第八章 常微分方程答案(2012[1].6)
常微分方程课后答案
常微分方程 2、11、xy dxdy2=,并求满足初始条件:x=0,y=1的特解、 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解、解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程第六、八章习题答案
第六章 线性微分方程组、习题6-11.求出齐次线性微分方程组y t A dt dy)(=的通解,其中分别为:)(t A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎩⎨⎧==⎩⎨⎧==⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎩⎨⎧=⇒==⇒=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛=t C t C C C t t C t t y y y t t ty y y t y t C t C y y y tC y t C y y y y y dt d t t t y t dy t y dt dy t t t t 212121212121212211211121110000.00,0,0.,00;0,00)(A .12211或通解为则方程组的基解矩阵为或取故通解为解:由)( .0.0)(,,0.,1011,1011)(A .2212112221212121C e te e y e te e t ey te y y e y eC y y y y y y y y dt d t t t t t tt t t t t dt dy dt dy ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎩⎨⎧==⎩⎨⎧==⎩⎨⎧=⇒=+=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=或通解为则方程组的基解矩阵为取解:由)(φCt t t t y t t t t t ty t y t y t y C y y dy y dy y y y dy dy y y y y y y dt d t dt dy dt dy ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-⎩⎨⎧-==⎩⎨⎧====+⇒=+⇒-=⇒⎩⎨⎧-==⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=sin cos cos sin .sin cos cos sin )(,sin cos ,cos sin ,1.C 0.,0110;0110)(A .3212122212211122112212121故通解为则方程组的奇解矩阵为并令取解:由)(φ.0000.021000,,1,0,0,,0C ()()(..)()(,001010100,001010100)(A .4321212121313123212223213311133111223321⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛≠=-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛====⎩⎨⎧-==⎩⎨⎧==±=⇒=⇒=+=⇒=⇒=⇒⎭⎬⎫⎪⎩⎪⎨⎧---==⇒=---=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=----------t t t t t t t t t t t t t t ttt t t tttt t t t t t t ttt t t dt dy tdt dy dtdy e e e C e e C e e C y e e e e e e e e e e e e e e e e e e e e e e e y C y C e y e y e y e y y y y y C y y dy y dy y y y dy dy b a b y eC y y a y y dt dy t 故通解为线性无关即为方程祖的三个解。
第8章 常微分方程—8-8(习题课)
习题5
求解
y a y 2 0 y x 0 0 , y
x 0
1
提示: 令 则方程变为 1 积分得 a x C1 , 利用 p x 0 y x 0 1 得 C1 1 p dy 1 , 并利用 y x 0 0 , 定常数 C2 . 再解 dx 1 ax
y y x,
xπ 2
y 4 y 0 , x π 2
ቤተ መጻሕፍቲ ባይዱ满足条件
处连续且可微的解. 例4 设函数 数, 且 内具有连续二阶导
(1) 试将 x=x( y) 所满足的微分方程 2 d x dx 3 ( y sin x)( ) 0 2 dy dy
变换为 y=y(x) 所满足的微分方程 ;
dp f ( x, p ) dx
2. 二阶线性微分方程的解法
• 常系数情形 • 欧拉方程
齐次
非齐次
代数法
x 2 y p x y q y f ( x) d t 令 x e ,D dt t y D( D 1) pD q f (e )
例3 求微分方程
利用 y x 0 0, y x 0 0, 得
处的衔接条件可知,
解满足
y 4 y 0
其通解:
y C1 sin 2 x C2 cos 2 x
) cos 2 x, x y 1 sin 2 x ( 1 2 2 2
定解问题的解: 故所求解为
y 1 ) cos 2 x , sin 2 x ( 1 2 2
高等数学A
第8章 常微分方程
习 题 课
中南大学开放式精品示范课堂高等数学建设组
微分方程习题课
高等数学 第八章 常微分方程
第八章 常微分方程一、本章提要1. 基本概念微分方程,常微分方程,微分方程的阶数,线性微分方程,常系数线性微分方程,通解,特解,初始条件,线性相关,线性无关,可分离变量的方程,齐次线性方程,非齐次线性方程,特征方程,特征根.2. 基本公式一阶线性微分方程 ()()y P x y Q x '+=的通解公式:()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰. 3. 基本方法分离变量法,常数变易法,特征方程法,待定系数法,降阶法. 4. 定理齐次线性方程解的叠加原理,非齐次线性方程解的结构. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以 )0(d d ≠-=y y xy ,分离变量x yy d d -=,两边积分⎰⎰-=x yy d d ,1ln y x C =-+, 1ex C y -+=,1e e C x y -=±,所以 exy C -= (C 为任意常数).请思考为什么所求通解 e x y C -= 中的任意常数C 可以为零,如何解释. 问题2 如何用微分方程求解一些实际问题?解析 用微分方程求解实际问题的关键是建立实际问题的数学模型——微分方程.这首先要根据实际问题所提供的条件,选择和确定模型的变量.再根据有关学科,如物理、化学、生物、几何、经济等学科理论,找到这些变量所遵循的定律,用微分方程将其表示出来.为此,必须了解相关学科的一些基本概念、原理和定律;要会用导数或微分表示几何量和物理量.如在几何中曲线切线的斜率 xy k d d =(纵坐标对横坐标的导数),物理中变速直线运动的速度 d d s v t=,加速度 22d d d d ts tv a ==,角速度 tw d d θ=,电流 tq i d d =等.例2 镭元素的衰变满足如下规律;其衰变的速度与它的现存量成正比,经验得知,镭经过1600年后,只剩下原始量的一半,试求镭现存量与时间t 的函数关系.解 设t 时刻镭的现存量()M M t =,由题意知:0(0)M M = ,由于镭的衰变速度与现存量成正比,故可列出方程kM tM -=d d ,其中(0)k k >为比例系数.式中出现负号是因为在衰变过程中M 逐渐减小,0d d <tM .将方程分离变量得ektM C -=,再由初始条件得00e M C C ==, 所以0ektM M -=,至于参数k ,可用另一附加条件 2)1600(0M M =求出,即160000e2k M M -⋅=,解之得k =≈ln .216000000433,所以镭的衰变中,现存量M 与时间t 的关系为0.0004330etM M -=.三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为01,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0,特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin c y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为y x A x B x p =+(c o ss i n ), 代入原方程,可得1,02A B =-= 所以y x x p =-12cos ,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()cos ()sin xn h f x P x x P x x αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =.解二 方程''+=y y x sin 所对应的齐次方程''+=y y 0之通解y C x C x C =+12cos sin .为求''+=y y x sin 的一个特解,先求辅助方程 i e e (0i )x xy y λλ''+===+ ①的特解,由于i λ= 恰是特征单根,故可设i e xp y Ax =为①的一个特解.将其代入①整理得2i 1A = 即i 2A =-,所以i i i 11e(c o s i s i n )s i n i (c o s)2222xp y x x x x x x x x =-=-+=-, 即y x x *cos =-12为方程''+=y y x sin 的一个特解.因此,所求通解为y C x C x x x =+-1212cos sin cos .该方法一般表述为:若二阶线性常系数非齐次微分方程''+'+=y py qy f x ()中的非齐次项()()ecos xm f x P x x αβ=或()()e sin x m f x P x x αβ=时,可先令()()e x m f x P x λ=(i λαβ=+)按λ是否为特征方程的特征根(λ是特征根设1k =,不是特征根设0k =),可设()e kxp m y x Q xλ=为方程()e xm y py qy P x λ'''++=的特解,求出12i p y y y =+的形式,则y 1为''+'+=y py qy ()e cos x m P x x αβ的一个特解, y 2 为''+'+=y py qy ()e sin x m P x x αβ的一个特解. 上述两种解法,实质上是一样的,为什么?四、练习题1. 判断正误(1)若y 1和y 2是二阶齐次线性方程的解,则1122C y C y +(C 1,C 2为任意常数)是其通解 ; ( ⨯ )解析 只有1y 和2y 是二阶齐次线性方程的两个线性无关的解时,其线性组合1122C y C y +才是通解.(2)'''+''-=y y x 0的特征方程为3210r r +-=; ( ⨯ ) 解析 '''+''-=y y x 0为三阶常系数非齐次线性微分方程,其对应的齐次线性方程为0=''+'''y y ,由于齐次线性微分方程的特征方程是把微分方程中的未知函数y 换成未知元r ,并将未知函数的导数的阶数换成未知元r 的次数而得到的代数方程.因此,'''+''-=y y x 0的特征方程为3210r r +-=.(3)方程''-'=y y x sin 的特解形式可设为x B x A sin cos +(A,B为待定系数) ;( √ )解析 对应的齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为 1r =0,2r =1. 又因为1,0==βα,i i αβ±=±不是特征根,于是,非齐次方程的特解应设为x x Q x x P y p s i n )(c o s )(00+== x B x A sin cos +.