金属材料拉伸试验报告

合集下载

拉伸试验报告范文

拉伸试验报告范文

拉伸试验报告范文一、引言拉伸试验是一种常用的力学试验方法,旨在评估材料的拉伸性能和力学特性。

拉伸试验通过施加力来延长和收缩材料,以确定其强度、延伸和断裂能力等指标,通常用于金属、塑料、橡胶等材料的品质检验和设计工作。

本报告对其中一种金属材料进行了拉伸试验,并对试验结果进行了分析和总结,以评估材料的力学性能和适用范围。

二、试验目的通过拉伸试验,目的是获取该金属材料的力学性能数据,包括抗拉强度、屈服强度、断裂伸长率和弹性模量等参数,以确定其质量标准和应用领域。

三、试验装置及步骤试验装置包括拉伸试验机、夹具和测量仪器等。

试验步骤如下:1.将试样装入夹具,并调整夹具以确保试样处于拉伸状态。

2.启动拉伸试验机,并逐渐增加加载力直至试样断裂。

3.记录试验过程中的加载力和试样的变形情况。

4.测量试样的断面尺寸,以计算抗拉强度和断裂伸长率等力学性能参数。

四、试验结果及分析根据试验得到的数据,计算得到的力学性能参数如下:1.抗拉强度:根据试验最大加载力和试样的断面积计算得出,单位为MPa。

2.屈服强度:根据试验中试样开始塑性变形时的加载力和试样的断面积计算得出,单位为MPa。

3.断裂伸长率:根据试样断裂前后标距长度的差值和初始标距长度计算得出,以百分比表示。

4.弹性模量:根据试验初期的加载力和变形量计算得出,单位为GPa。

通过对这些参数进行分析,可以评估材料的力学性能和可用性,并与标准数值进行对比,以确定材料是否符合要求。

五、结论根据本次拉伸试验的结果和分析1.该金属材料的抗拉强度为XXXMPa,屈服强度为XXXMPa,断裂伸长率为XXX%,弹性模量为XXXGPa。

2.根据国家标准或行业标准,该材料的力学性能符合/不符合相关要求。

3.根据试验结果,可以评估该金属材料的应用范围和使用限制,并建议在特定工程领域或环境中使用,以确保安全和可靠性。

六、改进建议根据本次试验的经验和结果,可以提出以下改进建议:1.进一步研究该材料的力学性能,例如疲劳寿命、应力应变曲线等,以更全面地评估其可用性。

金属材料拉伸试验实训报告

金属材料拉伸试验实训报告

一、实验目的1. 了解金属材料拉伸试验的基本原理和操作步骤。

2. 学习如何测定金属材料的抗拉强度、屈服强度、伸长率和断面收缩率等力学性能指标。

3. 通过实验,掌握实验数据的处理和分析方法,提高实验操作技能。

二、实验原理金属材料拉伸试验是力学性能试验中最基本、最常用的试验方法之一。

通过在轴向拉伸载荷下对金属材料进行拉伸,可以测定其抗拉强度、屈服强度、伸长率和断面收缩率等力学性能指标,从而评估材料的力学性能。

在拉伸试验过程中,金属材料会经历弹性变形、塑性变形和断裂三个阶段。

弹性变形阶段,材料在去除载荷后能恢复原状;塑性变形阶段,材料在去除载荷后不能完全恢复原状,产生永久变形;断裂阶段,材料在外力作用下达到一定强度后发生断裂。

三、实验仪器与设备1. 万能材料试验机2. 电子引伸计3. 游标卡尺4. 划线器5. 试样四、实验步骤1. 准备试样:根据实验要求,选择合适的金属材料和试样尺寸,使用划线器在试样上划出标距线。

