1是位似图形,点A和点A1是一对对应点,P是位似中心,且2PA=3PA1,∴五边形ABCDE和五边形A1B1C1D1E1的相似比为:13=2PAPA.故选B.【点睛】此题主要考查了位似图形的性质,利用位似比=相似比得出是解题关键.2.B【解析】【分析】根据图示知该三角形是腰长为3的等腰三角形,所以由相似三角形的判定定理进行判定即可.【详解】如图:A.根据图示知,该等腰三角形的顶角与已知等腰三角形的顶角不相等,所以它们不是相似三角形.故本选项错误;B.由图示知,该等腰三角形与已知等腰三角形可以由“两边及其夹角法”证得相似.故本选项正确;C.由图示知,该三角形为等边三角形,则它的内角均为60°,与已知三角形的对应角不相等,所以它们不是相似三角形.故本选项错误;D.由图示知,该等腰三角形的顶角与已知等腰三角形的顶角不相等,所以它们不是相似三角形.故本选项错误.故选B.【点睛】本题考查了相似三角形的判定.(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.3.D【解析】【分析】根据黄金分割点的定义,知BC可能是较长线段,也有可能是较短线段,则BC或BC,将AB=6cm代入计算即可.【详解】∵点C是线段AB的黄金分割点,且AB=6cm,∴BC=3或BC=9-故选D.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,其中较长的线段为全线段与较短线.4.D【解析】【分析】根据点D,E,F分别为OA,OB,OC的中点,可得DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,可得DE//AB,DF//AC,EF//BC,进而可判定△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,根据中位线性质可得12DE AB =,11,22DF AC EF BC ==, 继而可得12DE DF EF AB AC BC ===,可判定△DEF ∽△ABC. 【详解】因为点D,E,F 分别为OA,OB,OC 的中点,所以DE 是△AOB 的中位线,DF 是△AOC 的中位线,EF 是△BOC 的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE ∽△AOD, △DOF ∽△AOC, △EOF ∽△BOC,因为DE 是△AOB 的中位线,DF 是△AOC 的中位线,EF 是△BOC 的中位线, 所以12DE AB =,11,22DF AC EF BC ==, 所以12DE DF EF AB AC BC ===, 所以△DEF ∽△ABC,因此有四对相似三角形,故选D.【点睛】本题主要考查相似三角形的判定,解决本题的关键是要熟练掌握相似三角形的判定方法. 5.B【解析】【分析】根据题意画出图形,根据相似三角形的性质即可解答.【详解】如图:∵BC=4, AC=2,∴AB=2+4=6,∵CD ∥BE ,∴△ACD ∽△ABE ,∴AC :AB=CD :BE ,∴2:6=1.5:BE ,∴BE=4.5m ,∴树的高度为4.5m ,故选B.【点睛】本题考查了相似三角形的应用举例,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出树的高度,体现了转化的思想.6.D【解析】分析:由勾股定理求得BD,证得△BDC∽△CDA,根据相似三角形的性质即可求得结果.详解:∠ACB=90°,CD⊥AB于D,CD=4,BC=5,由勾股定理得:2222=54BC CD--=3,∵∠ACB=90°,CD⊥AB于D,∴∠B=90°-∠BCD=∠ACD,∠BDC=∠ADC,∴△BDC∽△CDA,∴BC BD AC CD=,即534 AC=,解得:AC=20 3故选D.点睛:本题主要考查了勾股定理,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.C【解析】【分析】由平行四边形的性质可知AB=CD,再根据AE:EB=1:3可得BE:CD=3:4,再根据相似三角形的对应边成比例即可求得FE:EC的值.【详解】∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴△BEF ∽△DCF ,∴EF :FC=BE :CD ,∵AE :EB=1:3,AE+BE=AB ,∴BE :AB=3:4,∴EF :FC=3:4,故选C.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.D【解析】【分析】能够根据比例的基本性质熟练进行比例式和等积式的互相转换.根据题意得: ::a d b c =代入数值即可求得.【详解】根据题意得:a :d =b :c ,∵a =3cm ,b =4cm ,c =6cm ,∴3:d =4:6, ∴9cm 2d =; 故选:D.【点睛】本题主要考查了成比例线段,解题的关键是理解成比例线段的概念.9.C【解析】试题解析:A.∵∠2=∠3,∠C=∠C ,∴△DEC ∽△ABC ,故A 正确;B ∵∠2=∠3,∴DE ∥AB ,∴∠DEA=∠EAB ,∵∠1=∠3,∴△ADE ∽△BEA ;故B 正确;C.∵∠1=∠2,∠BEA≠∠C ,∴△ACE 与△BEA 不相似;故C 错误;D.