(4)'=y y 的通解为e xy C =(C 为任意常数). (√ )解析 特征方程为01=-r ,特征根为r =1,所以,特征方程的通解为e x y C =.2.选择题(1)2(1)e xy y y x '''-+=+的特解形式可设为( A );(A)2()e x x ax b + ; (B) ()e x x ax b +;(C) ()e xa xb +; (D) 2)(x b ax +.解析 特征方程为0122=+-r r ,特征根为 1r =2r =1.λ=1是特征方程的特征重根,于是有2()e xp y x ax b =+.(2)2e sin x y y y x -'''++=的特解形式可设为( C );(A) e sin x A x -; (B) 2e sin x Ax x -; (C) e (sin cos )x A x B x -+; (D) )cos (sin 2x x Ax +.解析 特征方程为 0122=++r r ,特征根为 1r =2r =1-.又因为1,1=-=βα,i 1i αβ±=-±不是特征根,于是,非齐次方程的特解设为)cos sin (x B x A e y xp +=-.(3)22e cos x y y y x -'''++=的特解形式可设为( A );(A) (cos sin )e x x A x B x -+; (B) e cos x Ax x -;(C) e sin x Ax x -; (D) (cos sin )e x Ax x x -+.解析 特征方程为0222=++r r ,特征根为 1r =1i -+,2r =1i --.又因为1α=-,1β=,i 1i αβ±=-±是特征方程的特征单根,于是,非齐次方程的特解设为 e(c o s s i n xp y x A x B x -=+.(4)下列方程中,通解为12e e x xy C C x =+的微分方程是( A ).(A) 02=+'-''y y y ; (B) ''+'+=y y y 21; (C) '+=y y 0 ; (D) '=y y .解析 由通解y =12e e x x C C x +=12()e xC C x +可知,它是二阶常系数齐次线性微分方程的通解,方程的特征根为重根1r =2r =1,对应的特征方程为0122=+-r r ,其所对应的二阶常系数齐次线性微分方程为02=+'-''y y y .3.填空题(1) 方程 '''+'=y y 0的通解为 123cos sin C C x C x ++;解 特征方程为03=+r r ,特征根为1r =0,2r =i ,3r =i -,方程的通解为 y =123cos sin C C x C x ++. (2)''+'+=y py qy 0的特征方程为 02=++q pr r ;解 特征方程是把微分方程中的未知函数y 换成未知元r ,并将未知函数的导数的阶数换成未知元r 的次数而得到的代数方程.(3)''=y x 2sin 的通解为 122sin x C x C -++ ; 解 方程两边积分得 y '=2sin d x x ⎰=12cos x C -+, 微分方程的通解 1(2c o s )d y x C x =-+⎰=122sin x C x C -++.(4)''-'+=y y y 567满足670==x y和'=-=y x 01的特解为 237ee6xx-+ .解 对应的齐次方程为065=+'-''y y y ,特征方程为0652=+-r r ,特征根为1r =2,2r =3,对应齐次方程的通解为2312eexxc y C C =+.由于λ=0不是特征方程的根,故设00()ee xxp y Q x A ==,将()Q x A =,0)()(=''='x Q x Q 代入方程,有6A =7, 即 A =67.于是方程的特解为 67=p y ,方程的通解为 23127=e +e6xxy C C +.现在求满足初始条件的特解.对y 求导得23122e 3e x xy C C '=+,将初值代入y 与y ',有121277(0),661(0)23,y C C y C C ⎧⎪==++⎨'-==+⎪⎩即 {12120,231,C C C C +=+=- ⇒{121,1,C C ==- 于是,方程满足初始条件的特解为y =237e e 6x x -+.4. 解答题(1) 用两种方法求解 ''=-'y x y 2;解一 对应的齐次方程为02='+''y y ,特征方程为 022=+r r ,特征根为 1r =0,2r =2-,于是对应的齐次方程的通解为c y =212exC C -+.由于λ=0是特征方程的特征单根,于是设p y =0()e x Q x =x(Ax+B)0e x , 求导得 B Ax x Q +='2)(, A x Q 2)(='', 则有 x B Ax A =++)2(22, ⇒ 1,41,4A B ⎧=⎪⎨⎪=-⎩ 所以方程的特解为 p y =)414(-x x ,所求方程的通解为 y =212exC C -++442x x-.解二 设)(x p y =',则)(x p y '='',原方程变形为 p x p 2-=',对应的齐次方程为 02=+'p p ,用分离变量法,得d 2d p x p=-,两边积分,得 l n 2l n p x c=-+, 即2e xp c -=, 根据常数变易法,设2()exp c x -=,代入p x p 2-=',有2()exc x x -'=, 2()e,xc x x '=积分得 2()ed xc x x x=⎰=21de2xx ⎰=2211ee d 22xxx x -⎰=22111ee24xxx C -+,变形后所得一阶微分方程的通解为 p =211e 24xx C --+,所以,原方程的通解为 y =()d p x x ⎰=211(e)d 24xx C x --+⎰=212exC C -++442x x-.(2) 求方程 ''+=y y x x cos 2满足10==x y,019x y ='=-的特解;解 对应的齐次方程为0=+''y y ,特征方程为012=+r ,特征根为1r =i ,2r =i -,对应的齐次方程的通解为c y =12cos sin C x C x +.先求辅助方程2i e x y y x ''+=的特解:由于λ=2i 不是特征方程的特征根,于是设p y =2i ()e x Q x =)(B Ax +2i e x ,A x Q =')(, 0)(=''x Q ,则有 4i 3()A Ax B x -+= ⇒ 1,34i,9A B ⎧=-⎪⎨⎪=-⎩所以,辅助方程的特解为p y 14(i)(cos 2i sin 2)39x x x =--+1414(cos 2sin 2)(sin 2cos 2)i 3939x x x x x x =-++--,于是原方程的特解为 p y =x x x 2sin 942cos 31+-, 所求方程的通解为 y =12cos sin C x C x +14cos 2sin 239x x x-+.现在求满足初始条件的特解.对通解求导数,得='y 12128sin cos cos 2sin 2cos 2,339C x C x x x x x -+-++由初始条件10==x y ,019x y ='=-,带入上面两式,得121,2,3C C =⎧⎪⎨=-⎪⎩所以,满足初始条件的特解为 x x y sin 32cos -=14cos 2sin 2.39x x x -+(3) 求方程 (e e )d (e e )d 0x y x x y y x y ++-++=的通解; 解 整理得 e (e 1)d e (e 1)x y yxx y -=-+,用分离变量法,得eed de 1e 1yxyxy x =--+,两边求不定积分,得 l n (e 1)l n (e 1)l y xC -=-++,于是所求方程的通解为 e 1e 1yxC-=+,即 e 1e 1yxC =++.(4) 求()y x y y 2620-'+=的通解;解 分离变量,得 2d 2d 6y y xx y=-,取倒数,有2d 613d 22x x y x y yyy-==-,是x 关于y 一阶线性微分方程.求此方程的通解.对应的齐次方程为d d x y=3yx ,用分离变量法,得 d x x=3d y y,两边积分,得 l n 3l n l n x y c =+, 即 3x c y =,用常数变易法,设方程的解为x =3()c y y ,代入方程,有31()2c y y y '=-, 即 21()2c y y'=-,积分,得 ()c y =12C y+,所以,方程的通解为 x =2312y C y +.(5) 当一次谋杀发生后,尸体的温度从原来的37C 。
(整理)常微分方程(含解答)
第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。
二、熟练掌握一阶可分离变量微分方程的解法。
三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。
四、理解线性微分方程解的性质和解的结构。
五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。
会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。
六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。
所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。
关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。
【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。
【典型例题】。
的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。
的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。
下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例 ⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴ 代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。
重庆大学出版社高等数学题库参考答案
第五章不定积分1(直接积分法、换元积分法)一、单选题1.设)(x f 是可导函数,则⎰'))((dx x f 为(A ).A.)(x fB.C x f +)(C.)(x f 'D.C x f +')(2.函数)(x f 的(B )原函数,称为)(x f 的不定积分.A.任意一个B.所有C.唯一D.某一个3.⎰=+=)(,2cos )(x f C x e dx x f x则(A ).A.)2sin 22(cos x x e x -B.C x x e x +-)2sin 22(cosC.x e x 2cosD.x e x2sin4.函数x e x f =)(的不定积分是(B ). A.x e B.c e x + C.x ln D.c x +ln5.函数x x f cos )(=的原函数是(A ). A.c x +sin B.x cos C.x sin - D.c x +-cos6.函数211)(x x f -=的原函数是(A ).A.c x x ++1 B.x x 1- C.32x D.c xx ++12 7.设x 2是)(x f 的一个原函数,则[]='⎰dx x f )((B )A.x 2B.2C.2x D.-28.若ce dx e xx +=⎰,则⎰xd e x22=(A )A.c ex+2 B.c e x + C.c e x +-2 D.c e x +-29.函数x x f sin )(=的原函数是(D ) A.c x +sin B.x cos C.x sin - D.c x +-cos10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=(B )A.)(x fB.0C.)(x FD.)(x f ' 11.函数211)(xx f +=的原函数是(A ) A.c xx +-1B.x x 1-C.32xD.c x x ++1212.