2. 装夹试样:将试样装入万能材料试验机的夹具中,调整夹具位置,确保试样中心线与试验机轴线一致。

3. 设置试验参数:根据试验要求,设置试验机的拉伸速度、试验力上限等参数。

4. 进行拉伸试验:启动试验机,对试样进行拉伸,直至试样断裂。

5. 记录数据:在拉伸过程中,记录试验力、伸长量等数据。

6. 数据处理:根据试验数据,计算抗拉强度、屈服强度、伸长率和断面收缩率等力学性能指标。

五、实验结果与分析1. 抗拉强度:抗拉强度是材料抵抗断裂的能力,是材料力学性能的重要指标。

实验结果表明,该试样的抗拉强度为X MPa。

2. 屈服强度:屈服强度是材料开始发生塑性变形的应力值。

实验结果表明,该试样的屈服强度为Y MPa。

3. 伸长率:伸长率是试样在拉伸过程中伸长的长度与原始长度的比值,反映了材料的塑性变形能力。

实验结果表明,该试样的伸长率为Z %。

4. 断面收缩率:断面收缩率是试样断裂后,断裂处横截面积与原始横截面积的比值,反映了材料的断面变形能力。

金属拉伸实验报告

金属拉伸实验报告
图 2-4 屈服荷载得确定
根据国标规定,材料屈服过后,试验机得速率应使试样平行长度内得应变速 率不超过 0、008/s。在此条件下继续加载,并注意观察主动针得转动、自动绘 图得情况与相应得试验现象(强化、冷作硬化与颈缩等现象——在强化阶段得任
一位置卸载后再加载进 行冷作硬化现象得观察; 此后,待主动针再次停止 转动而缓慢回转时,材料 进入颈缩阶段,注意观察 试 样 得 颈 缩 现 象 ), 直 至 试样断裂停车。记录所加 得最大荷载 Fm(从动针最 后停留得位置)。
低碳钢得上屈服强度:
低碳钢得下屈服强度:
低碳钢得抗拉强度:
低碳钢得断后伸长率:
低碳钢得断面收缩率:
铸铁得抗拉强度:
铸铁得断后伸长率:
低碳钢得端口发生在第五格与第六格之间,符合实验要求
故实验数据处理结果如下表:
材料
上屈服强度 ReH/GPa
下屈服强度 ReL/GPa
低碳钢 铸铁
0、3636 ╱
0、3309 ╱
4、装载电子引伸计: 将电子引伸计装载在低碳钢试样上,注意电子引伸计要在比例极限处卸载。 5、进行试验: 开动试验机使之缓慢匀速加载(依据规范要求,在屈服前以 6~60 MPa/s 得 速率加载),并注意观察示力指针得转动、自动绘图得情况与相应得试验现象.当 主动针不动或倒退时说明材料开始屈服,记录上屈服点 FeH(主动针首次回转前得 最大力)与下屈服点 FeL(屈服过程中不计初始瞬时效应时得最小力或主动针首次 停止转动得恒定力),具体情况如图 2-4 所示(说明:前所给出得加载速率就是国 标中规定得测定上屈服点时应采用得速率,在测定下屈服点时,平行长度内得应 变速率应在 0、00025~0、0025∕s 之间,并应尽可能保持恒定。如果不能直接 控制这一速率,则应固定屈服开始前得应力速率直至屈服阶段完成).

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。

通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。

本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。

二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。

应变可以通过求解样本的伸长量与原始长度的比值得到。

三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。

四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。

实验结果表明,不同材料的力学
性能存在较大的差异。

其中,钢材的抗拉强度最高,铝材的延伸率较高。

对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。

五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。

通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。

在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。

[理科实验报告精品]金属材料拉伸实验 实验报告

[理科实验报告精品]金属材料拉伸实验 实验报告

材料力学实验报告(一)实验名称:金属材料拉伸实验实验地点实验日期指导教师班级小组成员报告人一、实验目的:二、实验设备及仪器试验机型号、名称:量具型号、名称:三、试件1)试件材料:试件①:低碳钢Q235,试件②:灰口铸铁2)试件形状和尺寸四、实验数据及计算结果屈服极限:0SS A F =σ 延伸率:%10001⨯-=L L L δ 强度极限:0bb A F =σ 断面收缩率:%10001⨯-=A A A ψ 五、拉伸曲线示意图1、低碳钢2、铸铁六、回答问题1)参考低碳钢拉伸图,分段回答力与变形的关系以及在实验中反映出的现象。

2)由低碳钢、铸铁的拉伸图和试件断口形状及其测试结果,回答二者机械性能有什么不同。

3)回忆本次实验过程,你从中学到了哪些知识。

材料力学实验报告(二)实验名称:金属材料压缩实验实验地点实验日期指导教师班级小组成员报告人一、实验目的:二、实验设备及仪器试验机型号、名称:量具型号、名称:三、试件1)试件材料:试件①:低碳钢Q235,试件②:灰口铸铁2)试件形状和尺寸四、数据及计算结果附:计算公式:屈服极限:0SS A =σ强度极限:0bb A =σ 五、压缩曲线示意图1、低碳钢2、铸铁六、回答问题1)为什么低碳钢压缩后成鼓形?2)为什么铸铁压缩时沿轴线大致成45°方向的斜截面破坏?材料力学实验报告(三)实验名称:测定金属材料弹性模量E 实验实验地点 实验日期 指导教师 班级小组成员报告人一、实验目的:二、实验设备及仪器试验机型号、名称: 引伸计型号、名称:三、 试件1)试件形状草图:2)试件尺寸: 标距:mm =L ,直径:mm =d ,横截面积:2mm =A3)试件材料:低碳钢(Q235)四、 实验数据记录五、实验数据整理六、实验结果计算G Pa )(=⋅∆⋅∆=Al LF E δ七、实验曲线图根据上面实验数据表格中的F 与L ∆的各对数据(表中第二行和第五行),在右边的坐标系中描出所有点,穿过以上各点画一射线,此射线即为反映材料E 值的曲线(请思考为什么此射线不过原点?)八、回答问题1)测材料的弹性模量E 为什么要掌握试件应力低于材料的比例极限?2)为什么用等量增截法进行实验?用等量截增法求出的弹性模量与一次加载到最终值求出的弹性模量是否相同?3)实验时为什么要加初载荷?材料力学实验报告(四)实验名称:简支梁弯曲正应力实验实验地点 实验日期 指导教师 班级小组成员报告人一、实验目的:二、实验设备及仪器试验机型号、名称:三、 实验装置1)装置图:2)装置尺寸数据:mm 800=L ,mm 300=a ,mm 20=h ,mm 10=b ,mm 5=c3)装置材料:铸铝,弹性模量GPa 200=E 电阻应变片灵敏度系数2=k四、实验数据记录五、实验数据整理六、计算应力值1)实验值计算:MPa 11==εσE 、MPa 22==εσE 、MPa 33==εσE MPa 44==εσE 、MPa 55==εσE 、MPa 66==εσEMPa 77==εσE2)理论值计算:MPa 71==Z,W Mσ、MPa Z26,2=⋅=I c M σ、MPa Z15,3=⋅=I c M σ2)实验值与理论值的相对误差:六、 回答问题1)为什么要进行温度补偿?2)据实验结果解释梁弯曲时横截面上正应力分布规律。

金属的拉伸实验(实验报告)

金属的拉伸实验(实验报告)

金属的拉伸实验一一、实验目的1、测定低碳钢的屈服强度二S、抗拉强度匚b、断后延伸率「•和断面收缩率'■2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图( F —「丄曲线)3、分析低碳钢的力学性能特点与试样破坏特征二、实验设备及测量仪器1、万能材料试验机2、游标卡尺、直尺三、试样的制备试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度I。

称为“标矩”。

两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。

试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。

直径d0= 20mm ,标矩I。

=2O0nm(k 1 0或I0 =100mm(l0 =5d0)的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。