∵∠1=∠3,∠C=∠C ,∴△ACE ∽△BCA ;故D 正确.故选C .10.A【解析】【分析】根据两组角对应相等,得到△AEB ∽△AFC ,根据相似三角形的性质得到,AE AB AF AC =进而证明△AEF ∽△ABC ,根据相似三角形的性质得到,EF AE BC AB =代入即可求解. 【详解】∵BE ,CF 为△ABC 的两条高,∴∠AEB=∠AFC=90°,∵∠A=∠A ,∴△AEB ∽△AFC , ∴,AE AB AF AC= ∵∠A=∠A ,∴△AEF ∽△ABC , ∴,EF AE BC AB= ∵AB=6,BC=5,EF=3, ∴3,56AE = ∴18.5AE = 故选A .【点睛】考查相似三角形的判定与性质,掌握相似三角形的几种判定方法是解题的关键.11.1:3【解析】【分析】根据相似三角形的性质进行计算即可.【详解】∵△ADE ∽△ACB , ∴DE BC =AD AC =233+=13.故答案为1:3.【点睛】本题考查了相似三角形的性质,解题的关键是熟练的掌握相似三角形的性质. 12.相似3:5【解析】【分析】DE BC可得同位角相等,即∠ADE=∠B,∠AED=∠C,两角对应相等得由//△ADE∽△ABC,再由对应边的比例得相似比.【详解】DE BC,∵//∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,则:相似比=AD:AB=3:5【点睛】本题结合平行,考查了两角对应相等则两三角形相似的判定方法以及相似比.1,413.()【解析】【分析】利用位似图形的性质得出对应点位置进而得出答案.【详解】如图所示:A1(1,4).故答案为(1,4).【点睛】此题主要考查了位似图形画法,得出对应点位置是解题关键.14.521【解析】【分析】当△ADF 是一个以AD 为腰的等腰三角形时,如图2,只能AD =AF ,由题意DF =4t ,BE =4t ,DF ∥BE ,推出四边形BEFD 是平行四边形,由△ABC ∽△BED ,可得=BD BE BC AB,延长构建方程即可解决问题;【详解】如图1,过A 作AG ⊥BC 于G ,∵AB =AC =5,∴BG =CG =2,由勾股定理得:AG =22(5)2 =1,由图形可知:∠BAC 是钝角,∴当△ADF 是一个以AD 为腰的等腰三角形时,如图2,只能AD =AF ,由题意DF =4t ,BE =4t ,DF ∥BE ,∴四边形BEFD 是平行四边形,∴∴DEF =∠BDE =∠B ,∴△ABC ∽△BED ,∴=BD BE BC AB,∴55=5t,∴t=5 21,故答案为5 21.【点睛】本题考查的是勾股定理,等腰三角形的判定和性质、平行四边形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用数形结合的思想思考问题,属于中考填空题中的压轴题.15.【解析】【分析】作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,则CM=x,可计算出EM=-x+1,再利用旋转的性质得到ED=EF,∠DEF=90°,证明△EDM≌△FEN得到DM=FN=x,EM=NF=-x+1,接着利用勾股定理得到AF2=(-x+1)2+(2+x)2,配方得到AF2= (x-)2+,然后利用非负数的性质得到AF的最小值.【详解】解:作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,在Rt△CDM中,CM=DM=x,而EM+x=1,∴EM=-x+1,∵线段ED绕点E逆时针旋转90°,得到线段EF,∴ED=EF,∠DEF=90°,可得△EDM≌△FEN,∴DM=FN=x,EM=NF=-x+1,在Rt△AFN中,AF2=(-x+1)2+(2+x)2=(x-)2+,当x=时,AF2有最小值,∴AF的最小值为.故答案为.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.16.1085(AB AD BDBD BC DC==)【解析】【分析】由AB:AD=BD:BC且其夹角对应相等,即A CBD∠=∠,可证明△BAD∽△DBC,再利用比例关系求解CD.【详解】∵AB:AD=BD:BC=34,又∵A CBD∠=∠,∴△BAD∽△DBC,∴201824AD BDBC DC DC===,解得CD=1085.【点睛】本题通过证明三角形相似,再利用相似的比例关系求解边.17.2∶15【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:15;,所以a、c两数的比为2:15.详解:a :b=1:3=(1×2):(3×2)=2:6; b :c=2:5=(2×3):(5×3)=6:15;,所以a :c=2:15;故答案为:2:15.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.18..【解析】解:∵AB =6,AB =1:3,∴AD =6×13=2,BD =6﹣2=4.∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A =∠B =∠FDE .