函数211)(x x f -=的原函数是(A ) A.c xx ++1 B.x x 1- C.32x D.c x x ++1213.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则(B ) A.)()(x g x f = B.C x g x f +=)()(C.)()(x g x f ≠D.不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是(B ). A.C x f dx x F +='⎰)()( B.⎰+=C x F dx x f )()(C.⎰+=C x f dx x F )()(D.C x F dx x f +='⎰)()(15.经过点)1,0(-,且切线斜率为x 2的曲线方程是(D ). A.2x y = B.2x y -= C.12+=x y D.12-=x y 二.填空题 1.)25ln(2125x d x dx --=-.2.)1(212x d xdx --=.3.C aa dx a xx +=⎰ln .4.设)(x f 是连续函数,则dxx f dx x f d )()(=⎰.5.xx cos 2+的原函数是x x sin 2+.6.]4)3[(21)3(2---=-x d dx x .7.C x xdx +=⎰7sin 717cos .8.)1(ln 3133-=x x a d adx a .9.)3(cos 313sin x d xdx -=.10.C x dx x x +=⎰2ln 21ln .11.C x dx x +=⎰4341.12.)C 41(2222+-=--x x e ddx xe .13.C x xdx x +=⋅⎰2sin 21sin cos .14.C x dx x +=+⎰3arctan 319112. 15.C x x dx x +-=⎰)sin (212sin 2.16.⎰+='C x f dx x f )2(21)2(.17.设⎰+=.)()(C x F dx x f ,若积分曲线通过原点,则常数)0(F C -=.18.)3(arctan 31912x d x dx=+. 19.)(2122x x e d dx xe =.20.已知xx f C x dx x f 2sin )(,sin )(2=+=⎰则.21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C.22.C x x dx x x +-=+-⎰222111 23.Ce dx e xxx +-=⎰1121.24.)1ln(21122-=-x d dx x x .25.若x x f sin )(的导函数是,则)(x f 的原函数为Cx +-sin .26.设)(3x f x 为的一个原函数,则dxx x df 23)(=.27.)2cos 41(812sin x d xdx -=28.x x sin 2+的一个原函数是x x cos 313-.29.)3(cos 33sin x d dx x -=.30.Cx xdx +-=⎰cos ln tan .31.()C x dx x +--=-⎰)21sin(2121cos .32.Cx xdx +=⎰tan sec 2. 33.C x x dx +-=⎰3cot 313sin 2.34.设x 2是)(x f 的一个原函数,则⎰='])([dx x f 2.三.判断题 1.⎰+=cx xdx cos sin (×)2.x x e dx e =⎰(×)3.⎰-=.cos sin x xdx (×)4.⎰+-=cx xdx cos sin (√)5.)21sin()]21[sin(x dx x -=-⎰(×)6.⎰+-=c x xdx sin cos (×)四.计算题1.求不定积分dx x x ⎰+21.解:原式=C x x d x ++=++⎰23222)1(31)1(1212.求不定积分dx x ⎰-31.解:原式=C x +--3ln3.求不定积分⎰+dx e e xx 1.解:原式=C e e d e x x x ++=++⎰)1ln()1(11 4.求不定积分⎰+-dx x x x )3sin 21(.解:原式=C x x x +++ln 3cos 225.求不定积分⎰-dx xe x 2.解:原式=C e x +--221 6.求不定积分dx x x⎰+12.解:原式=C x ++)1ln(2127.求不定积分dx x x ⎰+2)72(.解:原式=C xx x ++⋅+7ln 24914ln 1422ln 24 8.求不定积分⎰+dx x 10)12(.解:原式=C x ++11)12(2219.求不定积分⎰+-dx xx x )1)(1(.解:原式=C x x x x x +-+-221522210.求不定积分⎰xdx 2sin .解:原式=C x x +-2sin 4121 11.求不定积分⎰dx xx 22cos sin1.解:原式=C x x +-cot tan 12.求不定积分dx x ⎰+321.解:原式=C x ++32ln 2113.求不定积分xdx x arctan 112⎰+.解:原式=C x +2)(arctan 21 14.求不定积分⎰-dx x x 4313.解:原式=C x +--41ln 43 15.求不定积分⎰+dx x 2411.解:原式=C x +2arctan 21 16.求不定积分⎰+dx x x)5(3.解:原式=C x x++5ln 5414 17.求不定积分⎰-dx e x5.解:原式=C e x +--551五.应用题1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系;(2)t s 与的函数关系.解:32sin 3)(2sin 3)2cos 34()(2cos 34)(cos 34)sin 312()(43,04335,032-++=−−−→−+++=++=++=−−→−++=-=-====⎰⎰t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t2.求经过点(0,0),且切线斜率为x 2的曲线方程. 解:20,022x y C x xdx y y x =−−−→−+====⎰3.一物体由静止开始运动,t 秒末的速度是23t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少?(2)物体走完360米需多长时间? 解:设运动方程为:30,032)(3)(t t S C t dt t t S S s t =−−→−+=====⎰(1)当3=t时,27)3(=S (米)(2)当.360360)(33秒=⇒==t t t S4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3x ,求这曲线的方程. 解:40,0434141x y C x dx x y y x =−−−→−+====⎰ 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离开出发点的距离. 解:t t t S C t tdt t S s t 180180)(180180180)-60t 3()(20,02-=−−→−+-====⎰.当3=t时,1080)3(=S (米).6.求经过点)1,(e ,且切线斜率为x 1的曲线方程.解:x y C x dx xy y e x ln ln 11,=−−→−+====⎰.7.求经过点(0,0),且切线斜率为211x+的曲线方程.解:x y C x dx x y y x arctan arctan 110,02=−−−→−+=+===⎰.第五章不定积分2一.单选题1.下列分部积分法中,dv u ,选择正确的是(A ).A.⎰==xdxdv x u xdx x 2sin 2sin ,, B.xdxdv u xdx ln ,1,ln ==⎰C.dxx dv e u dx e x x x22,,==--⎰D.xdx dv e u dx xe xx==⎰,,2.⎰⎰-=)(2arctan d 2arctan Axd x x x x .A.x arctan2B.x arctan4C.x arctan2-D.x arctan4-3.=⎰2-4d x x (A).A.C x +2arcsinB.C x +arcsinC.Cx +2arccos D.C x +arccos二.判断题1.分部积分法u v uv v u d d ⎰-=⎰的关键是恰当的选择u 和v d ,使u v d ⎰应比v u d ⎰容易积分.(√)2.若被积函数中含有22a x ±,则可利用三角函数代换法化原积分为三角函数的积分.(√)三.填空题 1.Cx dx x ++=+⎰1211.2.设)(x f 有一原函数⎰+-='Cx dx x f x x x cos )(,sin 则.3.C x x x xdx x +-=⎰2241ln 21ln .4.)3(arcsin 31912x d xdx =-.5.Cx x e dx e x x x ++-=⎰)22(22.6.⎰++-=C x x x xdx x 3sin 913cos 313sin .四.计算题1.求不定积分⎰-dx x x232.解:原式=Cx x d x +--=---⎰2223231)32(321612.求不定积分⎰dxx ex22.解:原式=C x x e x ++-)21(2122 3.求不定积分⎰++dxx x 11.解:C x x C t t dt t t t x +--+=+-=-=+⎰1)1(3232)22(132232原式4.求不定积分⎰+)1(x x dx.解:cx C t dt t t x +=+=+=⎰arctan 2arctan 21222原式5.求不定积分⎰xdxx 2sin .解:原式=C x x x ++-2sin 412cos 21 6.求不定积分⎰+dx e x x 5)2(.解:原式=C x e x ++)59(515 7.求不定积分dxxex⎰-4.解:原式C x e x ++-=-)16141(48.求不定积分⎰++dxx 111.解:原式[]C x x +++-+=)11ln(129.求不定积分⎰+-dxx 1211.解:原式[]C x x +-+++=112ln12-10.求不定积分dxex⎰+11.解:原式=C e e xx +++-+1111ln11.求不定积分⎰xdxxln 2.解:原式C x x +-=)31(ln 313 12.求不定积分dx x x ⎰-1.解:原式C x x +---=)1arctan 1(213.求不定积分⎰---dxx x 22112.解:原式C x x +-=)(arcsin 214.求不定积分⎰dx a x x 2)1,0(≠>a a .解:原式C aa x a x a x++-=)ln 2ln 2ln (32215.求不定积分dxx⎰-2941.解:原式C x +=23arcsin 31 16.求不定积分dxx ⎰sin .解:原式C x x x ++=sin 2cos -217.求不定积分⎰xdx x 3cos .解:原式C x x x ++=3cos 913sin 31 18.求不定积分dxx x ⎰+2.解:原式C x x ++-+=2123)2(4)2(32五.应用题(增加题)第六章定积分一.单选题 1.)(240Ddx x =-⎰A.⎰⎰-+-4220)2()2(dxx dx x B.⎰⎰-+-422)2()2(dxx dx x C.⎰⎰-+-422)2()2(dxx dx x D.⎰⎰-+-422)2()2(dxx dx x2.=⎰a adx x f )((C)A.大于0B.小于0C.等于0D.不能确定 3.⎰⎰--=+1111)()(dx x f dx x f (C)A.大于0B.小于0C.等于0D.不能确定 4.定积分⎰badxx f )(是(D )A.一个原函数B.()x f 的一个原函数C.一个函数族D.一个常数 5.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a ,D.都不正确 6.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a , D.无法确定 7.⎰⎰=-3234)()(dx x f dx x f (A)A.⎰42)(dxx f B.⎰24)(dxx f C.⎰43)(dxx f D.⎰32)(dxx f8.