四、实验原理在拉伸试验时,禾U用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F—△L曲线。

图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。

分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。

拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。

但同一种材料的拉伸曲线会因试样尺寸不同而各异。

为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横截面面积并将横坐标(伸长△ L)除以试样的原始标距I。

得到的曲线便与试样尺寸无关,此曲线称为应力一应变曲线或R —;曲线,如图2 —12所示。

从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

爲一上屈服力:①一下屈服力'厂最尢力;叫一断裂后塑性伸恰业一彈性佃长團2—11低碳钢拉伸曲线拉伸试验过程分为四个阶段,如图2—11和图2-12所示。

金属材料拉伸试验报告

金属材料拉伸试验报告

金属材料拉伸试验报告一、实验目的。

本次实验旨在通过对金属材料进行拉伸试验,了解金属材料在受力作用下的变形和破坏规律,掌握金属材料的拉伸性能参数,为材料的选用和设计提供依据。

二、实验原理。

拉伸试验是通过在金属试样上施加拉力,使试样产生塑性变形,最终达到破坏的一种试验方法。

在拉伸试验中,通常会测定材料的抗拉强度、屈服强度、断裂伸长率等指标。

三、实验步骤。

1. 准备试样,按照标准制备金属试样,保证试样的尺寸符合要求。

2. 安装试验机,将试样安装在拉伸试验机上,并调整好试验机的参数。

3. 进行拉伸试验,开始施加拉力,记录拉力-位移曲线,直至试样发生破坏。

4. 测定参数,根据拉力-位移曲线,测定材料的抗拉强度、屈服强度、断裂伸长率等参数。

四、实验数据及结果分析。

通过拉伸试验得到的数据如下:1. 抗拉强度,XXX MPa。

2. 屈服强度,XXX MPa。

3. 断裂伸长率,XX%。

根据实验数据分析可得,材料在受拉力作用下,首先表现出线性的弹性变形,随后进入塑性变形阶段,最终发生破坏。

在拉伸试验中,抗拉强度是材料抵抗拉伸破坏的能力,屈服强度是材料开始发生塑性变形的临界点,断裂伸长率则反映了材料的延展性能。

五、实验结论。

通过本次拉伸试验,我们得出了材料的抗拉强度、屈服强度、断裂伸长率等重要参数。

这些参数对于材料的选用和工程设计具有重要意义。

在实际工程中,我们应该根据材料的拉伸性能参数,合理选择材料,并设计合适的结构,以确保工程的安全可靠。

六、实验总结。

拉伸试验是对金属材料力学性能进行评价的重要手段,通过拉伸试验可以全面了解材料在受拉力作用下的性能表现。

因此,掌握拉伸试验的原理和方法,对于材料工程师和设计人员来说是非常重要的。

在今后的工作中,我们将继续深入学习材料力学知识,不断提高对材料性能的认识,为工程实践提供更加可靠的技术支持。

七、参考文献。

1. 《金属材料拉伸试验方法》。

2. 《金属材料力学性能测试手册》。

以上就是本次金属材料拉伸试验的报告内容,希望能对大家有所帮助。

金属材料的室温拉伸试验实验报告(仅供参考)

金属材料的室温拉伸试验实验报告(仅供参考)

金属材料的室‎温拉伸试验[实验目的]1、测定低碳钢的‎屈服强度RE ‎h 、ReL 及Re ‎ 、抗拉强度Rm ‎ 、断后伸长率A ‎和断面收缩率‎Z。

2、测定铸铁的抗‎拉强度Rm 和‎断后伸长率A ‎。

3、观察并分析两‎种材料在拉伸‎过程中的各种‎现象(包括屈服、强化、冷作硬化和颈‎缩等现象),并绘制拉伸图‎。

4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能‎的特点。

[使用设备]万能试验机、游标卡尺、试样分划器或‎钢筋标距仪 [试样]本试验采用经‎机加工的直径‎d =10 mm 的圆形截‎面比例试样,其是根据国家‎试验规范的规‎定进行加工的‎。

它有夹持、过渡和平行三‎部分组成(见图2-1),它的夹持部分‎稍大,其形状和尺寸‎应根据试样大‎小、材料特性、试验目的以及‎试验机夹具的‎形状和结构设‎计,但必须保证轴‎向的拉伸力。

其夹持部分的‎长度至少应为‎楔形夹具长度‎的3/4(试验机配有各‎种夹头,对于圆形试样‎一般采用楔形‎夹板夹头,夹板表面制成‎凸纹,以便夹牢试样‎)。

机加工带头试‎样的过渡部分‎是圆角,与平行部分光‎滑连接,以保证试样破‎坏时断口在平‎行部分。

平行部分的长‎度Lc 按现行‎国家标准中的‎规定取L o +d ,Lo 是试样中‎部测量变形的‎长度,称为原始标距‎。

[实验原理]按我国目前执‎行的国家GB ‎/T 228—2002标准‎——《金属材料 室温拉伸试验‎方法》的规定,在室温10℃~35℃的范围内进行‎试验。

将试样安装在‎试验机的夹头‎中,然后开动试验‎机,使试样受到缓‎慢增加的拉力‎(应根据材料性‎能和试验目的‎确定拉伸速度‎),直到拉断为止‎,并利用试验机‎的自动绘图装‎置绘出材料的‎拉伸图(图2-2所示)。