由三角形的外角性质得,∠AMD +∠A =∠EDF +∠BDN ,∴∠AMD =∠BDN ,∴△AMD ∽△BDN ,∴MA MD BD DN =,∴MA •DN =BD •MD =4MD ,∴MD +12MA DN ⋅=MD +3MD =22+-2+∴=,即MD 时,MD +12MA DN ⋅有最小值为19.1:5000【解析】【分析】根据比例尺是图上距离与实际距离的比值即可求解.【详解】∵图上距离为120cm ,实际距离为6km=600000cm ,∴新区建设规划图所采用的比例尺=120:600000=1:5000.故答案为1:5000.【点睛】本题考查了比例尺的定义,熟知比例尺是图上距离与实际距离的比值是解题的关键. 20.①③④【解析】解:在△ABC与△AEF中,∵AB=AE,BC=EF,∠B=∠E,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C,故①正确.由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB,故③正确;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FDB可得∠EAD=∠BFD,∴∠BFD=∠CAF,故④正确.综上可知:①③④正确.点睛:本题考查了相似三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.21.(1)见解析;(2)P);(3)存在;Q).【解析】【分析】(1)在Rt△OAB中,由切线的性质知:OP⊥AB,易证得△OAP∽△BPO.(2)当P为AB中点时,由于OP⊥AB,那么OP平分∠AOB,即P点的横、纵坐标相等,已知OP的长,易求得点P的坐标.(3)此题应分两种情况:①OP为对角线,此时OQ∥AP,由于∠OP A=90°,那么∠POQ=90°,即△POQ是等腰直角三角形,已知OA⊥OB,那么OB⊥PQ,此时OB为∠POQ的对角线,即P、Q关于y轴对称由此得解;②OP为边,此时OP∥AQ,由于∠OP A=90°,那么平行四边形OP AQ为矩形,即∠POQ是等腰直角三角形,解法同①.【详解】解:(1)证明:∵AB是过点P的切线,∴AB⊥OP,∴∠OPB=∠OPA=90°;∴在Rt△OPB中,∠1+∠3=90°,又∵∠BOA=90°∴∠1+∠2=90°,∴∠2=∠3;在△OPB中△APO中,∴△OPB∽△APO.(2)∵OP⊥AB,且PA=PB,∴OA=OB,∴△AOB是等腰三角形,∴OP是∠AOB的平分线,∴点P到x、y轴的距离相等;又∵点P在第一象限,∴设点P(x,x)(x>0),∵圆的半径为2,∴,解得x=(舍去),∴P).(3)存在;①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,∴∠POQ=90°,∵OP=OQ,∴△POQ是等腰直角三角形,∴OB是∠POQ的平分线且是边PQ上的中垂线,∴∠BOQ=∠BOP=45°,∴∠AOP=45°,设P(x,x)、Q(﹣x,x)(x>0),∵OP=2,解得∴Q);②如图示OPAQ为平行四边形,同理可得Q).【点睛】此题主要考查的是切线的性质以及平行四边形的判定,相似三角形的性质与判定、等腰直角三角形的性质、角平分线的定义等知识,难度较大.22.(1)见解析;(2)见解析;(3)BE=.【解析】【分析】(1)连接OD,由DO为直角三角形斜边上的中线,得到OD=OA=OE,可得出点D在圆O上;(2)由AD为角平分线,得到一对角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AC平行,根据两直线平行同位角相等即可得到∠ODB为直角,即BC与OD垂直,即可确定出BC为圆O 的切线;(3)过E作EH垂直于BC,由OD与AC平行,得到△ACB与△ODB相似,设OD=OA=OE=x,表示出OB,由相似得比例列出关于x的方程,求出方程的解得到x的值,确定出OD与BE 的长.【详解】(1)连接OD,∵△ADE是直角三角形,OA=OE,∴OD=OA=OE,∴点D在⊙O上;(2)∵AD是∠BAC的角平分线,∴∠CAD=∠DAB,∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠C=∠ODB=90°,∴BC是⊙O的切线;(3)在Rt△ACB中,AC=6,BC=8,∴根据勾股定理得:AB=10,设OD=OA=OE=x,则OB=10﹣x,∵AC ∥OD ,△ACB ∽△ODB ,∴,∴OD=, 解得:x=,∴OD=,BE=10﹣2x=10﹣=.【点睛】此题考查了切线的判定,相似三角形的判定与性质,勾股定理,平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键.23.见解析【解析】【分析】(1)将点A 、点B 绕点O 顺时针旋转90°得到点A 1、B 1,连接A 1、B 1、O 三点即可;(2)根据位似的性质得出A 2、B 2的位置,连接A 2、B 2、O 三点即可;【详解】如图所示:【点睛】本题主要考查图形的旋转以及图形的位似的作图方法.24.(1)详见解析;(2)()()2'1,0A -, ()'1,2C ,'''A B C S V :1ABC S =V :4. 【解析】【分析】(1)利用位似图形的性质得出A′,B′,C′的位置,进而得出答案;(2)由(1)中所画图形可得.【详解】解:()1如图所示:'''A B C V 即为所求;()()2'1,0A -, ()'1,2C ,'''A B C S V :1ABC S =V :4.