聚四氟乙烯的制备和应用
聚四氟乙烯拉伸微孔膜的制备、结构与性能
聚四氟乙烯拉伸微孔膜的制备、结构与性能一、本文概述聚四氟乙烯(PTFE)拉伸微孔膜是一种具有优异物理化学性能的高分子材料,广泛应用于过滤、分离、透气、防水等领域。
本文旨在探讨聚四氟乙烯拉伸微孔膜的制备过程、微观结构以及性能特点,以期为相关研究和应用领域提供理论支持和实践指导。
本文将详细介绍聚四氟乙烯拉伸微孔膜的制备工艺,包括原料选择、配方设计、加工工艺等关键步骤。
通过对制备过程的研究,旨在优化工艺参数,提高膜材料的综合性能。
本文将深入探究聚四氟乙烯拉伸微孔膜的微观结构,利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征手段,观察膜材料的孔径分布、孔形貌以及内部结构特征。
通过对微观结构的分析,揭示膜材料的形成机理和性能影响因素。
本文将系统评价聚四氟乙烯拉伸微孔膜的性能特点,包括透气性、防水性、力学性能、热稳定性等。
通过与其他材料的比较,凸显聚四氟乙烯拉伸微孔膜在特定应用领域中的优势和潜力。
本文将围绕聚四氟乙烯拉伸微孔膜的制备、结构与性能展开全面而深入的研究,旨在为相关领域的理论研究和实际应用提供有益的参考和借鉴。
二、聚四氟乙烯拉伸微孔膜的制备方法聚四氟乙烯(PTFE)拉伸微孔膜的制备过程通常包括原料准备、熔融挤出、拉伸和热处理等步骤。
将聚四氟乙烯粉末进行预处理,如干燥和筛分,以去除水分和杂质,确保原料的纯净度和稳定性。
然后,将处理后的聚四氟乙烯粉末加入挤出机中,在高温下熔融挤出成薄膜。
在熔融挤出过程中,需要精确控制温度、压力和挤出速度等参数,以保证薄膜的均匀性和稳定性。
同时,还需要根据所需的膜厚和拉伸比,选择合适的模具和挤出条件。
接下来,将挤出的薄膜进行拉伸处理。
拉伸是制备聚四氟乙烯拉伸微孔膜的关键步骤,通常采用单向或双向拉伸的方式。
在拉伸过程中,薄膜中的高分子链会发生取向和重排,形成有序的微观结构。
拉伸后的薄膜需要进行热处理,以消除内部应力,提高稳定性。
热处理温度和时间对膜的性能有重要影响,需要根据具体的应用需求进行优化。
pfa制备过程
pfa制备过程【最新版】目录一、引言二、PFA 制备的原理三、PFA 制备的具体步骤四、PFA 制备的注意事项五、结语正文一、引言聚四氟乙烯(Polytetrafluoroethylene,简称 PTEF 或 Teflon)是一种非常特殊的聚合物,以其卓越的耐热性、耐腐蚀性和低摩擦系数而闻名。
PFA(Perfluoroalkoxy)是 PTEF 的一种改性物,其性能更优,具有更高的化学稳定性和热稳定性。
PFA 广泛应用于电子、电气、化工、航空等领域。
本文将介绍 PFA 的制备过程。
二、PFA 制备的原理PFA 的制备原理主要是通过自由基聚合反应,将四氟乙烯单体和一定比例的其他单体(如:全氟烷基乙烯单体)进行共聚,生成 PFA。
全氟烷基乙烯单体通常是全氟丙烯酸酯或全氟丁烯酸酯,其作用是调整 PFA 的性能,提高其热稳定性和化学稳定性。
三、PFA 制备的具体步骤1.配料:根据配方要求,将四氟乙烯单体和全氟烷基乙烯单体混合在一起,并加入适量的引发剂和助剂。
2.预处理:将配料进行干燥处理,以去除其中的水分和杂质。
3.聚合:将预处理后的物料加入到聚合釜中,加热至一定温度,进行自由基聚合反应。
反应过程中,需要对温度、压力和反应时间进行严格控制,以保证 PFA 的性能。
4.后处理:聚合反应完成后,需要将 PFA 从聚合釜中取出,进行洗涤、干燥和造粒等后处理工作,以得到最终的 PFA 产品。
四、PFA 制备的注意事项1.配料的准确性:配料的准确性对 PFA 的性能至关重要,因此在配料过程中需要严格控制单体的比例和引发剂的添加量。
2.聚合反应条件的控制:聚合反应的温度、压力和反应时间对 PFA 的性能有重要影响,需要进行精确控制。