应当指出,试验机自动绘‎图装置绘出的‎拉伸变形ΔL ‎主要是整个试‎样(不只是标距部‎分)的伸长,还包括机器的‎弹性变形和试‎样在夹头中的‎滑动等因素。

金属材料的拉伸实验报告

金属材料的拉伸实验报告

金属材料的拉伸实验报告一、实验目的。

本实验旨在通过对金属材料进行拉伸实验,了解金属材料在受力作用下的力学性能,探究金属材料的拉伸性能参数,为工程设计和材料选用提供参考依据。

二、实验原理。

金属材料在拉伸过程中,受到外力作用下会发生形变,通过拉伸试验可以得到金属材料的应力-应变曲线。

应力-应变曲线的斜率即为材料的弹性模量,而应力-应变曲线的最大点即为材料的屈服强度,最大点后的应力下降即为材料的延展性能。

三、实验步骤。

1. 将金属试样固定在拉伸试验机上,对试样施加拉伸力。

2. 记录拉伸试验机上的拉伸力和试样的伸长量。

3. 根据拉伸力和伸长量计算金属材料的应力和应变。

4. 绘制应力-应变曲线,并得到材料的弹性模量、屈服强度和延展性能参数。

四、实验数据和结果分析。

通过实验得到金属材料的应力-应变曲线如下图所示:[插入应力-应变曲线图]根据实验数据计算得到金属材料的弹性模量为XXX,屈服强度为XXX,延展性能为XXX。

五、实验结论。

通过本次拉伸实验,我们得到了金属材料的力学性能参数,这些参数对于工程设计和材料选用具有重要意义。

在实际应用中,我们可以根据金属材料的弹性模量、屈服强度和延展性能来选择合适的材料,以确保工程结构的安全可靠性。

六、实验总结。

本次实验通过拉伸试验,探究了金属材料的力学性能,得到了金属材料的应力-应变曲线和相关参数。

同时,我们也深刻认识到了金属材料在受力作用下的变形规律,对于进一步研究金属材料的力学性能具有重要意义。

七、参考文献。

[1] XXX. 金属材料力学性能测试与分析[M]. 北京,科学出版社,2008.[2] XXX. 金属材料力学性能测试方法与应用[M]. 上海,上海科学技术出版社,2010.以上是本次金属材料的拉伸实验报告,谢谢阅读。

金属拉伸实验报告

金属拉伸实验报告

金属拉伸实验报告导言:金属材料在工业界和科研领域中广泛应用,而了解金属的物理性质对于设计和制造高性能金属构件尤为重要。

本实验旨在通过对金属材料进行拉伸实验,研究其拉伸性能。

实验目的:通过金属拉伸实验,掌握金属的力学性能,包括强度、延伸性以及断裂行为,并分析其与微观组织的关联。

实验方法:本实验选取了常见的工程金属铜作为实验样品,首先将金属样品切割成标准试样。

然后,通过金属材料力学试验机进行实验,即将金属试样夹持在两个夹具之间,然后施加逐渐增加的拉力,在不断测量拉伸过程中的应力和应变的同时,记录下试样断裂之前的长度。

实验过程中,要确保试样质量恒定、环境温度稳定。

实验结果与分析:根据实验数据,我们得到了铜样品在不同拉力下的应力和应变曲线,通过分析这些数据,可以得出以下结论:1. 弹性阶段:在应力小于材料屈服强度时,金属样品表现出弹性变形特性。

应力与应变呈线性关系,即满足胡克定律。

应力-应变曲线为一条直线,斜率等于杨氏模量。

2. 屈服阶段:随着应力的增加,金属样品会在达到一定应力值时开始发生屈服变形。

此时应力-应变曲线出现明显的非线性区域,曲线出现弯曲并逐渐平缓,表示金属样品进入塑性变形阶段。

屈服强度是表征金属材料抵抗塑性变形的能力。

3. 闭口阶段:当金属样品已达到最大应力值时,应力开始急剧下降,直到最终断裂。

这个过程称为闭口阶段。

在这个阶段,金属材料已无法承受更大的应力,进一步拉伸会导致断裂。

通过实验数据的分析,我们可以计算出金属样品的屈服强度、抗拉强度和延伸率等力学性能参数。

这些数据对于制定合适的金属材料应用方案,比如结构设计和材料选型,有着重要的意义。

结论:通过本次金属拉伸实验,我们对金属材料的力学性能有了深入的了解。

金属的力学性能直接受到其微观组织的影响,因此在设计和制造金属构件时,需考虑各种因素对金属力学性能的影响。

此外,为了获得准确可靠的测试结果,实验过程中要注意控制试样形状和尺寸的一致性,并确保实验环境的稳定性。

金属的拉伸实验(实验报告)

金属的拉伸实验(实验报告)

金属的拉伸实验一一、实验目的1、测定低碳钢的屈服强度S σ、抗拉强度b σ、断后延伸率δ和断面收缩率ψ2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图(F ─L ∆曲线)3、分析低碳钢的力学性能特点与试样破坏特征二、实验设备及测量仪器1、万能材料试验机2、游标卡尺、直尺三、试样的制备试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度0l 称为“标矩”。

两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。

试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。

直径020d mm =,标矩000200(10)l mm l d ==或000100(5)l mm l d ==的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。

四、实验原理在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F—ΔL 曲线。

图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。

分析时应将图中的直线段延长与横坐标相交于O 点,作为其坐标原点。

拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。

但同一种材料的拉伸曲线会因试样尺寸不同而各异。

为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F )除以试样原始横截面面积S 0,并将横坐标(伸长ΔL )除以试样的原始标距0l 得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R —ε曲线,如图2—12所示。

从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

拉伸试验过程分为四个阶段,如图2—11和图2-12所示。

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告金属材料拉伸与压缩实验报告引言:金属材料是工程领域中广泛应用的一类材料。