【点睛】此题主要考查了相位似变换,利用位似比得出对应点的位置是解题关键.25.(1)证明见解析(2)证明见解析(3)51+ 【解析】【分析】(1)由角的关系易证OD //AC ,已知DH AC ⊥,即证.DH OD ⊥(2)由OD //AC ,可证ODF AEF V V ∽,根据“相似三角形的对应边成比例”易得32FD OD EF AE ==, 设32OD x AE x =,= 证明E B C ∠=∠=∠,EDC △是等腰三角形,表示出.EH 即可证明.(3)通过等量关系表示出边的长度,由BFD EFA V V ∽,可得对应边的比例关系的方程,求解即可.【详解】解:(1)连接OD ,如图1,∵在⊙O 中,OB OD =,∴OBD ODB ,∠=∠∵AB AC =,∴B C ∠=∠,∴ODB ACB ∠=∠,∴OD //AC ,∵DH AC ⊥,∴90,AHD ∠=︒∴180?90,ODH AHD ∠=︒-∠=︒ ∴DH OD ⊥,∴DH 是圆O 的切线;(2)∵ ODF E OFD AFE ∠=∠∠=∠,,∴ODF AEF V V ∽,∴32FD OD EF AE ==, 设32OD x AE x =,=连接AD ,∵AB 是直径,∴∠ADB =90°,即AD BD ⊥,∵AB AC =,∴D 是BC 的中点,∴OD 是△ABC 的中位线,∴OD ∥AC , 26AC OD x ==,∴8,EC EA AC x =+=∵在⊙O 中,E B ∠=∠,∴E B C ∠=∠=∠,∴EDC △是等腰三角形,∵DH AC ⊥, ∴142EH EC x == ∵A 在EH 上且2AE x =,∴A 为EH 的中点.(3)如图2,设⊙O 的半径为r ,即OD OB r ==,∵EF EA =,∴EFA EAF ∠=∠,∵OD ∥EC ,∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠,∴DF OD r ==,∴1DE DF EF r =+=+,∴1?BD CD DE r ===+, 在⊙O 中,∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠,∴BF BD =,BDF V 是等腰三角形,∴1BF BD r ==+,∴()2211?AF AB BF OB BF r r r ==-=-+=-﹣,∵,BFD EFA B E ∠=∠∠=∠, ∴BFD EFA V V ∽,,EF BF FA DF= 11,1r r r+∴=-解得:12r r == (不合题意,舍去),综上所述,⊙O . 【点睛】本题主要考查与圆有关的位置关系、圆中的计算问题以及相似三角形的判定与性质.属于综合题,难度较大,对学生综合能力要求较高.26.(1)证明见解析(2)31【解析】 分析:(1)、根据矩形的性质以及EF ⊥EC 得出∠AFE=∠BEC ,从而得出三角形相似;(2)、根据题意得出AE 和BE 的长度,然后根据三角形相似得出AF 的长度,然后根据Rt △ABF 的勾股定理得出答案.详解:(1)∵四边形ABCD 是矩形, ∴∠A=∠CBE=90°, ∴∠AEF+∠AFE=90°, 又∵EF ⊥EC , ∴∠AEF+∠BEC=90°, ∴∠AFE=∠BEC , ∴△AEF ∽△BCE ; (2)∵AB=3、AE=AB , ∴AE=、BE=2, ∵△AEF ∽△BCE , ∴=,即=, 解得:AF=2, 则BF===. 点睛:本题主要考查的是矩形的性质以及三角形相似的判定与性质,属于中等难度的题型.根据双垂直得出∠AFE=∠BEC 是解题的关键.27.证明见解析.【解析】【分析】根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD =∠C ,可证明△ABD ∽△ABC ,即可解题.【详解】∵BE 平分CBD ∠,∴DBE CBE ∠∠=,∵AE AB =,∴ABE AEB ∠∠=,∵ABE ABD DBE ∠∠∠=+,AEB C CBE ∠∠∠=+,∴ABD C ∠∠=,∵ABD C ∠∠=,A A ∠∠=,∴ABD ABC V V ∽,∴AB:AD AC:AB =,即:AB AB AD AC ⋅=⋅,∵AE AB =,∴AE AE AD AC⋅=⋅.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.28.1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出DCDE=CFAD,再证明CF=2AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴DCDE=CFAD.∵四边形ADFG是矩形,FC2FG,∴FG=AD,CF2AD,∴CDDE2(3)解:如图3中,设AC与DE交于点O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴COEO=ODOA,∴COOD=EOOA.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴CEDE=1.点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.。