3.后处理过程的管理:后处理过程中,PFA 产品需要进行充分的洗涤和干燥,以去除其中的杂质和残留物。
五、结语PFA 作为一种高性能的聚合物,其制备过程需要严格控制各个环节,以保证其性能。
聚四氟乙烯在医疗领域的应用
聚四氟乙烯在医疗领域的应用1.引言1.1 概述聚四氟乙烯是一种具有非常特殊性质的合成材料,它在医疗领域中有广泛的应用。
聚四氟乙烯具有极低的摩擦系数、高的绝缘性能、良好的耐腐蚀性和化学稳定性,以及优异的温度稳定性。
这些独特的特性使得聚四氟乙烯成为许多医疗器械中不可或缺的材料。
在医疗器械中,聚四氟乙烯被广泛应用于各种领域。
例如,在手术器械领域,聚四氟乙烯常被用作润滑剂和防粘附剂,用于减少手术器械之间的摩擦和黏附,从而提高手术的准确性和效率。
同时,其优异的生物相容性也使得聚四氟乙烯成为一种常见的生物医用材料,在内科和外科领域中广泛应用于人工关节、心脏支架、血管支架等医疗器械的制造中。
此外,聚四氟乙烯还具有抗菌性能,可以有效减少微生物对医疗器械的污染。
因此,在医疗器械的设计和制造中,聚四氟乙烯常被用于制备各种抗菌材料,如抗菌止血纱布、抗菌导管等。
总之,聚四氟乙烯在医疗领域的应用非常广泛,其独特的特性使得它成为许多医疗器械中不可或缺的材料。
随着科学技术的不断进步,我相信聚四氟乙烯在未来的医疗领域中将会有更加广阔的应用前景。
1.2 文章结构本文主要介绍了聚四氟乙烯在医疗领域的应用。
文章将分为三个主要部分,即引言、正文和结论。
在引言部分,首先会对聚四氟乙烯进行概述,介绍其基本性质和特点。
接着,会说明本文的结构和目的,以帮助读者了解全文的框架和主旨。
正文部分将侧重于探讨聚四氟乙烯在医疗器械中的应用。
首先,会详细介绍聚四氟乙烯的特性,包括其化学稳定性、耐磨性、高温稳定性等方面。
然后,会对聚四氟乙烯在医疗器械中的应用进行探讨,包括在导管、缝线、人工关节等方面的应用。
通过对各种医疗器械中聚四氟乙烯的运用,展示其优越的物理和化学性能,以及在提高治疗效果和减少并发症发生方面的作用。
在结论部分,会对聚四氟乙烯在医疗领域的应用进行总结。
文章将重点强调聚四氟乙烯的优点和潜在的应用前景,并指出其在提高医疗技术和改善患者生活质量方面的重要性。
聚四氟乙烯纤维(PTFE)开发生产方案(二)
聚四氟乙烯纤维(PTFE)开发生产方案一、实施背景随着科技的飞速发展,材料科学在各领域的应用越来越广泛。
其中,聚四氟乙烯(PTFE)纤维作为一种高性能工程塑料,具有优异的耐化学腐蚀性、低摩擦系数、高耐热性等特点,在石油、化工、电子、建筑等领域有广阔的应用前景。
然而,国内PTFE纤维的生产技术尚不成熟,大部分依赖进口,这为我国产业发展带来了一定压力。
因此,开展聚四氟乙烯纤维的开发生产研究,对提升我国高分子材料领域的技术水平具有重要意义。
二、工作原理PTFE纤维的生产主要涉及以下几个步骤:1.树脂制备:通过悬浮聚合等方法制备PTFE树脂。
2.纺丝:将PTFE树脂溶解在适当的溶剂中,然后通过喷丝板纺成细丝。
3.拉伸:在一定温度和张力下,对PTFE丝进行拉伸,增加其取向度和结晶度。
4.热处理:在高温下对PTFE纤维进行热处理,提高其热稳定性。
5.后处理:进行脱脂、洗涤、上油等后处理,以获得具有优异性能的PTFE纤维。
三、实施计划步骤1.技术调研:收集国内外关于PTFE纤维的生产、应用和技术研究资料,分析现有技术的优缺点。
2.实验设备准备:购置实验所需的纺丝机、热处理设备等,并进行调试。
3.树脂制备与纺丝实验:根据前期调研结果,尝试不同的悬浮聚合方法和溶剂体系,优化纺丝工艺参数。
4.拉伸与热处理实验:研究不同温度和张力对PTFE纤维性能的影响,优化热处理条件。
5.后处理实验:研究不同后处理方法对PTFE纤维性能的影响,优化后处理条件。
6.性能检测:对所制备的PTFE纤维进行各项性能指标检测,如耐化学腐蚀性、低摩擦系数、高耐热性等。
7.应用研究:将所制备的PTFE纤维应用到实际场景中,评估其使用性能。