下列命题中正确的是(C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dxx g dx x f ba ba⎰⎰≠)()( B.⎰⎰≠babadtt f dx x f )()(C.若)()(x g x f ≠,则⎰⎰≠dxx g dx x f )()( D.⎰=badxx f dx x f d )()(9.=⎰dx x f dxd ba )((B) A.)(x f B.0 C.)(x f ' D.)(x F 10.若1)(=x f ,则⎰=badx x f )((C)A.1B.b a -C.a b -D.0 11.定积分⎰badxx f )(是(B )A.任意的常数B.确定的常数C.)(x f 的一个原函数D.)(x f 的全体原函数 12.若⎰=+12)2(dx k x ,则=k (B)A.-1B.1C.1/2D.0 13.=-⎰dx x 5042(C)A.11B.12C.13D.14 二.判断题1.函数在某区间上连续是该函数在该区间上可定积分的必要条件.(×)2.a b dx ba -=⎰0.(×)3.⎰='badx x f 0))((.(×)4.x xdx dx d ba sin sin ⎰=.(×)三.填空题1.设)(x f '在[]b a ,上连续,则)()()(a f b f dx x f b a-='⎰.2.C dx xxx +=⋅⎰6ln 6321. 3.4111022π-=+⎰dx x x .4.ee dx x e x-=⎰2121.5.设⎰⎰==52515)(,3)(dx x f dx x f ,则2)(21-=⎰dx x f .6..0113=⎰-dx x .7.若)(x f 在[]b a ,上连续,且⎰=ba dx x f 0)(,则[]a b dx x f ba-=+⎰1)(.8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积352)2(312=+=⎰-dx x A . 9..0sin 12=⎰dx x dx d .10.11ln4141=+-⎰-dx xx.11.1)1sin(212=⎰dx xx ππ. 12.32112=⎰-dx x .13.0cos 11⎰-=xdx x .14.利用定积分的几何意义填写定积分的值π41112=-⎰dx x . 15.22sin sin x dt t dx d x⎰=.16..0sin 222=⎰-xdx x .17..0113=⎰-dx x .18. 的值为积分.21ln 1⎰edx x x 19.2)253(22224⎰⎰=++-dx dx x x .20.11-=⎰e dx e x . 21.431=⎰-dx .22.⎰1212ln xdxx 的值的符号为负.四.计算题 1.求定积分.⎰+411xdx 解:原式)32ln 1(2+=2.求定积分⎰-124x dx.解:原式6arcsin 10π==x3.求定积分⎰-+-01)32)(1(dxx x .解:原式21-=4.求定积分dxx⎰--2121211解:原式3arcsin 2121π==-x5.求定积分⎰-+12511x dx 解:原式=2ln 54)511ln(5112=⎥⎦⎤⎢⎣⎡+-x6.求定积分dx x ⎰+9411解:原式[])2ln 1(2)1ln(232+-=-+-=t t7.求定积分dxex⎰-1.解:原式eex1101-=-=- 8.求定积分dxx ⎰212解:原式3712313==x 9.求定积分θθπd ⎰402tan 解:原式[]4104tan ππθθ-=-=10.求定积分.dx xx ⎰+402sin 12sin π解:原式232ln 04)sin 1ln(=+=πx 11.求定积分dxx x ⎰-ππ23sin .解:原式=012.求定积分()dxxx ⎰--2121221arcsin .解:原式=324)(arcsin 31321213π=-x 13.求定积分dxx x ⎰+911.解:原式2ln 213)1ln(2=+=x14.求定积分dxex x⎰12.解:原式201)22(2-=+-=e x x ex15.求定积分⎰+104)1(x dx 解:原式24701)1(31-3=+=-x 16.求定积分dxxe x ⎰2.解:原式102)1(2+=-=e x ex17.求定积分⎰-1dxxe x .解:原式e x ex2101)1(--=+=-18.求定积分dx x ⎰⎪⎭⎫⎝⎛+πππ33sin .解:原式0)3cos(3=+-=πππx19.已知⎩⎨⎧≤<-≤≤=31,210,)(2x x x x x f ,计算⎰20)(dx x f .解:原式⎰⎰-=-+=2110261)2(dx x dx x 20.求定积分()dx x x +⎰194.解:原式627149)2132(223=+=x x21.求定积分⎰1arctan xdxx .解:原式=214)arctan arctan (21102-=⎥⎦⎤⎢⎣⎡+-πx x x x22.求定积分⎰1arcsin xdx .解:原式1201)1arcsin (2-=-+=πx x x23.求定积分⎰262cos ππudu.解:原式836)2sin 21(2162-=+=πππu u 24.求定积分()dx x x x ⎰+2sin π.解:原式18sin cos 2122+=⎥⎦⎤⎢⎣⎡+-=ππx x x x25.求定积分dx x x ⎰-121221.解:原式[]41cot sin 24πππ-=--=t t t x26.求定积分dx x x 1sin 1212⎰ππ.解:原式11cos12==ππx27.求定积分dx x ⎰+11210.解:原式10ln 4950110ln 21012==+x 28.求定积分xdxx ⎰23cos sin π解:原式410cos 41-24==πx29.求定积分⎰124dx x x .解:原式10ln 710ln 810=⎥⎦⎤⎢⎣⎡=x 30.求定积分dx x x e⎰-1ln 1.解:原式21ln 21ln 12=⎥⎦⎤⎢⎣⎡-=ex x31.求定积分dxx x ⎰+31)1(1.解:原式[]6arctan 2312π==t t x32.求定积分xdxx cos sin 23⎰π.解:原式410sin 4124==πx33.求定积分⎰--1321dx x .解:原式[]5ln 2ln -13=-=-x34.求定积分dx x x x ⎰++21222)1(12解:原式4212arctan 1arctan 21π-+=⎥⎦⎤⎢⎣⎡-=x x 35.求定积分⎰+21ln 1e x x dx.解:原式[])13(2ln 1221-=+=e x36.求定积分dxe x x ⎰22.解:原式)1(21214202-=⎥⎦⎤⎢⎣⎡=e e x37.求定积分dxx ⎰20sin π.解:原式10cos 2=-=πx38.求定积分⎰++10)32)(1(dx x x .解:原式2112521032=⎥⎦⎤⎢⎣⎡++=x x x39.求定积分dttet ⎰-1022.解:原式212112---=⎥⎥⎦⎤⎢⎢⎣⎡-=e e t 40.求定积分dx x x ⎰+102212.解:原式[]22)arctan (210π-=-=x x41.求定积分⎰πsin xdxx .解:原式[]ππ=+-=0sin cos xx x42.求定积分dx x xe⎰12ln .解:原式311ln 313==e x43.求定积分⎰2cos sin 3πxdxx .解:原式230sin 2322==πx44.求定积分()⎰ωπωω20sin 为常数tdt t 解:原式2022sin 1cos 12ωπωωωωωω-=⎥⎦⎤⎢⎣⎡+-=t t t45.求定积分dxx ⎰230cos π.解:原式[][]3sin sin 23220=-=πππx x46.求定积分dxx ⎰--2221.解:原式43131231213113123=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=---x x x x x x47.求定积分⎰+331211dx x .解:原式[]6arctan 331π==x48.求定积分⎰+161 4x x dx .解:原式23ln 2)1ln(2142124+=⎥⎦⎤⎢⎣⎡++-=t t t t x五.应用题1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8(万元/百台),求产量从从1(百台)增加到3(百台)时,总收入的增加量.解:由已知x R -='8得总收入的增加量为:12218)8(R3131312=⎥⎦⎤⎢⎣⎡-=-='=⎰⎰x x dx x dx R2.试描画出定积分⎰ππ2cos xdx所表示的图形面积,并计算其面积.解:[]1sin cos 22=-=-=⎰ππππx xdx S .(图形略)3.试描画出定积分⎰ππ2sin xdx 所表示的面积图形,并计算其面积.解:[]1cos sin 22=-==⎰ππππx xdx S .(图形略)4.计算曲线3x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.解:49741413402433023=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-=--⎰⎰x x dx x dx x S.(图形略) 5.计算抛物线24x y -=与x 轴所围成的图形面积. 解:24x y -=与x 轴的交点为(-2,0),(2,0)6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百台)增加到3(百台)时总成本的增加量.解:.8212)2(31312=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x C7.计算函数x y sin 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4cos 222sin 22020=-==⎰x xdxy8.计算函数x y cos 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4sin 222cos 2202===⎰x xdxy第七章定积分的应用一.单选题1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为(C).A.)(x df -B.)(dx fC.dx x f )(D.dx x f )(- 2.一物体受连续的变力)(x F 作用,沿力的方向作直线运动,则物体从a x =运动到b x =,变力所做的功为(A).A.⎰b a x x F d )( B.⎰ab x x F d )( C.⎰-ab x x F d )( D.⎰-ba x x F d )(3.将曲线2x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表示为=y V (C ).A.dxx ⎰24π B.⎰4ydyπ C.()dyy ⎰-44π D.()dyy ⎰+44π二.判断题 1.定积分⎰badxx f )(反映在几何意义上是一块[a,b]上的面积.(╳)2.已知边际利润求总利润函数可用定积分方法.(√) 三.填空题 1.计算曲线x y sin =与曲线2π=x 及0=y 所围成的平面图形的面积可用定积分表示为⎰=2sin πdxA .2.抛物线3x y =与x 轴和直线2=x 围成的图形面积为⎰23dxx .3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定积分表示为⎰=14dxx V x π.四.计算题1.求抛物线3x y =与x 轴和直线3=x 围成的图形面积.2.把抛物线ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积.3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为33kg/m 10,g 取2m/s 10).4.计算抛物线2x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.5.由22x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.6.求由曲线x y 1=与直线x y =及2=x 所围成的图形的面积.7.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.8.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.10.计算曲线3x y =和x y =所围成的图形面积.11.计算抛物线24x y -=与x 轴所围成的图形面积.12.求曲线2x y =与x y =所围成的图形的面积。