2023年安徽省中考数学一轮复习专题训练:三角形综合-试卷

2023年安徽省中考数学一轮复习专题训练:三角形综合-试卷

安徽省2023年中考数学一轮复习专题训练:三角形综合一、选择题(本大题共12小题,每小题5分,满分60分)1. (2020湛江)如图,在△ABC 中,∠A=30o ,∠B=50o ,CD 平分∠ACB,则∠ADC 的度数是( )A.80oB.90oC.100oD.110o2. (2020•鄂州)如图,a ∥b,一块含45°的直角三角板的一个顶点落在其中一条直线上,若∠1=65°,则∠2的度数为( )A.25°B.35°C.55°D.65°3. (2022·安徽·合肥)如图是一款手推车的平面示意图,其中AB ∥CD,3=150∠︒,1=30∠︒,则2∠的大小是( )A.60︒B.70︒C.80︒D.90︒4. (2022·安徽合肥)如图,一块含有60°角的直角三角板放置在两条平行线上,若∠α=24°,则∠β为( )A.106°B.96°C.104°D.84°5. (2021·恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A.CE ≠12BD B.△ABC ≌△CBD C.AC =CD D.∠ABC =∠CBD 6. (2022·安徽合肥·二模)一副直角三角板如图摆放,点F 在BC 的延长线上,∠B=∠DFE=90°,若DE ∥BF,则∠CDF 的度数为( )A.10°B.15°C.20°D.25°7. (2022·安徽·合肥市)如图,直线l 1∥l 2,线段AB 交l 1,l 2于D,B 两点,过点A 作AC ⊥AB,交直线l 1于点C,若∠1=15︒,则∠2=( )A.95︒B.105︒C.115︒D.125︒8. (2021·广州模拟)如图,AB 是河堤横断面的迎水坡.坡高AC =5 m,水平距离BC =5 3 m,则斜坡AB 的坡度为( )A.33B. 3C.30°D.60° 9. 【2021.内蒙古包头市】如图,在△ABC 中,AB =AC,△DBC 和△ABC 关于直线BC 对称,连接AD,与BC 相交于点O,过点C 作CE ⊥CD,垂足为C,AD 相交于点E,若AD =8,BC =6,则BDAE OE 2+的值为( )A. B. C. D.10. (2020•泰安)如图,点A,B 的坐标分别为A(2,0),B(0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )A.2+1B.2+C.22+1 D.2- 11. (2020•襄州区模拟)《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )21221A.3B.5C.4.2D.412. (2022·安徽合肥·二模)设P 1,P 2,…,Pn 为平面内的n 个点,在平面内的所有点中,若点P 到点P 1,P 2,…,Pn 的距离之和最小,则称点P 为点P 1,P 2,…,Pn 的一个“最佳点”,例如,线段AB 上的任意点都是端点A,B 的“最佳点”,现有下列命题:①若三个点A,B,C 共线,C 在线段AB 上,则C 是A,B,C 的“最佳点”;②若四个点A,B,C,D 共线,则它们的“最佳点”存在且唯一:③直角三角形斜边的中点是该直角三角形三个顶点的“最佳点”;④平行四边形对角线的交点是其四个顶点的唯一“最佳点”.其中的真命题是( )A.①②B.①④C.②③④D.①③④二、填空题(本大共8小题,每小题5分,满分40分)13. (2022·北京大兴·一模)在△ABC 中,D,E 分别是边AB,AC 的中点,若DE=2,则BC=___.14. (2022北京房山)如图,在△ABC 中,AB =AC,AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∠ABC, 则∠A =________________ °.15. (2021·常州)如图,在△ABC 中,点D,E 分别在BC,AC 上,∠B =40°,∠C =60°.若DE ∥AB,则∠AED = .16. (2020•乐平市一模)如图,△ABC 是边长为8的等边三角形,点P 从点A 出发,沿AB 向终点B 运动.作PD//BC,DA 、DP 的中点分别是E 、F.点P 全程运动过程中,EF 扫过的面积为__________.17. (2021•山东聊城)如图,在△ABC 中,AD ⊥BC,CE ⊥AB,垂足分别为点D 和点E,AD 与CE 交于点O,连接BO 并延长交AC 于点F,若AB =5,BC =4,AC =6,则CE:AD:BF 值为 .18. (2021·益阳)如图,Rt △ABC 中,∠BAC =90°,tan ∠ABC =32,将△ABC 绕A 点顺时针方向旋转角α(0°<α<90°)得到△AB ′C ′,连结BB ′,CC ′,则△CAC ′与△BAB ′的面积之比等于 .19. (2020•天河区一模)如图,在正方形ABCD 中,对角线AC,BD 交于点O ,点E,F 分别在AB,BD 上,且△ADE ≌△FDE,DE 交AC 于点G,连接GF.得到下列四个结论:①∠ADG=22.5o ;②S △AGD =S △OGD ;③BE=2OG;④四边形AEFG 是菱形,其中正确的结论是__________.(填写所有正确结论的序号)20. (2022·安徽合肥·二模)如图,在钝角三角形ABC 中,AB =6cm,AC =12cm,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC 相似时,运动的时间是__.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2021·鞍山模拟)如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是10米,梯坎坡长BC 是10米,梯坎坡度i BC =1:43,求大楼AB 的高.22. (6分)(2021·遂宁中考)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B,C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向,C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得C 在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离(结果保留根号).23. (6分)(2021湖北武汉)问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD 与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24. (8分)(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90o,∠BAC=30o.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P为AD的中点,连接PE,PF,EF.(1)如图1,当点D 与点B 重合时,写出线段PE 与PF 之间的位置关系与数量关系;(2)如图2,当点D 与点B,C 不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.25. (12分)(2020·山东烟台·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE,CF 与CD 之间存在怎样的数量关系?并说明理由.26. (12分)(2021湖北十堰)已知等边三角形ABC,过A 点作AC 的垂线l,点P 为l 上一动点(不与点A 重合),连接CP,把线段CP 绕点C 逆时针方向旋转60°得到CQ,连QB.(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P 、B 在AC 同侧且AP =AC 时,求证:直线PB 垂直平分线段CQ;(3)如图3,若等边三角形ABC 的边长为4,点P 、B 分别位于直线AC 异侧,且△APQ 的面积等于43,求线段AP 的长度.。

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。

2.掌握三角形相似的判定方法和性质并学会运用。

考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)1.△ABC∽△A1B1C1,且相似比为23,△A1B1C1∽△A2B2C2,且相似比为54,则△ABC与△A2B2C2的相似比为()A.56B.65C.56或65D.8152.如图,l1∥l2∥l3,若32ABBC,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.43.小明的身高为1.8米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A.3.2米B.4.8米C.5.4米D.5.6米4.如图,在平行四边形ABCD中,E在DC边上,若DE:EC=1:2,则△CEF与△ABF 的面积比为()A.1:4 B.2:3 C.4:9 D.1:95.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.126.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF的值为()A .45B .35C .56D .677.如图,∠ABD =∠BCD =900,AD =10,BD =6。