8.工业化试验:根据前期实验结果,制定工业化生产方案,进行中试生产。
9.工业化推广:将工业化生产方案推广至大型生产企业,实现规模化生产。
四、适用范围本方案适用于石油、化工、电子、建筑等领域中需要使用PTFE 纤维的场合。
聚四氟乙烯原材料
聚四氟乙烯原材料
聚四氟乙烯是一种非常重要的高分子材料,它具有很多优异的性能,
如高温稳定性、耐腐蚀性、不粘性等。
因此,它被广泛应用于各种领域,如化工、电子、医疗、航空航天等。
聚四氟乙烯的原材料主要是四氟乙烯,它是一种无色、无味、无毒的
气体,具有很高的稳定性和惰性。
四氟乙烯的制备主要是通过氟化反
应来实现的,一般是将氯气和氟气在高温下反应,生成氯氟烃,然后
再将氯氟烃和氢气在催化剂的作用下反应,生成四氟乙烯。
聚四氟乙烯的制备主要是通过聚合反应来实现的,一般是将四氟乙烯
在高压下和催化剂一起反应,生成聚合物。
聚合反应的条件和催化剂
的选择对聚合物的性能有很大的影响,因此需要进行精细的控制。
聚四氟乙烯的原材料和制备过程都比较复杂,因此其成本也比较高。
但是,由于聚四氟乙烯具有很多优异的性能,因此在一些特殊领域中
仍然有着广泛的应用。
例如,在化工领域中,聚四氟乙烯被用作管道、阀门、泵等设备的密封材料,以及反应器、换热器等设备的内衬材料;在电子领域中,聚四氟乙烯被用作电缆、电子元件的绝缘材料;在医
疗领域中,聚四氟乙烯被用作人工心脏瓣膜、血管支架等医疗器械的
材料;在航空航天领域中,聚四氟乙烯被用作导弹、卫星等设备的密
封材料。
总之,聚四氟乙烯是一种非常重要的高分子材料,它的原材料和制备过程都比较复杂,但是由于其优异的性能,在一些特殊领域中仍然有着广泛的应用。
全氟磺酸--聚四氟乙烯中空纤维复合膜的制备及其应用基础研究
全氟磺酸--聚四氟乙烯中空纤维复合膜的制备及其应用基础研究目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 正文3. 方法及实验设计4. 结果与讨论5. 结论和展望1. 引言1.1 背景和意义全氟磺酸--聚四氟乙烯中空纤维复合膜是一种具有广泛应用前景的新型材料。
聚四氟乙烯(polytetrafluoroethylene, PTFE)作为一种优异的材料,在化学稳定性、电绝缘性、热稳定性和低摩擦等方面表现出色,被广泛应用于领域如电子器件、医药、环境保护和化工等。
然而,由于其自身的缺陷,如低机械强度和易吸湿性,限制了其在某些领域的应用。
而通过引入全氟磺酸(perfluorosulfonic acid, PFSA)可以改善PTFE材料的机械性能,增加其载流子传输能力,使其具备更广泛的应用场景。
目前,全氟磺酸--聚四氟乙烯中空纤维复合膜正在被广泛地研究和应用。
该复合膜具有优异的离子交换性能、高分子通量和良好的选择性,并且对水、酸碱和溶剂具有较好的稳定性。
因此,全氟磺酸--聚四氟乙烯中空纤维复合膜在能源、环境和化工等领域显示出了巨大的应用潜力。
1.2 结构概述全氟磺酸--聚四氟乙烯中空纤维复合膜由两个主要组成部分构成:聚四氟乙烯(PTFE)纤维和全氟磺酸(PFSA)电解质。
其中,PTFE纤维作为基础材料,具有优异的耐化学侵蚀性、热稳定性和低摩擦特性;PFSA则起到了增强载流子传输能力和提高机械强度的作用。
1.3 目的本文旨在对全氟磺酸--聚四氟乙烯中空纤维复合膜进行制备及其应用基础方面的探究。
通过对制备方法、材料结构以及性能表征等方面进行系统介绍和分析,以期进一步深入理解该复合膜的特殊性能及其应用前景。
通过本次研究可以为相关领域的工程应用提供基础性的研究指导和理论支持。
接下来的章节将首先介绍全氟磺酸--聚四氟乙烯中空纤维复合膜的制备方法及实验设计,然后对该复合膜进行性能测试和结果分析。
最后,结合实验结果,对全氟磺酸--聚四氟乙烯中空纤维复合膜的应用前景进行展望。
聚四氟乙烯生产工艺及应用研究
不匀。除此之外,俄罗斯在研发多种PTFE纤维方面也取