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
数值分析第四版课后答案答案第八章
第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。
3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
考研数学(三)题库 微积分(第八章 常微分方程)打印版【圣才出品】
7.方程 dy/dx=y/x+tan(y/x)的通解为( )。 A.sin(x/y)=Cx B.sin(y/x)=Cx C.sin(y/x)=C/x D.sin(y/x)=x+C 【答案】B 【解析】原微分方程为 dy/dx=y/x+tan(y/x)。令 y/x=u,则可变形为 u+xdu/dx =u+tanu,解得方程通解为 sinu=sin(y/x)=Cx。
4.如果二阶常系数非齐次线性微分方程 y″+ay′+by=e-xcosx 有一个特解 y*=e-x (xcosx+xsinx),则( )。
A.a=-1,b=1 B.a=1,b=-1 C.a=2,b=1 D.a=2,b=2 【答案】D
2 / 59
圣才电子书 十万种考研考证电子书、题库视频学习平台
10.微分方程 y″-4y′+5y=0 的通解为( )。 A.ex(C1cos2x+C2sin2x) B.C1e-x+C2e5x C.e2x(C1cosx+C2sinx) D.C1ex+Ce-5x 【答案】C 【解析】原微分方程为齐次方程,其对应的特征方程为 r2-4r+5=0,解得 r=2±i。 故方程通解为 y=e2x(C1cosx+C2sinx)。
8.一曲线在其上任一点的切线的斜率为-2x/y,则此曲线是( )。 A.直线 B.抛物线 C.椭圆 D.圆 【答案】C 【解析】由题意可知,y′=-2x/y,解此一阶微分方程得 y2/2=-x2+c,即曲线为椭 圆。
9.微分方程 xdy-ydx=y2eydy 的通解为( )。
常微分方程第三版课后答案
常微分方程1.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
考研数学(二)题库(高等数学)-第八章 常微分方程【圣才出品】
2.设 y=f(x)是 y″-2y′+4y=0 的一个解,若 f(x0)>0 且 f′(x0)=0,则 f(x) 在点 x0 处( )。
A.取得极大值 B.某邻域内单调递增 C.某邻域内单调递减 D.取得极小值 【答案】A 【解析】因为 y=f(x)是微分方程 y″-2y′+4y=0 的一个解,故对于 x=x0,有 f″ (x0)-2f′(x0)+4f(x0)=0。又因为 f′(x0)=0,f(x0)>0,可得 f″(x0)<0, 故函数在 x=x0 处取极大值。故应选(A)。
11.设 y1=excos2x,y2=exsin2x 都是方程 y″+py′+qy=0 的解,则( )。 A.p=2,q=5 B.p=-2,q=5 C.p=-3,q=2 D.p=2,q=2
B.1/β+1/α =1
C.1/α -1/β=1
D.1/β+1/α =-1
【答案】A
【解析】将 y=zm 代入微分方程,则有 mzm-1dz/dx=axα+bzmβ,
dz ax bzm a+ bzm x
dx
mz m1
mzm1 x
根据题意 dz/dx=f(z/x),因此可得到 mβ=α,m-1=α,即 1/β-1/α=1 故应选
8.一曲线在其上任一点的切线的斜率为-2x/y,则此曲线是( )。 A.直线 B.抛物线 C.椭圆 D.圆 【答案】C 【解析】由题意可知,y′=-2x/y,解此一阶微分方程得 y2/2=-x2+c,即曲线为椭 圆。
9.微分方程 xdy-ydx=y2eydy 的通解为( )。
4 / 52
圣才电子书
【解析】由题意可得-1+i 为特征方程 λ2+aλ+b=0 的根,故(i-1)2+a(i-1) +b=0。可得 a=2,b=2,故应选(D)。
常微分方程课后习题部分答案
18. 设),(y x f 及连续,试证方程0),(=-dx y x f dy 为线性方程的充要条件是它有仅依赖于x 的积分因子.证:必要性 若该方程为线性方程,则有)()(x Q y x P dx dy+= ,此方程有积分因子⎰=-dx x P e x )()(μ,)(x μ只与x 有关 .充分性 若该方程有只与x 有关的积分因子)(x μ .则0),()()(=-dx y x f x dy x μμ为恰当方程 , 从而dx x d y y x f x )()),()((μμ=∂-∂ ,)()(x x y f μμ'-=∂∂ ,)()()()()()()()(x Q y x P x Q y x x x Q dy x x f +=+'-=+'-=⎰μμμμ . 其中)()()(x x x P μμ'-= .于是方程可化为0))()((=+-dx x Q y x P dy即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)≠g(u),\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)])1-证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u 得:uyf(xy)dx+uxg(xy)dy=0 则y uyf∂∂=uf+uy y f∂∂+yf y u∂∂=)(g f xy f-+)(g f xy y f y -∂∂-yf 222)()(g f y x ygxyy f xy g f x -∂∂+∂∂+- =2)(g f xy y f gy y g yf -∂∂-∂∂=2)(g f x y xyxy f g y xy xy g f -∂∂∂∂-∂∂∂∂ =2)(g f xyfg xy gf -∂∂-∂∂ 而x uxg ∂∂=ug+ux x g ∂∂+xg x u ∂∂=)(g f xy g -+)(g f xy x g x -∂∂- xg 222)()(g f y x xgxyx f xy g f y -∂∂-∂∂+-=2)(g f xy x xy xy f xg x xy xy g xf-∂∂∂∂-∂∂∂∂=2)(g f xy f g xy g f -∂∂-∂∂ 故y uyf ∂∂=xuxg ∂∂,所以u 是方程得一个积分因子 21.假设方程(2.43)中得函数M (x,y )N(x,y)满足关系xN y M ∂∂-∂∂= Nf(x)-Mg(y),其中f(x),g(y)分别为x 和y 得连续函数,试证方程(2.43)有积分因子u=exp(⎰dx x f )(+⎰dy y g )()证明:M(x,y)dx+N(x,y)dy=0 即证x uN y uM ∂∂=∂∂)()(⇔u y M ∂∂+M y u ∂∂=u x N ∂∂+N xu ∂∂⇔ u(y M ∂∂-x N ∂∂)=N xu ∂∂- M y u ∂∂⇔u(y M ∂∂-x N ∂∂)=Ne ⎰⎰+dy y g dx x f )()(f(x) -M e ⎰⎰+dy y g dx x f )()(g(y)⇔u(y M ∂∂-x N ∂∂)=e ⎰⎰+dy y g dx x f )()((Nf(x)-Mg(y)) 由已知条件上式恒成立,故原命题得证。
常微分方程课后练习题含答案
常微分方程课后练习题含答案练习1:考虑动力学方程组:$$ \\begin{align} \\frac{dx}{dt}&=x(1-y)\\\\ \\frac{dy}{dt}&=y(1-x)\\end{align} $$a)画出相图b)确定方程组的固定点及其稳定性c)求出轨道在极限$\\lim\\limits_{t\\to\\infty}$时的行为答案1:a)相图如下所示:image-1b)如果(x,y)是方程组的一个固定点,则:$$ \\begin{aligned} \\frac{dx}{dt}&=0 \\\\ \\frac{dy}{dt}&=0\\end{aligned} $$由$\\frac{dx}{dt}=x(1-y)$得,固定点必须是x=0或y=1•当x=0时,$\\frac{dy}{dt}=y$,因此固定点为(0,0),是不稳定的。
•当y=1时,$\\frac{dx}{dt}=0$,因此固定点为(1,1),是稳定的。
综上,方程组的固定点为(0,0)和(1,1),其中(1,1)是稳定的。
c)当$t\\to\\infty$时,我们需要检查轨道的极限行为。
假设(x(t),y(t))是由方程组确定的轨迹,x0=x(0)和y0=y(0)是轨迹的起点。
轨迹的限制曲线由y(1−x)=x(1−y)确定,展开可得y=x或xy=0.5。
将方程组改写为$$ \\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)} $$则在y=x处,$$ \\frac{dy}{dx}=1 $$这意味着沿着这个轨道移动的速度是恒定的,因此轨迹沿着一条直线移动。
由$\\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)}$可知,在非负轴上,当y>1−x时$\\frac{dy}{dx}>0$,当y<1−x时$\\frac{dy}{dx}<0$。
常微分方程课后习题答案.doc
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、422⎪⎭⎫ ⎝⎛+=dx dy x dx dyx y解:令p dxdy =,则422p x xp y +=,两边对x 求导,得dxdp px xpdxdp xp p 3244222+++=()02213=⎪⎭⎫⎝⎛++p dx dpxxp 从0213=+xp 得 0≠p 时,2343,21py px -=-=;从02=+p dxdp x得 222,c pc y pc x +==,0≠p 为参数,0≠c 为任意常数.经检验得⎪⎪⎩⎪⎪⎨⎧+==222c p c y p c x ,(0≠p )是方程奇解.2、2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp p p 21+=pp dxdp 21-=,解之得 ()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2,且y=x+1也是方程的解,但不是奇解. 3、21⎪⎭⎫ ⎝⎛++=dx dy dxdy xy解:这是克莱洛方程,因此它的通解为21c cx y ++=,从⎪⎩⎪⎨⎧=+-++=01122c cx c cx y 中消去c, 得到奇解21x y -=.4、02=-+⎪⎭⎫⎝⎛y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=,从⎩⎨⎧=++=022c x c cx y 中消去c, 得到奇解 042=+y y . 5、022=-+⎪⎭⎫⎝⎛y dx dy xdx dy 解:令p dxdy =,则22p xp y +=,两边对x 求导,得 dxdp pdxdp xp p 222++=22--=x pdpdx ,解之得 232-+-=cpp x ,所以 1231-+-=cpp y ,可知此方程没有奇解. 6、0123=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛dx dy y dx dy x解:原方21⎪⎭⎫⎝⎛-=dx dy dxdy xy ,这是克莱罗方程,因此其通解为21ccx y -=,从⎪⎩⎪⎨⎧=+-=-02132c x c cx y 中消去c ,得奇解042732=+y x .7、21⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=dx dy dx dy x y解:令p dxdy =,则()21p p x y =+=,两边对x 求导,得 22+-=-p ce x p , 所以 ()212+-+=-p e p c y p , 可知此方程没有奇解. 