如果两个三角形相似,则CD 的长为A 、3.6B 、4.8C 、4.8或3.6D 、无法确定8.若ABC V 的各边都分别扩大到原来的2倍,得到111A B C V ,下列结论正确的是( ) A .ABC V 与111A B C V 的对应角不相等B .ABC V 与111A B C V 不一定相似 C .ABC V 与111A B C V 的相似比为1:2D .ABC V 与111A B C V 的相似比为2:19.如图,已知点P 在△ABC 的边AC 上,下列条件中,不能判断△ABP ∽△ACB 的是( )A .∠ABP=∠CB .∠APB=∠ABC C .AB 2=AP•ACD .=10.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP=∠CB .∠APB=∠ABC C .=D .=11.如图,已知点 A 在反比例函数k y x(x <0) 上,作 Rt △ABC ,点 D 是斜边 AC的中点,连DB 并延长交y 轴于点E,若△BCE 的面积为12,则k 的值为_____.12.已知线段AB=2,点C为AB的黄金分割点,且AC<BC,那么BC=_____.13.如图,点P是矩形ABCD的对角线AC上的一点(异于两个端点),AB=2BC=2,若BP的垂直平分线EF经过该矩形的一个顶点,则BP的垂直平分线EF与对角线AC 的夹角(锐角)的正切值为_____.14.如图,在Rt△ABC中,∠C=90°,点D在边BC上,且∠ADC+∠B=90°,DC=3,BD=6,则cosB=.15.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为10m,人的正常视力能看清的最小物体所形成的视角为1',且已知月、地两球之间的距离为380000km,根据学过的数学知识,)你认为这个传说________.(请填“可能”或“不可能”,参考数据:tan0.5'0.000145416.如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI并延长,交AE于点Q.若,则线段AQ的长为_____cm.17.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为P A,PB的中点下列说法中:①线段MN的长始终为1;②△P AB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是_____.18.若7x=3y,则xy=_____.19.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC 等于_____.20.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.21.如图,在ABCV中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且12DCB EBC A ∠=∠=∠. ()1求证:BOD V ∽BAE V ;()2求证:BD CE =;()3若M 、N 分别是BE 、CD 的中点,过MN 的直线交AB 于P ,交AC 于Q ,线段AP 、AQ 相等吗?为什么?22.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AC =9.(1)试说明:△ABD ∽△ACB ;(2)求线段CD 的长.23.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA 、PB 、AB 、OP ,已知PB 是⊙O 的切线.(1)求证:∠PBA=∠C ;(2)若OP ∥BC ,且OP=9,⊙O 的半径为32,求BC 的长.24.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E 在OB 上,且∠OAE =∠OBA .(1)如图①,求点E 的坐标(2)如图②,将△AEO 沿x 轴向右平移得到△A′E′O′,连接A′B ,BE′.①设AA′=m ,其中0<m<2,试用含m 的式子表示A′B 2+BE′2,并求出使A′B 2+BE′2取得最小值时点E′的坐标;②当A′B +BE′取得最小值时,求点E′的坐标(直接写出结果即可).25.如图,已知AC ,EC 分别为正方形ABCD 和正方形EFCG 的对角线,点E 在△ABC 内,连接BF ,∠CAE+∠CBE=90°.(1)求证:△CAE ∽△CBF ;(2)若BE=1,AE=2,求CE 的长.26.如图,AD 是Rt △ABC 斜边BC 上的高.(1)尺规作图:作∠C 的平分线,交AB 于点E,交AD 于点F (不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F 画BC 的平行线交AC 于点H,线段FH 与线段CH 的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE 、DH.求证:ED ⊥HD .27.如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O .过点O 作OE BC ⊥于点E ,连接DE 交OC 于点F ,过点F 作FG BC ⊥于点G ,则ABC V 与FGC V 是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.28.如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP的垂线,垂足为F,交BD于点E,交CD于点G.(1)当AB=AD,且P是AD的中点时,求证:AG=BP;(2)在(1)的条件下,求DEBE的值;(3)类比探究:若AB=3AD,AD=2AP,DEBE的值为.(直接填答案)参考答案1.A【解析】∵△ABC ∽△A 1B 1C 1,相似比为210=315, △A 1B 1C 1∽△A 2B 2C 2 ,相似比为515=412 , ∴△ABC 与△A 2B 2C 2的相似比为105=126, 故选A .2.C【解析】试题解析:根据平行线分线段成比例定理,可得: 3,2AB DE BC EF == 设3,2,DE x EF x ==5 6.DF x ∴==解得: 1.2.x =3 3.6.DE x ∴==故选C.3.C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm , 则可列比例为:1.826x =, 解得,x=5.4.故选C .【点睛】本题主要考查了同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力. 4.C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB ,∴△DFE ∽△BF A .∵DE :EC =1:2,∴EC :DC =CE :AB =2:3,∴△CEF 与△ABF 的面积比49=. 故选C .【点睛】本题考查了相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,周长的比等于相似比,面积比等于相似比的平方是解答此题的关键.5.D【解析】【分析】由已知条件求出△DEF 的面积,根据平行四边形的性质得到AD ∥BC 和△DEF ∽△BCF ,根据相似三角形的面积比是相似比的平方即可得到答案.【详解】∵E 是边AD 的中点,∴DE 12=AD 12=BC ,∴12EF CF =,∴△DEF 的面积13=S △DEC =3。