了解金属材料的力学性能对于设计和制造具有高强度和高可靠性的结构件至关重要。

本实验旨在通过拉伸和压缩实验,研究金属材料的力学性能,并分析其应力-应变曲线、屈服强度和延伸率等参数。

实验方法:1. 拉伸实验:首先,选择一块金属试样,将其夹紧在拉伸试验机上。

逐渐施加拉力,记录下拉伸过程中的应变和应力数据。

当试样断裂时,停止拉力施加,记录下断裂点的应变和应力。

2. 压缩实验:选择一块金属试样,将其夹紧在压缩试验机上。

逐渐施加压力,记录下压缩过程中的应变和应力数据。

当试样发生破坏时,停止压力施加,记录下破坏点的应变和应力。

实验结果与分析:通过拉伸实验得到的应力-应变曲线表明,金属材料在拉伸过程中呈现出弹性阶段、屈服阶段和断裂阶段。

在弹性阶段,应变与应力成正比,材料能够恢复原状。

在屈服阶段,应变增加速度减慢,材料开始发生塑性变形。

在断裂阶段,应变急剧增加,材料发生断裂。

通过测量屈服点的应力和应变,可以计算出材料的屈服强度。

通过压缩实验得到的应力-应变曲线与拉伸实验类似,也呈现出弹性阶段、屈服阶段和断裂阶段。

然而,与拉伸实验相比,压缩实验中的屈服点通常较难确定。

这是因为在压缩过程中,试样受到的应力分布不均匀,可能会导致试样的局部塑性变形和失稳。

根据实验数据计算得到的屈服强度和延伸率等参数可以用来评估金属材料的机械性能。

屈服强度是材料在发生塑性变形之前能够承受的最大应力。

延伸率是材料在拉伸过程中能够延展的程度,通常以百分比表示。

这些参数对于工程设计和材料选择非常重要,可以帮助工程师确定合适的金属材料以满足特定的应用需求。

结论:通过拉伸和压缩实验,我们可以获得金属材料的应力-应变曲线,并计算出屈服强度和延伸率等参数。

这些参数对于评估金属材料的力学性能至关重要。

在工程设计和材料选择过程中,我们应该根据特定应用的需求,选择具有适当力学性能的金属材料,以确保结构的安全性和可靠性。

拉伸实验报告

拉伸实验报告

拉伸实验报告拉伸实验报告一、实验目的通过拉伸实验,了解金属材料在受力下的力学性能,并掌握实验室中拉伸试验的操作方法。

二、实验原理拉伸试验是将试样置于拉伸试验机上,施加拉力,逐渐加大试样的应变,测定在不同应变下的力和伸长量,然后计算应力和应变。

通过绘制应力-应变曲线,可获得材料的力学性能参数,如屈服强度、抗拉强度、断裂强度等。

三、实验仪器与试样实验仪器:拉伸试验机试样:金属材料试样,常见的有钢材、铝材等。

四、实验步骤1. 准备试样:根据实验要求,将金属试样切割成标准尺寸,并进行必要的表面处理。

2. 放置试样:将试样固定在拉伸试验机上,确保试样与试验机保持紧密接触。

3. 调试试验机:开启拉伸试验机的电源,根据试样材料的特性确定试验机的工作参数,如拉拔速度、力程范围等。

4. 实施拉伸:通过操作试验机上的控制按钮,开始施加拉力,并逐渐增大拉力,直到试样断裂。

5. 记录数据:在拉伸实验过程中,实时记录试验机上的读数,包括载荷和伸长量。

6. 分析结果:根据实验数据,计算应力、应变,并绘制应力-应变曲线。

根据曲线上的特征点,确定材料的力学性能,如屈服强度、抗拉强度等。

五、实验结果与分析根据实验数据,我们得到了一条应力-应变曲线。

通过该曲线,我们可以计算出各个特征点的数值,如屈服强度、抗拉强度等。

比较不同材料的曲线,可以得出它们的力学性能差异。

六、实验注意事项1. 操作拉伸试验机时,应注意安全,严禁近距离观察试样断裂过程,以免发生危险。

2. 实施拉伸时,应逐渐增大拉力,以避免试样突然断裂造成伤害。

3. 试样应尽量选择无损伤的部位,以保证实验结果的准确性。

4. 实验结束后,要及时关闭拉伸试验机的电源。

七、实验总结通过本次拉伸实验,我掌握了拉伸试验的基本操作方法,并了解了金属材料受力下的力学性能。

通过分析实验结果,我发现不同材料的力学性能存在差异,这对我今后从事相关行业的工作极具参考意义。

同时,本次实验也加深了我对实验安全操作的认识,提高了我的实验技能。

金属材料的室温拉伸试验实验报告仅供参考

金属材料的室温拉伸试验实验报告仅供参考

金属材料的室温拉伸试验实验报告(仅供参考)金属材料的室温拉伸试验实验报告一、实验目的本实验旨在通过对金属材料进行室温拉伸试验,观察和分析材料的力学性能,包括抗拉强度、屈服强度、延伸率等指标,为材料的选择和使用提供理论依据和数据支持。

二、实验原理拉伸试验是材料力学性能测试的基本方法之一,通过施加拉伸载荷,对材料进行轴向拉伸,记录材料的变形和破坏过程,从而评估材料的力学性能。

在室温下进行拉伸试验,可以反映材料在常温下的基本力学性能,对于材料的应用和选型具有重要意义。

三、实验步骤1.样品准备:选取具有代表性的金属材料样品,将其加工成标准试样,尺寸符合试验规范要求。

2.安装试样:将试样装载到拉伸试验机上,确保试样的位置和受力状态正确。

3.调整试验机参数:设置试验机的拉伸速度、最大载荷等参数,确保试验数据的准确性和可靠性。

4.开始试验:以规定的速度对试样进行拉伸,实时记录试样的变形量和对应的载荷,观察材料的变形和破坏过程。

5.数据处理:根据试验数据,计算出材料的抗拉强度、屈服强度、延伸率等力学性能指标。

四、实验结果及数据分析1.实验数据:通过对比和分析实验数据,可以得出以下结论:(1)抗拉强度:试样1的抗拉强度为350MPa,试样2的抗拉强度为400MPa,试样3的抗拉强度为450MPa。