8、()022=--⎪⎭⎫ ⎝⎛a x dx dy x解:()xa x dx dy 22-=⎪⎭⎫ ⎝⎛xa x dxdy -±=dx x a x dy ⎪⎪⎭⎫⎝⎛-±= ⎪⎪⎭⎫ ⎝⎛-±=2123232axx y ()()22349a x x c y -=+可知此方程没有奇解. 9、3312⎪⎭⎫⎝⎛-+=dx dy dx dyx y解:令p dxdy =,则3312p p x y -+=, 两边对x 求导,得 dxdp pdxdp p 22-+=212pp dxdp --=解之得 ()c p p x +--+-=2ln 3222,所以 c p p p p y +------=2ln 6433123, 且 322-=x y 也是方程的解,但不是方程的奇解.10、()012=-++⎪⎭⎫⎝⎛y dx dy x dx dy 解:2⎪⎭⎫⎝⎛++=dx dy dx dydx dyx y这是克莱罗方程,因此方程的通解为2c c cx y ++=, 从⎩⎨⎧++++=cx c c cx y 212中消去c, 得方程的奇解()0412=++y x .(二)求下列曲线族的包络. 1、2c cx y +=解:对c 求导,得 x+2c=0, 2x c -=, 代入原方程得,442222xxxy -=+-=,经检验得,42xy -=是原方程的包络.2、0122=-+cx y c解:对c 求导,得 yxc x yc 2,0222-==+,代入原方程得0124424=--yxy yx,即044=+y x ,经检验得044=+y x 是原方程的包络. 3、()()422=-+-c y c x解:对c 求导,得 –2(x-c)-2(y-c)=0, 2y x c +=,代入原方程得()82=-y x .经检验,得 ()82=-y x 是原方程的包络.4、()c y c x 422=+-解:对c 求导,得 -2(x-c)=4, c=x+2,代入原方程得()2442+=+x y ,()142+=x y , 经检验,得()142+=x y 是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以X 、Y 表坐标系,则曲线上任一点(x,y(x))的切线方程为()()()()x X x y x y Y -'=-,它与X 轴、Y 轴的截距分别为y y x X '-=,y x y Y '-=,按条件有 a y x y y y x ='-+'-,化简得y y a y x y '-'-'=1,这是克莱洛方程,它的通解为一族直线cac cx y --=1,它的包络是()⎪⎪⎩⎪⎪⎨⎧----=--=21101c acc a x c ac cx y ,消去c 后得我们所求的曲线()24a y x ax +-=.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从()()⎩⎨⎧'+=+=c f x c f cx y 0 中消去p 后而得的曲线;c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程()()⎩⎨⎧'+=+=c f x c f cx y 0中消去c 而得的曲线, 显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解. 习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。
常微分方程答案
常微分方程习题答案2.11.xy dx dy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112 3yxy dx dy x y 321++=解:原式可化为:x x y xx y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y ydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uudx x x y u dx xydy x y ydx dy y x x c dy yy yydxdy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dxdy xc x arctgu dx x du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e eexy uu xy x u u x yxyyx xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
大学数学常微分方程第六、八章习题答案
第六章 线性微分方程组、习题6-11.求出齐次线性微分方程组y t A dt dy)(= 的通解,其中分别为:)(t A⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎩⎨⎧==⎩⎨⎧==⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎩⎨⎧=⇒==⇒=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛=t C t C C C t t C t t y y y t t ty y y t y t C t C y y y tC y t C y y y y y dt d t t t y t dy t y dt dy t t 212121212121212211211121110000.00,0,0.,00;0,00)(A .12211或通解为则方程组的基解矩阵为或取故通解为解:由)( .0.0)(,,0.,1011,1011)(A .2212112221212121C e te e y e te e t ey te y y e y eC y y y y y y y y dt d t t t t t tt t t t t dt dy dt dy ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎩⎨⎧==⎩⎨⎧==⎩⎨⎧=⇒=+=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=或通解为则方程组的基解矩阵为取解:由)(φCt t t t y t t t t t ty t y t y t y C y y dy y dy y y y dy dy y y y y y y dt d t dt dy dt dy ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-⎩⎨⎧-==⎩⎨⎧====+⇒=+⇒-=⇒⎩⎨⎧-==⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=sin cos cos sin .sin cos cos sin )(,sin cos ,cos sin ,1.C 0.,0110;0110)(A .3212122212211122112212121故通解为则方程组的奇解矩阵为并令取解:由)(φ.0000.021000,,1,0,0,,0C ()()(..)()(,001010100,001010100)(A .4321212121313123212223213311133111223321⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛≠=-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛====⎩⎨⎧-==⎩⎨⎧==±=⇒=⇒=+=⇒=⇒=⇒⎭⎬⎫⎪⎩⎪⎨⎧---==⇒=---=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=----------t t t t t t t t t t t t t t ttttt tt t t t t t t t t ttt t t dt dy tdt dy dtdy e e e C e e C e e C y e e e e e e e e e e e e e e e e e e e e e e e y C y C e y e y e y e y y y y y C y y dy y dy y y y dy dy b a b y eC y y a y y dt dy t 故通解为线性无关即为方程祖的三个解。
高等数学第八章 常微分方程
2020/3/2
示例
验证 y Cex2是一阶微分方程y2xy的通解.
y Cex2 yCex2 2x 把 y及 y ' 代入微分方程,得 yCx2e2x2xC x2 e2xy yCxe2是y2xy的通解
2020/3/2
示例
求微分方程 yytaxnsexc满足条件 y 0 x0
的特解.
2020/3/2
P (x ) tax ,Q n (x ) se xc
∴通解为 y e ta xn d sx x e te a x c d n d x C x
第八章 常微分方程
第一节 微分方程的概念 第二节 一阶微分方程 第三节 二阶微分方程
2020/3/2
微分方程
含有未知函数的导数或微分的方程叫微分方程.
凡未知函数为一元函数的微分方程叫常微分方程 未知函数多元函数的微分方程叫偏微分方程 微分方程中出现的未知函数导数的最高阶数叫微分方程的阶
2020/3/2
把方程分离变量为 lnydylnxdx
y
x
等式两端求积分,得 lnyydylnxxdx
ln y(d ly) n ln x(dlx )n1 2lny21 2lnx2C1
2020/3/2 化简得 ln y2 通 ln x2解 2 C 1 为 C
形 如 d y f ( x ) g ( y ) 的 微 分 方 程 称 为 可 分 离 变 量 的 微 分 方 程 d x
求解方法: (1)将方程分离变量得 dy f (x)dx g(y)
(2)等式两端求积分,得通解 gd(yy)f(x)dxC
常微分方程课后答案
即
其中,解之得
又时,;时,。
故得,
从而方程可化为
当时,有米/秒
即为所求的确定发动机停止2分钟后艇的速度。
35. 一质量为m的质点作直线运动,从速度等于零的时刻起,有一个和时间xx(比例系数为k1)的力作用在它上面,此质点又受到介质的阻力,这阻力和速度xx(比例系数为k2)。试求此质点的速度与时间的关系。
于是 (4’)-(4)得
从而
即
所以,命题成立。
(3)设,是(2.3)的任意两个解
则(5)
(6)
于是(5)得
即其中为任意常数
也就是满足方程(2.3)
(5)(6)得
即
也就是满足方程(2.3)
所以命题成立。
21.试建立分别具有下列性质的曲线所满足的微分方程并求解。
(5)曲线上任一点的切线的纵截距等于切点横坐标的平方;
==
=
而=ug+ux+xg=+- xg
==
故=,所以u是方程得一个积分因子
21.假设方程(2.43)xx函数M(x,y)N(x,y)满足关系=
Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43)
有积分因子u=exp(+)
证明:M(x,y)dx+N(x,y)dy=0
(4)
解:原方程可化为:
由观察得到,它的一个特解为,设它的任一个解为,于是
,这是的xx方程
两边同除以得到:
即:
则:
即:
故:原方程的解为:
(5)
解:原方程可化为:
由观察得,它的一个特解为,故设它的任一个解为,于是