2020春中考数学一轮复习专题:相似三角形

2020春中考数学一轮复习专题:相似三角形

2020春中考数学一轮复习专题:相似三角形(1)【复习目标】1.了解线段的比,成比例线段;通过建筑、艺术等方面的实例了解黄金分割.2. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定;会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等【课堂研讨】考点一比例性质1.已知513ba=,则a ba b-+的值是2.已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是。

3. 在RtΔABC中,∠ACB=90°,CD⊥AB于D,AC=6,AD=4,则AB= .4.已知点C是线段AB的黄金分割点,若ACAB≈0.6 18,那么CBAC的近似值是_______ 5.如图,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则BC=______.★6. (1)如图,AD是△ABC的中线,P是AD的中点,延长BP交AC于点F,若AC的长为6,求AF的长(2)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,求AC的长.第(1)题第(2)题BACDE1.如图,已知△ABC ∽△ADB 中,CD =6,AD =2,BD =3,则AB =_____, BC =_____.2.如图,在△ABC 中,EF ∥BC ,12AE EB =,S 梯形BCFE =8,则S △ABC 的值是3、如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H . (1)求证:BCEFAD AH =; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;4、如图,在R t △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 边上以每秒3cm 的速度向点B 匀速运动,设运动时间为t 秒(05≤≤t ),连接MN . (1)若△MBN 与△ABC 相似,求t 的值;(2)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.1.如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).2.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是 ( )A.∠ABD=∠C B.∠ADB=∠ABCC.AB CBBD CD= D.AD ABAB AC=3. 如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 14BC.图中相似三角形共有()A.1对 B.2对C.3对 D.4对4、(1)提出问题:如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究:如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸:如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN,试探究∠ABC与∠ACN 的数量关系,并说明理由.5. 如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.相似三角形拓展提升训练一、填空题1.如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1 B.2 C.3 D.42.如图,在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对3.如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,图中相似的三角形有______对.第3题第4题第5题P A4、如图,AD 是△ABC 的中线,F 在AC 上CF=3AF ,若BF 的长为6,则PF 的长为______.5、如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为______________6、如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=______第6题 第7题7、如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为_________________8、如图,梯形ABCD 中,AD ∥BC ,∠D=90°,∠ABC=60°,CD=33AD=16,点P 是AD 边上的一点,∠CPB=120°.①△PCB 与△ABP 相似吗?为什么? ②求△ABP 的面积S 。

第18节相似三角形-中考数学一轮知识复习课件

第18节相似三角形-中考数学一轮知识复习课件
4.(位似图形)在平面直角坐标系中,有两 点 A(6,3),B(6,0).以原点 O 为位似中心,
相似比为13 ,把线段 AB 缩短,则点 A 的对应 点 A'的坐标为__(_2_,_1_)_或_(_-__2,__-__1)__.
知识清单
线段的比和比例线段 1.线段的比:两条线段__长_度___的比叫做 两条线段的比. 注意:求两条线段的比,要求长度单位相 同;线段的比与选用的长度单位无关. 2.对于四条线段 a,b,c,d,如果其中 两条线段的比__等__于__另外两条线段的比,就 说这四条线段是成比例线段.
=6-6-32x -38 x2=-38 x2+32 x.
当 x≥2 时,S 随 x 增大而减少.
与 AC 交于点 G,则相似三角形共有( C )
A.3 对
B.5 对
C.6 对
D.8 对
针对训练 6.(2019·凉山州改编)如图,∠ABD=∠BCD= 90°,DB 平分∠ADC,过点 B 作 BM∥CD 交 AD 于 点 M.连接 CM 交 DB 于点 N.求证:BD2=AD·CD.
证明:∵DB 平分∠ADC, ∴∠ADB=∠CDB. 且∠ABD=∠BCD=90°. ∴△ABD∽△BCD. ∴ABDD =BCDD . ∴BD2=AD·CD.
4.(2020·宁夏)在平面直角坐标系中,△ ABC 的三个顶点的坐标分别是 A(1,3),B(4, 1),C(1,1).
(1)画出△ABC 关于 x 轴成轴对称的△A1B1C1; (2)画出△ABC 以点 O 为位似中心,位似比为 1∶2 的△A2B2C2.
解:(1)(2)如图所示,△A1B1C1,△A2B2C2即为所求.
(2)若AADC =37 ,求FAGF 的值.