可以看出,随着材料抗拉强度的增加,其抵抗拉伸载荷的能力也在提高。

(2)屈服强度:试样1的屈服强度为200MPa,试样2的屈服强度为220MPa,试样3的屈服强度为250MPa。

屈服强度是材料开始发生塑性变形的临界点,它反映了材料在静载下的承载能力。

随着材料屈服强度的增加,其抵抗塑性变形的能力也在提高。

(3)延伸率:试样1的延伸率为15%,试样2的延伸率为18%,试样3的延伸率为20%。

延伸率反映了材料在拉伸过程中塑性变形的程度,它与材料的韧性密切相关。

随着材料延伸率的增加,其韧性也在提高。

五、结论本实验通过对金属材料进行室温拉伸试验,观察和分析材料的力学性能。

金属拉伸实验报告小结

金属拉伸实验报告小结

金属拉伸实验报告小结金属拉伸实验是一种常见的力学实验,通过施加外力,使金属试样发生拉伸变形,从而研究金属的拉伸性能和力学行为。

本次实验旨在探究金属的拉伸性能、确定其抗拉强度、屈服强度、延伸率等参数,并分析金属在拉伸过程中的力学行为。

首先,实验中选取了常见的金属材料作为试样,如铁、铜、铝等。

这些金属具有不同的性质和组织结构,通过对它们进行拉伸实验可以研究它们的强度、韧性、可塑性等方面的性能。

实验过程中,首先对金属试样进行准备工作,包括切割、磨光等,以保证试样的质量和形状一致。

然后,使用拉伸试验机对试样进行拉伸,逐渐增加外力,并记录外力和伸长值的变化。

通过测量和记录力和伸长的数据,可以得到金属试样在拉伸过程中的力学性质。

实验结果显示,金属试样在拉伸过程中呈现出一定的线性弹性阶段、塑性阶段和断裂阶段。

在线性弹性阶段,金属试样的应变与应力呈线性关系,满足胡克定律。

而在塑性阶段,金属试样开始发生塑性变形,并伴随着应力增加而应变增加的现象。

最终,在断裂阶段,金属试样达到破坏点,出现断裂现象。

根据实验数据,可以计算得到金属试样的抗拉强度、屈服强度、延伸率等参数。

抗拉强度是指金属试样在断裂前所承受的最大拉应力,屈服强度是指金属试样开始发生塑性变形时的应力,延伸率是指金属试样在断裂前的伸长量与原始长度之比。

通过分析实验结果,可以得出以下几点结论:首先,金属的拉伸性能与其材料的类型和组织结构密切相关。

不同金属具有不同的力学性能,如铁具有较高的抗拉强度和屈服强度,铜具有较高的延伸率等。

其次,金属的拉伸性能还受到外界条件的影响。

温度、应变速率等因素都会对金属的力学性质产生一定影响。

例如,在高温下,金属试样的延伸率通常会增加。

最后,金属的力学行为可以用应力-应变曲线来描述。

通过绘制应力-应变曲线,可以清楚地观察到金属的弹性、塑性和断裂变形过程,为进一步研究金属的力学行为提供了依据。

综上所述,金属拉伸实验是一种有效的手段,用于研究金属材料的拉伸性能和力学行为。

金属材料拉伸实验报告

金属材料拉伸实验报告

一、实验目的1. 学习全数字化电子万能材料试验机的操作方法。

2. 测定低碳钢在拉伸过程中的屈服强度、抗拉强度、断后伸长率和断面收缩率。

3. 观察低碳钢在拉伸过程中的各种现象,并分析其力学性能特点。

4. 比较低碳钢和铸铁的力学性能差异。

二、实验原理金属材料拉伸试验是一种常见的力学性能测试方法,通过测定材料在拉伸过程中的应力、应变、屈服强度、抗拉强度、断后伸长率和断面收缩率等指标,来评价材料的力学性能。

拉伸试验过程中,材料将经历弹性变形、塑性变形和断裂等阶段,各阶段的真实反映材料抵抗外力的全过程。

三、实验仪器与设备1. 全数字化电子万能材料试验机2. 计算机及数据采集系统3. 游标卡尺4. 低碳钢试样5. 铸铁试样四、实验步骤1. 将低碳钢试样和铸铁试样分别安装在万能材料试验机上。

2. 调整试验机,确保试样夹紧良好。

3. 启动试验机,进行拉伸试验。

4. 记录拉伸过程中的应力、应变、屈服强度、抗拉强度、断后伸长率和断面收缩率等数据。

5. 观察并记录低碳钢和铸铁在拉伸过程中的各种现象。

五、实验结果与分析1. 低碳钢试样拉伸试验结果:- 屈服强度:286.41 MPa- 抗拉强度:383.87 MPa- 断后伸长率:25.27%- 断面收缩率:60.11%在拉伸过程中,低碳钢表现出良好的塑性变形能力,直至断裂。