,这是的xx方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 微分方程221y x y xy '=-+-满足1)0(=y 的特解为 . 解:222(1)(1)(1)(1)11dy dyy x y x dx x dx y y '=-+⇒=-⇒=-++⎰⎰ 解得 2arctan 2x y x C =-+,由014x y C π==⇒=则方程的特解为2arctan 24x y x π=-+ 或 2tan()24x y x π=-+例2 解微分方程323xxy y y -='. 解:323x xy y y -='即为321y x y y x ⎛⎫ ⎪⎝⎭'=⎛⎫- ⎪⎝⎭,为齐次微分方程.令y u y xu y u xu x ''=⇒=⇒=+, 由已知321u y u '=-,整理得211u du dx u x -=, 两边积分得222ln ln ln ln 2ln 22u u y u x C Cy Cy x ⎛⎫-=+⇒=⇒= ⎪⎝⎭则方程的通解为22ln y Cy x ⎛⎫= ⎪⎝⎭.例3 微分方程x y y x ln =+'满足1)1(=y 的特解为 . 解:原方程整理得1ln xy y x x'+=,为一阶线性非齐次微分方程. 由通解公式得11ln 1ln ln 1dx dxx x x C y e e dx C xdx C x x xx -⎡⎤⎰⎰⎡⎤=+=+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 由1)1(=y 解得2C =,所以微分方程x y y x ln =+'满足1)1(=y 的特解为2ln 1.y x x=-+例4 微分方程31yxy y +='的通解为 . 解:33dxdx xy y yx y dydy=+⇒-=, 通解为2223222232y y y ydyydye y e dy C Ce y x e y e dy C --⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎢⎥⎦=-⎣-⎰⎰=+=⎰⎰例5 解微分方程y x y y x 24=-'. ……① 解 原方程可化为y x y x y =⋅-'4 (21=α的贝努里方程),即 x y x y y=⋅-'41 ……②作换元y u =,则yy dx du 2'=,②可化为22xu x dx du =-(一阶线性非齐次方程) ……③ 由常数变易法可得③的通解为:)2ln (2xC x u +=, 故原方程通解为)2ln (2xC x y +=.例6 已知函数(),()f x g x 满足xe x g xf x f xg x g x f 2)()(),()(),()(=+='=',且()00f =,求)()()(x g x f x F =所满足的一阶微分方程,并求)(x F 的表达式.解:(1) 由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+)(242x F ex-=,可见,)(x F 所满足的一阶微分方程为2()2()4(0)0xF x F x e F '⎧+=⎨=⎩.(2) 由通解公式有]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-22x x e Ce -=+.将0)0()0()0(==g f F 代入上式,得1-=C . 于是22()x x F x e e -=-.练习11.解微分方程xy y y x 2='+'. (答案:C x x y +-=)arctan (2)=,两边积分=,解得C x x y +-=)arctan (2.(其中()2222=2=2-arctan 111tt t dxtdt dt t t C C x t t =⋅+++++⎰⎰⎰2.解微分方程0)sin 2()cos (2=-+-dy x xy dx x y y . 解:2()cos ,()2sin P x y y x Q x xy x =-=-,由于()()2cos P x Q x y x y x∂∂=-=∂∂在全平面上恒成立,故微分方程为全微分方程. 原方程整理得22cos sin 0y dx xydy y xdx xdy +--=, 即22sin sin 0y dx xdy yd x xdy +--=,即222()(sin )0(sin )0sin d xy d y x d xy y x xy y x C -=⇒-=⇒-=. 故方程的通解为2sin xy y x C -=例7 解微分方程022=+'+''y y y .解:022=+'+''y y y 的特征方程为21,22201r r r i ++=⇒=-±则方程的通解为12(cos sin )x y e C x C x -=+例8 解微分方程(4)250y y y '''''-+=.解:(4)250y y y '''''-+=的特征方程为4321,23,42500,12r r r r r i -+=⇒==±则方程的通解为1234(cos2sin 2)x y C C x e C x C x =+++练习21.微分方程02=+'+''y y y 的通解为________=y . 解:02=+'+''y y y 的特征方程为21,22101,r r r ++=⇒=- 故微分方程02=+'+''y y y 的通解为12()x y e C C x -=+2.微分方程0y y y y ''''''-+-=的通解为_______=y .解:0y y y y ''''''-+-=的特征方程为3212,3101,r r r r r i -+-=⇒==±, 故微分方程0y y y y ''''''-+-=的通解为123cos sin x y C e C x C x =++.例9 用待定系数法应设的特解形式:(1)若x xe y y y =+'+''2,则____________*=y ; 解:20y y y '''++=的特征方程为21,22101r r r ++=⇒=-由于1λ=-是特征重根,故可设原方程的一个特解为*2()x y x ax b e =+(2)若2+4cos y y x x x ''+=+,则____________*=y . 解:0y y ''+=的特征方程为21,210r r i +=⇒=±,由于0λ=不是特征根,故可设方程2y y x x ''+=+的一个特解为*21y ax bx c =++; 由于i λ=±是特征根,故可设方程4cos y y x ''+=的一个特解为*2(sin cos )y x A x B x =+, 故原方程的一个特解为*2(sin cos )y ax bx c x A x B x =++++.例10 微分方程24x y y e ''-=的通解为 . 解:40y y ''-=的特征方程为21,2402r r -=⇒=±,则齐次方程的通解为 2212x x Y C e C e -=+,由于2λ=是特征单根,故可设原方程的一个特解为*2x y xAe =, 将*2x y xAe =代入原方程,解得*21144xA y xe =⇒=, 则原方程的通解为*2221214xx x y Y y C e C e xe -=+=++例11 解方程2sin y a y x ''+=)0(>a .解:220i +=⇒=±r a r a ,而 i iλω±=±①若1a≠, 设特解为*cos sin =+y A x B x,代入方程解得 210,1==-A B a , 所以特解为:*21sin 1=-y x a , 则通解为122cos sin 1sin 1y C ax C ax x a =++- ②若1a =,设特解为[]*cos sin =+y x A x B x ,代入方程解得 102,=-=A B ,所以特解为:*1cos 2=-y x则通解为121cos sin cos 2y C x C x x x =+-练习31.微分方程x xe y y y -=+'+''2的一个特解____________*=y .(答案:xe x -361(不唯一)) 解:20y y y '''++=的特征方程为21,22101r r r ++=⇒=-由于1λ=-是特征重根,故可设原方程的一个特解为*2()x y x ax b e -=+, 代入原方程解得1,06a b ==, 故特解为*316x y x e -=2.用待定系数法确定sin y y x x ''-=+的特解形式为____________*=y . 解:0y y ''-=的特征方程为212101,1r r r -=⇒==-,由于0λ=不是方程y y x ''-=的特征根,故可设方程y y x ''-=的特解为*1y ax b =+, 由于i λ=±不是方程sin y y x ''-=特征根,故可设方程sin y y x ''-=的特解为*2sin cos y c x d x =+,则原方程的一个特解形式为***12sin cos y y y ax b c x d x =+=+++.例12 函数x x xxe e C e C y --++=21满足的一个二阶线性常系数非齐次微分方程是 .解:由已知得121,1r r ==-为所求二阶线性常系数齐次微分方程的两个特征根,即有2(1)(1)010r r r -+=⇒-=故可设所求二阶线性常系数齐次微分方程为0.y y ''-= 设所求二阶线性常系数非齐次微分方程为()y y f x ''-=,将特解*x y xe -=代入方程,得()f x =2x e --,所求二阶线性常系数非齐次微分方程为2x y y e -''-=-例13 已知22123,,x x x x x x x y xe e y xe e y xe e e --=+=+=+-为某个二阶线性非齐次方程的三个特解,求该方程及其通解.解:132212--⎫-=⎬-=-⇒⎭xx x x y y e y y e e e 均为对应的齐次方程的特解,所以121,2=-=r r 为特征方程的两个根. ()()212020+-=⇒--=r r r r 则对应的齐次方程为 20'''--=y y y设所求非齐次方程为 2()'''--=y y y f x ,把1y 代入方程可得:()(12)=-x f x x e 所以原方程为 2(12)x y y y x e '''--=-. 其通解为 2212x x x x y C e C e xe e -=+++例14 已知微分方程)(2x f y y a y =+'+''的两个特解x e y x sin 21+=,x y sin 2=,求a 、)(x f 及方程的通解.解:122x y y e -=是20y ay y '''++=的解,代入解得3a =-,x y sin 2=是)(2x f y y a y =+'+''的解,代入解得()sin 3cos f x x x =-,则微分方程为32sin 3cos y y y x x '''-+=-,其通解为212sin x x y C e C e x =++.练习41.设()12cos sin xy e C x C x =+为某二阶常系数齐次线性方程的通解,则该方程为 .【解题思路】 本题已知方程的通解,反求微分方程.一般根据通解性质得出特征方程的根,从而得出特征方程,由此可得微分方程.解:1,21r i = 是二阶常系数齐次线性方程的特征方程的特征根,即有22(1)1220r r r -=-?+=,故220y y y ⅱ -+=为所求二阶常系数齐次线性方程.例15 解微分方程2)1(++='x y y .解:令1y x u ++=,有1y u ''=-,由已知2y u '=, 故221arctan tan()1duu u dx u x C u x C u '=+⇒=⇒=+⇒=++⎰⎰,方程的通解为1tan()y x x C ++=+例16 利用变量代换cos x t = (0t π<<)化简微分方程0)1(2=+'-''-y y x y x ,并求满足1x y==,02x y ='=的特解.解:1sin dy dy dt dy y dx dt dx t dt'==⋅=-, 222223111cos sin sin sin sin x t d ydy dy dt d y t dy y dx t dt t dt dx t dtt dt ''''==-=-⋅=⋅-⋅⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入原方程得212120cos sin d yy y C t C t C x C dt+=⇒=+=+由01x y==,02x y ='=,解得122,1C C ==则方程0)1(2=+'-''-y y x y x 的满足01x y==,02x y ='=的特解为2y x =练习51.解微分方程222)()(2y x x y y +=+'. 解:令2222x y u x yy u ''+=⇒+=,代入原方程得2211u u du dx x C u u '=⇒=⇒-=+⎰⎰,则1,u x C=-+ 即方程的通解为221x y x C+=-+2.解微分方程x y y x y y 2tan 212+='.(答案:Cx x y =2sin ) 解:令222y u y xu yy u xu x''=⇒=⇒=+,代入原方程得cos 1tan ln sin ln ln ln sin u xu u du dx u x C Cx u x'=⇒=⇒=+=⎰⎰, 则2sin sin y u Cx Cx x=⇒= 则方程的通解为2sin y Cx x=.