2020年中考数学必考专题24 相似三角形判定与性质(原创版)

2020年中考数学必考专题24  相似三角形判定与性质(原创版)

专题24 相似三角形判定与性质专题知识回顾1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似多边形对应边的比叫做相似比。

2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。

【例题1】(2019•海南省)如图,在Rt△ABC中,△C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ△AB交BC于点Q,D为线段PQ的中点,当BD平分△ABC时,AP的长度为()B.C.D.A.【例题2】(2019•四川省凉山州)在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】(2019•湖北省荆门市)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】(2019年广西梧州市)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】(2019年湖南省张家界市)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.一、选择题1.(2019年广西玉林市)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.(2019年内蒙古赤峰市)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB =6,AC=4,则AE的长是()A.1B.2C.3D.43.(2019·广西贺州)如图,在△ABC中,D,E分别是AB,AC边上的点,DE△BC,若AD=2,AB=3,DE=4,则BC等于()专题典型训练题A .5B .6C .7D .84.(2019•广西贵港)如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.(2019▪黑龙江哈尔滨)如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .=B .=C .=D .=6. (2019•江苏苏州)如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )A.B .4C. D .87.(2019山东枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )DABCA.2B.3C.4D.8.(2019四川巴中)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:99.(2019年四川省遂宁市)如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.(2019•浙江宁波)如图所示,Rt△ABC中,△C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的△P与△ABC的一边相切时,AP的长为.11. 2019黑龙江省龙东地区)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.(2019•山东泰安)如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是 .13.(2019江苏常州)如图,在矩形ABCD 中,AD =3AB =310.点P 是AD 的中点,点E 在BC 上,CE=2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.(2019•山东省滨州市)如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.(2019四川泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .三、解答题16.(2019•四川省凉山州)如图,△ABD =△BCD =90°,DB 平分△ADC ,过点B 作BM △CD 交AD 于M .连PEDA接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.(2019•山东泰安)在矩形ABCD中,AE△BD于点E,点P是边AD上一点.(1)若BP平分△ABD,交AE于点G,PF△BD于点F,如图△,证明四边形AGFP是菱形;(2)若PE△EC,如图△,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.(2019安徽)如图,Rt△ABC中,△ACB=90°,AC=BC,P为△ABC内部一点,且△APB=△BPC=135°.(1)求证:△P AB△△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.(2019年湖南省株洲市)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.。

《中考大一轮数学复习》课件 相似三角形

《中考大一轮数学复习》课件  相似三角形

D B
)
)1Biblioteka 第3题 第4题 图① 图② 4. (2013·上海)如图, 已知在△ABC 中, 点 D, E, F 分别是边 AB, AC, BC 上的点, DE∥BC, EF∥AB, 且 AD∶DB=3∶5, 那么 CF∶CB 等于( A ) A. 5∶8 B. 3∶8 C. 3∶5 D. 2∶5 5. (2014·河北)在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为 3,4,5 的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为 1,则新三角形与原 三角形相似. 乙:将邻边为 3 和 5 的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为 1,则新矩形与原矩形不相 似. 对于两人的观点,下列说法正确的是( A ) 7 A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
2. 相似多边形的判断及性质 (1)多边形相似的判断:各角对应相等,各边对应成比例. (2)相似多边形的性质: ①对应角________,对应边________. ②周长之比等于____________,面积之比等于________. (3)相似多边形对应边的比称为相似比. 3. 相似三角形的定义及性质 (1)定义:如果两个三角形的各角对应________,各边对应________,那么这两个三角形相似. (2)相似三角形的性质: ①相似三角形的对应角____________,对应边________. ②相似三角形的对应高的比、对应角平分线的比、对应中线的比都等于________. ③相似三角形的周长之比等于________,面积之比等于________.
2 3
中考大一轮复习讲义◆ 数学
课前预测 你很棒
热点一 比例性质的应用 热点搜索 与比例性质相关的题目中,主要是运用比例的性质对比式进行各种 变形,得出所需的计算结果.

中考数学相似三角形专题复习一

中考数学相似三角形专题复习一

1 / 2相似三角形专题复习一:线段的比、黄金分割1、在比例尺1:10000的地图上,相距2cm 的两地的实际距离是( )。

A .200cm B .200dm C .200m D .200km 2.已知线段a=10,线段b 是线段a 上黄金分割的较长部分,则线段b 的长是 3.若则下列各式中不正确的是( )A .B .C .D .4、若52=-yy x ,则y x =_________。

已知32=y x ,则yx yx +-=_________。

5、若045=-y x 且0≠xy ,则x ∶y =_________。

6、2和8的比例中项是_________;线段2㎝与8㎝的比例中项为_________。

7、如果两个相似三角形的面积比为3∶4,则它们的周长比为_________。

8、已知a :b :c =2 :3 :4,且2a +3b -2c =10,求a , b ,c 的值。

相似三角形专题复习二:相似的性质1、如果两个相似三角形的面积比为3∶4,则它们的周长比为_________。

1.1已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 2、如图,DE ∥BC ,AD ∶BD=2∶3,则ΔADE 的面积∶四边形DBCE 的面积=_________。

2.1如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:( )个3、如图,在梯形ABCD 中,AD ∥BC ,△ADE 与△BCE 面积之比为4 :9,那么△ADE 与△ABE 面积之比为________4、如图,在△ABC 中,矩形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH ⊥BC 交DE 于M ,DG ∶DE =1∶2,BC =12 cm ,AH =8 cm ,求矩形的各边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档