断裂形式为沿最大主应力方向断裂。

2. 铸铁试样拉伸试验结果:- 抗拉强度:279.98 MPa- 断后伸长率:1%铸铁在拉伸过程中表现出脆性断裂特征,断裂形式为沿最大主应力方向断裂。

3. 低碳钢和铸铁力学性能比较:- 低碳钢具有良好的塑性变形能力和抗拉强度,适用于承受较大变形和载荷的工程结构。

- 铸铁具有良好的抗压强度和硬度,但塑性变形能力较差,适用于承受较大载荷和冲击的工程结构。

六、实验结论1. 低碳钢和铸铁在拉伸过程中的力学性能差异较大,低碳钢具有良好的塑性和抗拉强度,而铸铁具有良好的硬度和抗压强度。

金属材料拉伸实验报告

金属材料拉伸实验报告

金属材料拉伸实验报告实验目的,通过对金属材料进行拉伸实验,探究其拉伸性能及力学性能,为材料的工程应用提供参考。

实验原理,金属材料在受力作用下会发生形变,拉伸实验是一种常用的材料力学性能测试方法。

在拉伸实验中,我们通常会测定金属材料的抗拉强度、屈服强度、断裂伸长率等指标,以评估材料的力学性能。

实验步骤:1. 准备样品,选择不同种类的金属材料作为实验样品,制备成标准尺寸的试样。

2. 安装设备,将试样固定在拉伸试验机上,调整好试验机的参数。

3. 进行拉伸实验,逐渐增加试样上的拉力,记录下拉伸过程中的应力-应变曲线。

4. 测定结果,根据实验数据计算出金属材料的抗拉强度、屈服强度等力学性能指标。

5. 分析结果,对实验结果进行分析,比较不同金属材料的力学性能差异。

实验结果与分析:通过实验我们得到了不同金属材料的拉伸性能数据,例如抗拉强度、屈服强度、断裂伸长率等指标。

我们发现,不同金属材料具有不同的力学性能表现,这与其晶体结构、晶粒大小、合金元素等因素密切相关。

例如,晶粒较细的金属材料通常具有较高的屈服强度,而含有合金元素的金属材料则具有较高的抗拉强度。

实验结论:通过本次拉伸实验,我们深入了解了金属材料的力学性能特点,不同金属材料在受力作用下表现出不同的拉伸性能。

这些数据对于工程材料的选择和设计具有重要的指导意义,也为金属材料的进一步研究提供了实验基础。

实验总结:拉伸实验是一种重要的材料力学性能测试方法,通过实验我们可以全面了解金属材料的拉伸性能,为工程应用提供可靠的数据支持。

在今后的工作中,我们将继续深入研究金属材料的力学性能,不断完善实验方法,为材料科学研究和工程应用做出更大的贡献。

通过本次实验,我们对金属材料的拉伸性能有了更深入的了解,这对于材料工程领域的发展具有重要的意义。

希望本报告能够为相关领域的研究和工程应用提供一定的参考价值。

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告一、实验目的•了解金属材料在拉伸和压缩过程中的性能变化;•学习金属材料的拉伸与压缩实验方法;•掌握实验数据的处理和分析方法;•探讨金属材料的力学性能与结构之间的关系。

二、引言金属材料是工程中常用的材料之一,其力学性能的研究对于工程设计和材料选择具有重要意义。

本实验通过拉伸和压缩实验,研究金属材料在不同载荷下的应力应变关系,以及在力学性能方面的表现。

三、实验装置与仪器本实验使用的主要装置和仪器有: 1. 万能拉压试验机:用于施加拉伸和压缩载荷;2. 标准金属试样:选择一种常用金属材料,制备符合标准要求的试样;3. 外观仪:用于测试和观察试样的形变和断裂情况;4. 数字测量仪:用于准确测量应变、变形等数据;5. 数据采集系统:用于实时记录试验过程中的数据。

四、实验步骤拉伸实验1.准备金属试样:根据标准要求制备符合尺寸要求的金属试样,并在试样上标记初始长度L0和标距;2.安装试样:将试样放在拉伸试验机上,并进行正确的夹持和定位;3.施加载荷:设置合适的加载速率和初始载荷,在试验过程中逐渐增加拉力,并记录下对应的载荷和伸长量;4.记录数据:实时记录试验过程中的变形、应力和应变等数据;5.观察试验现象:注意观察试样在不同载荷下的形变情况,并记录下试样破裂时的最大载荷。

压缩实验1.准备金属试样:根据标准要求制备符合尺寸要求的金属试样,并在试样上标记初始长度L0和标距;2.安装试样:将试样放在压缩试验机上,并进行正确的夹持和定位;3.施加载荷:设置合适的加载速率和初始载荷,在试验过程中逐渐增加压力,并记录下对应的载荷和压缩量;4.记录数据:实时记录试验过程中的变形、应力和应变等数据;5.观察试验现象:注意观察试样在不同载荷下的形变情况,并记录下试样破裂时的最大载荷。

五、实验结果与数据分析1.拉伸实验结果分析:–绘制应力-应变曲线,根据实验数据计算得到;–分析试样在不同载荷下的形变行为,例如材料的延展性、断裂性等;–比较不同金属材料的力学性能差异。

金属材料拉伸试验报告

金属材料拉伸试验报告

金属材料拉伸试验报告金属材料室温拉伸试验方法GB中华人民共和国国家标准GB/T228-2002eqv ISO 6892:1998金属材料室温拉伸试验方法Metallic materials——Tensile testing at ambient temperature发布GB/T228-2002目次前言ⅢISO前言Ⅳ1 范围12 引用标准13 原理14 定义15 符号和说明56 试样67 原始横截面积(So)的测定78 原始标距(Lo)标记79 试验设备的准确度710 试验要求811 断后伸长率(A)和断裂总伸长率(At)的测定812 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定913 屈服点延伸率(Ae)的测定914 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定1015 规定非比例延伸强度(Rp)的测定1016 规定总延伸强度(Rt)的测定1117 规定残余延伸强度(Rr)的验证方法1118 抗拉强度(Rm)的测定1119 断面收缩率(Z)的测定1220 性能测定结果数值的修约1421 性能测定结果的准确度1422 试验结果处理1523 试验报告15附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于4mm线材、棒材和型材使用的试样型17附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试样类型20附录D(标准的附录)管材使用的试样类型21附录E(提示的附录)断后伸长率规定值低于5%的测定方法24附录F(提示的附录)移位方法测定断后伸长率24附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。

2)举例27附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31附录L(提示的附录)新旧标准性能名称和符号对照34GB/T228-2002前言本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。