例17 解微分方程222420d y dyx x y dx dx++= )0(>x . 解 换元te x =,则x t ln =,xdx dt 1=, 因为dtdy x dx dt dt dy dx dy 1==, )(11)1()(222dt dy dx d x dt dy x dt dy x dx d dx dy dx d dx y d +-===)(111222222dtdydt y d x dx dt dt y d x dt dy x -=⋅+-=, 即有 dt dy dx dy x =, dtdy dt y d dx y d x -=22222. 原方程可化为:02322=++y dtdydt y d , 通解为t t e C e C y 221--+=,故原方程通解为221xC x C y +=.练习61.解微分方程12=+'+''y y x y x .解:换元te x =,则x t ln =,xdx dt 1=, 因为dtdy x dx dt dt dy dx dy 1==, 所以 )(11)1()(222dtdydx d x dt dy x dt dy x dx d dx dy dx d dx y d +-===)(111222222dtdy dt y d x dx dt dt y d x dt dy x -=⋅+-=,即有 dt dy dx dy x =,dtdy dt y d dx y d x -=22222. 代入原方程可化为:221d yy dt+=,通解为12sin cos 1y C t C t =++.即12sinln cosln 1y C x C x =++例18 微分方程03='+''y y x 的通解为 . 解 不显含y . 设y p '=,则dx dp y ='',原方程化为03=+p dxdpx. 分离变量可得:xdx p dp 3-=, 积分可得1ln ln 3ln C x p +-=,即31xC p =. 由31x C dx dy =积分可得通解为 2212C xC y +-=.注:也可直接分离变量积分两次.例19 微分方程y ''=2)0(,1)0(='=y y 的特解为________.解 不显含x .设y p '=,则dy dp py ='',原方程化为y dydp p 3=. 分离变量:dy y pdp 3=,积分可得:1232221C y p +=.由2)0(=p ,1)0(=y 可得:01=C ,故432y p =,即432y dxdy=.再分离变量,积分可得:24124C x y +=.由1)0(=y 可得42=C . 于是,所求特解为1241+=xy 或4)12(+=x y .例20 解微分方程 2()(1)(1)1y x y y y y ''''⎧+=⎨'==⎩.解 不显含y .设p y =',则dxdpy ='', 原方程可化为p p x dx dp =+)(2,即p px dp dx +=. 由常数变易法可得:)(1C p p x +=. 由1)1(=p 可得:01=C ,x p =.积分x dx dy =可得:22332C x y +=.由1)1(=y 可得:312=C , 故所求特解为313223+=x y .练习71.解微分方程023='+'+''y y y x .(答案:21112C x C C y +-±=) 解:令y p '=,则y p '''=,原方程可化为320xp p p '++=,为一阶可分离变量方程.分离变量得211(1)2dp dx p p x =-+,两边积分211(1)2dp dx p p x =-+⎰⎰, 解方程得211ln ln(1)ln ln 22p p x C -+=-+,化简得p =, 其中121C C =.即2y y C '=⇒=.故2y C =为方程的通解,其中12,C C 为任意常数.例21 已知)(x f 为连续函数,且满足积分方程0()sin ()()x f x x x t f t dt =--⎰,试求)(x f .【解题思路】 先在等式两边对x 求导,消去变限积分,将原方程化为关于未知函数()f x 的微分方程,再求解此微分方程. 解:原方程整理得()sin ()()x xf x x x f t dt tf t dt =-+⎰⎰,两边求导()cos ()x f x x f t dt '=-⎰, 再两边求导得 ()sin ()f x x f x ''=--,整理得 ()()sin ,(0)0,(0)1f x f x x f f '''+=-==(初始条件到原方程中找)解得1()sin cos 22xf x x x =+例22 设函数)(x f 在区间),0[+∞上连续,且满足积分方程21()2tD f t f dxdy t π=+⎰⎰,其中222:t y x D t ≤+,试求)(x f .解:2222011()()()22tttD f t f dxdy t d f r rdr t f r rdr t πθππ=+=+=+⎰⎰⎰⎰⎰,两边对x 求导得()()2f t tf t t '=+,即()()2f t tf t t '-=为一阶线性非齐次微分方程.由通解公式可得22()22t tdttdtf t e te dt C Ce -⎡⎤⎰⎰=+=-+⎢⎥⎣⎦,由已知(0)02f C =⇒=,则22()22t f t e =-+. 则22()22x f x e =-+.23 验证幂级数∑∞=02)!2(n nn x 的和函数)(x y 满足微分方程y y ='',且(0)1,(0)0y y '==,并通过解微分初始值问题求)(x y .【解题思路】 要验证函数()y x 满足方程,只需把它代入方程,求幂级数的和只需解此微分方程.解: ① 因为 2462()1,2!4!6!(2)!nx x x x y x n =++++++3521(),3!5!(21)!n x x x y x x n -'=+++++-2462()1,2!4!6!(2)!nx x x x y x n ''=++++++则y y ='',且(0)1,(0)0y y '==.② 二阶常系数微分方程y y =''相应的特征方程为21,r = 特征根为 1,21r =± 原方程的通解为12.x x y C e C e -=+显然()y x 满足初始条件(0)1,'(0)0==y y ,代入得 121,2C C == 故幂级数的和函数1(()).2xx y e y x e -=+= ().-∞<<+∞x例24 设函数()y x ()0x >二阶可导且0)(>'x y ,1)0(=y .过曲线上任一点),(y x P 作该曲线的切线及x 轴的垂线.上述两直线与x 轴围成三角形面积记为1S ,区间[]0,x 上以)(x y y =为曲边的曲边梯形面积记为2S ,并设212S S -恒为1.求此曲线方程. 解:点(,)P x y 的切线方程为()Yy y X x '-=-⇒yx x y-'切线与轴的交点为A(,0) 由已知1201212()()12x y S S x x y y x dx y ⎡⎤-=⇒⋅--⋅-=⎢⎥'⎣⎦⎰,整理得: 2()1x y y x dx y -='⎰, 两边求导得222()20()(0)1,(0)1x y y y yy y y y e y yy y y '⎧''=''''⋅-⎪-=⇒⇒⎨'⎪'===⎩例25 设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0y =,1x =及x t =(1t >)所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程. 解法1:由题意知 211()()ttf x dx t f x dx ππ=⎰⎰,两边对t 求导得21()()()tf t f x dx tf t =+⎰,代入1t =得(1)1f =或(1)0f =(舍去).再求导得 )()(2)()(2t f t t f t f t f '+='. 记()f t y =,则 112dt t dy y+=, 其通解为11222()3dydyy y t eedy c y -⎰⎰=+=⎰, 代入1t =,1y =得13c =,从而 23t y =, 故所求曲线方程为23x y =解法2:由题意知 211()()ttf x dx t f x dx ππ=⎰⎰,两边对t 求导得 21()()()tf t f x dx tf t =+⎰,代入1t =得(1)1f =或(1)0f =(舍去). 再求导得 )()(2)()(2t f t t f t f t f '+='.整理得22dy ydt y t=-.设y u t =,则,dy du u t dt dt =+ 原方程变成 23221du u u t dt u -=-. 分离变量得 211(32)u du dt u u t-=-,即 114()332dt du u u t -+=-, 积分得Ct u u ln )23(ln 312=-- ,即 1233(32)u u Ct ---=. 代入 1,1t u ==得1C =,所以 231(32)u u t-=. 代入y ut =并化简得2(32)1y t y -=,即 23t y =+. 故所求曲线方程为 23x y =+.例26 一个充满气体的气球突然破了一个孔,漏气的速率正比于球内气体的质量,比例系数0k >.设球内原有气体100克,如果孔破后一分钟内还有20克气体,问何时球内剩下1克气体?解:应建立球内气体质量与时间t 的关系式漏气的速率即球内气体质量的变化率,由题意得(0)100dmk m dt m ⎧=-⎪⎨⎪=⎩,解得 100k tm e -=又ln5(1)20ln5100t m k m e -⋅=⇒=⇒=当1m =时,ln1002.86()ln 5t = 分钟例27 设有一质量为9000kg 的飞机着陆的水平速度为700/km h , 经测试,减速伞打开后飞机所受的总阻力与飞机的速度成正比(比例系数6106⨯=k ),问从着陆点算起,飞机滑行的最长距离是多少?解:由0dv dv mkv m m v s v c dt ds m F m a ds dv k k -=⋅=⇒⇒=-=⋅⋅=-⇒+⎰⎰合 由0700700700s m m mC s v k k k v ==⇒=⋅⇒=-+⋅当0v =时,69000700700 1.05()610m s k m k =⋅=⋅=⨯练习81. 设函数)(x f 有连续的导函数,2)0(=f ,又对半平面0>x 内任意简单闭曲线L ,均成立0])([)(2422=-+⎰Ldy x x f dx x xyf ,试求)(x f .(答案:)1(2)(+-=x Ce x f x)解:由已知条件知P Q y x∂∂=∂∂,其中224()=2(),()=()P x xyf x Q x f x x - 即2232()()24xf x f x x x '=⋅-, 即()()2f x f x x '-=,通解为()2(1)x f x Ce x =-+.再由(0)2f =得4C =, 故()42(1)xf x e x =-+.2.设函数)(r f u =,22ln y x r +=满足方程3222222)(1y x y u x u +=∂∂+∂∂,求)(r f .解:22(),u xf r x x y ∂'=⋅∂+,2222222222()()()u x y x f r f r x x y x y ⎛⎫∂-'''=⋅+⋅ ⎪∂++⎝⎭ 同理 2222222222()()()u y x y f r f r y x y x y ⎛⎫∂-'''=⋅+⋅ ⎪∂++⎝⎭. 代入3222222)(1y x y u x u +=∂∂+∂∂中整理得:()r f r e -''= ,即()r f r e -''=解得21)(C r C e r f r ++=-例28 差分方程t t t y y 321=-+的通解为 . 解(1)求对应齐次差分方程的通解∵特征方程为02=-r ,特征值为2=r , ∴对应齐次方程通解为2t t Y C =. (2)求原非齐次差分方程的特解∵3=d 不是特征值,∴用待定系数法求特解时应设*3t t y A =,代入原方程可得1=A ,即t t y 3*=. (3)原非齐次差分方程的通解为23t t t y C =+.例29 差分方程t y y t t 521=-+的通解为 . 解 由上例知:对应齐次方程通解为2t t Y C =.因为1d =不是特征值,故设特解为*t y at b =+,代入原方程可得5-==b a ,即)1(5*+-=t y t .于是,原方程通解为25(1)t t y C t =-+.。