金属材料拉伸实验报告

金属材料拉伸实验报告

金属材料拉伸实验报告金属材料拉伸实验报告导言:金属材料是工业生产中常用的材料之一,其力学性能对于工程设计和制造至关重要。

拉伸实验是一种常见的测试方法,可以评估金属材料的强度、延展性和韧性等特性。

本实验旨在通过拉伸实验对某种金属材料进行性能测试,并分析其断裂特征和力学性能。

实验方法:1. 实验材料的选择在本次实验中,我们选择了一种常见的金属材料——钢材作为测试对象。

钢材具有较高的强度和韧性,广泛应用于建筑、制造和交通等领域。

2. 实验装置和操作我们使用了一台万能拉伸试验机进行实验。

首先,将钢材样品切割成符合标准尺寸的试样。

然后,在拉伸试验机上夹紧试样,并调整好试样的位置和夹紧力。

接下来,通过控制拉伸试验机的速度和载荷,进行拉伸实验。

在实验过程中,记录下载荷和试样的伸长量。

实验结果:1. 断裂特征在拉伸实验中,我们观察到钢材试样在受力过程中逐渐发生塑性变形,伴随着试样的颈缩现象。

最终,试样发生断裂,形成两个断口。

通过观察断口形貌,我们可以看到断口表面呈现出光洁的平面,呈现出典型的“杯状”形态。

这表明钢材的断裂是韧性断裂。

2. 力学性能通过拉伸实验的测试数据,我们可以得到钢材的力学性能参数。

其中,最常用的参数包括屈服强度、抗拉强度和延伸率。

屈服强度是指试样开始发生塑性变形的载荷值。

在拉伸实验中,我们可以通过绘制载荷-伸长曲线来确定屈服强度。

曲线上的点即为屈服强度。

抗拉强度是指试样在拉伸过程中承受的最大载荷值。

通过拉伸实验的测试数据,我们可以得到抗拉强度的数值。

延伸率是指试样在拉伸过程中的伸长量与初始试样长度的比值,通常以百分比表示。

通过测量试样的伸长量,我们可以计算出延伸率。

讨论与分析:通过本次拉伸实验,我们得到了钢材的力学性能参数。

这些参数对于工程设计和材料选择具有重要意义。

首先,屈服强度可以作为评估材料的抗塑性变形能力的指标。

较高的屈服强度意味着材料具有较好的抗塑性变形能力,适用于承受大的载荷和应力的工程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料拉伸试验报告
拉伸试验是指在承受轴向拉伸载荷下测定材料特性的试验方法。

利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。

1、金属抗拉性能相关指标常温下金属抗拉性能通常包括抗拉强度、屈服强度又称屈服点或规定屈服强度、伸长率和断面收缩率四个指标。

前二者称为强度
所谓强度系指试样受轴向拉伸负荷过程中任一瞬间,金属抵抗变形或破断的能力,一般以原单位横截面积上所受的力表示。

而塑性则为试样经拉伸到破断后,以百分数表示的标距的伸长率和断裂处原横截面积的缩减率。

2、拉伸试验步骤
1)准备试件。

对相同大小规格形状的普碳钢和铝合金试样分别进行拉伸试验。

用刻度机在原始标距范围内刻划圆周线。

将标距内分为等长的10格。

测量得到其原始直径为10mm,原始标距长度为100mm。

2)调整试验机。

手动控制上夹头至合适的夹持位置。

选择合适的测力度盘。

开动试验机,使工作台上升10mm左右,以消除工作台系统自重的影响。

调整主动指针对准零点,从动指针与主动指针靠拢,调整好自动绘图装置。

3)装夹试件。

先将试件装夹在上夹头内,再将下夹头移动到合适的夹持位置,最后夹紧试件下端。

(铝合金材料无显著屈服现象需转载电子引伸计)
4)检查与试车。

检查以上步骤完成情况。

开动试验机,预加少量载荷(载荷对应的应力不能超过材料的比例极限),然后卸载到零,以检查试验机工作是否正常。

5)进行试验。

开动试验机,缓慢而均匀地加载,仔细观察测力指针转动和绘图装置绘出图的情况。

注意捕捉屈服荷载值,将其记录下来用以计算屈服点应力值。

屈服阶段注意观察滑移现象。

过了屈服阶段,加载速度可以快些。

将要达到最大值时,注意观察“缩颈”现象。

试件断后立即停车,记录最大荷载值。

(铝合金试样无明显屈服现象)
6)取下试件和记录纸。

7)用游标卡尺测量断后标距。

8)用游标卡尺测量缩颈处最小直径
3、金属材料拉伸过程中的四个阶段
试验最终得到的拉伸曲线,实际上是载荷-伸长曲线,在这个曲线中有四个阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

1)弹性阶段: 随着荷载的增加,应变随应力成正比增加。

如卸去荷载,试件将恢复原状,表现为弹性变形,此阶段内可以测定材料的弹性模量E。

2)屈服阶段: 普碳钢:超过弹性阶段后,载荷几乎不变,只是在某一小范围内上下波动,试样的伸长量急剧地增加,这种现象称为屈服。

如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。

塑性变形是突然开始且载荷数会突然下降,如果全部卸除荷载试样将不会恢复原长表现为永久形变。

而对于铝合金来说,弹性区域的结束点并非伴随着载荷的突然下降或其他明显的变化从弹性阶段到塑性阶段是一条平滑渐变的曲线。

3)强化阶段:试样经过屈服阶段后,曲线呈现上升趋势,由于材料在塑性变形过程中不断强化,材料的抗变形能力有增强了,这种现象称为应变硬化。

若在此阶段卸载载荷到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变。

4)颈缩阶段和断裂阶段,试样伸长到一定程度后,荷载读数反而逐渐降低。

4、相关计算
对于屈服现象明显的材料:
上屈服强度ReH= FeH/S0 (S0表示原始横截面面积、FeH表示上屈服点对应的轴向力)
下屈服强度ReL = FeL/S0 (S0表示原始横截面面积、FeL表示下屈服点对应的轴向力)
抗拉强度Rm=Fmax/ S0 (Fmax是指最大轴向力)
对于屈服现象不明显的材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。

大于此极限的外力作用,将会使零件永久失效,无法恢复。

相关文档
最新文档