得了较大的成效。
PTFE纤维特性
(1)耐化学性。“C-F”键具有极高的键能,
不易被拆开,PTFE大分子间的堆砌密度大, 使各种试剂难于透入其间。氟原子的取代 使PTFE形成螺旋结构型,这惰性的螺旋形 全氟“外壳”加之聚合物的非极性和结晶 结构,使得PTFE纤维具有极优异的耐化学
PTFE纤维特性
(5)耐大气中的老化。对紫外是100%的稳定,不会老
化,在室外暴露15年机械性能也无明显的变化。
(6)拒水和耐水洗。PTFE不吸水,且容易洗涤,可以在 高温下使用强洗涤剂。其表面排斥水、灰尘和其它污 染物,因此它也是一种极好的的防污材料。 除此之外,PTFE纤维还有本身无毒、绝缘、抗辐射的
聚四氟乙烯纤维是以PTFE为原料,经纺丝或制成薄膜后切 割或原纤化而制得的一种合成纤维。 PTFE被称作“塑料王”。这种材料具有抗酸抗碱、抗各种 有机溶剂的特点,几乎不溶于所有的溶剂。同时,聚四氟 乙烯具有耐高温、耐低温、耐腐蚀、耐气候、低摩擦、高 润滑、自清洁、无毒害等特点。
发展简史
19841953 80年 至今
采用PTFE纤维或PTFE纤维同其他耐高温纤维混合, 可制成高温复合过滤毡,该滤料具有很好的耐腐 蚀、耐高温、耐摩擦等性能,适用于高温、高湿、 高黏性粉尘行业或带有酸碱性、腐蚀性化学气体
的工业烟尘净化,是其他过滤材料所无法比拟的。
PTFE纤维的应用
医学材料
近年来,PTFE纤维在医学上的应用越来越广泛, 如可用于人造血管,人工心脏瓣膜和人工心脏辅 助装置,人造韧带和人造食道等,PTFE纤维还可
然后经过纵向切割加工、拉伸和蓬松加工,得到PTFE
纤维。
膜裂纺丝法
膨体聚四氟乙烯生产技术_概述及解释说明
膨体聚四氟乙烯生产技术概述及解释说明1. 引言1.1 概述膨体聚四氟乙烯是一种重要的高性能材料,在化工、电子、航空航天等领域广泛应用。
它具有优异的耐温、耐腐蚀、绝缘性能等特点,因此备受关注。
本文旨在对膨体聚四氟乙烯生产技术进行概述和解释说明,深入了解其生产过程和应用领域。
1.2 文章结构本文共分为五个部分:引言、膨体聚四氟乙烯生产技术概述、膨体聚四氟乙烯生产技术详解、膨体聚四氟乙烯生产工艺优势与挑战以及结论。
在引言部分,我们将介绍文章的背景和目的;在概述部分,我们将简要介绍什么是膨体聚四氟乙烯以及其生产过程和应用领域;在详解部分,我们将详细讲解原料准备、反应器设计与操作条件以及聚合反应及控制参数;在优势与挑战部分,我们将分析该生产工艺的优势,并探讨可能遇到的技术挑战及解决方法;最后,在结论部分我们将总结概述和主要发现,并展望未来研究的价值。
1.3 目的本文的目的是全面介绍膨体聚四氟乙烯生产技术,以便读者对该领域有一个清晰的了解。
通过深入研究膨体聚四氟乙烯的原料准备、反应器设计与操作条件以及聚合反应及控制参数等关键方面,读者将能够更好地理解该生产工艺的优势和挑战,并在实践中应用这些知识。
同时,本文还将展望未来研究膨体聚四氟乙烯生产技术的前景和发展方向,希望能够引起更多学者和专家们对此领域的关注与研究。
2. 膨体聚四氟乙烯生产技术概述:2.1 什么是膨体聚四氟乙烯:膨体聚四氟乙烯是一种具有优异的化学稳定性和极低的摩擦系数的高分子材料。
它以其出色的耐温性、耐腐蚀性和电绝缘性而被广泛应用于化工、电子、汽车等领域。
与其他聚合物相比,膨体聚四氟乙烯具有良好的机械强度和尺寸稳定性。
2.2 生产过程概述:膨体聚四氟乙烯的生产过程通常包括以下几个主要步骤:首先,原料PTFE颗粒通过加热后转变为塑料状。
然后,将塑料状的PTFE在特定条件下进行挤压,使其形成条形块材。
接下来,将条形块材切割成合适尺寸的颗粒。
随后,这些颗粒被注入到模具中,并经过预压和冷压工艺,使其形成所需产品形态。
模压聚四氟乙烯生产工艺
模压聚四氟乙烯生产工艺模压聚四氟乙烯(PTFE)是一种常见的工程塑料,具有优异的耐化学腐蚀性、耐高温性和低摩擦系数等特点。
它广泛应用于化工、电子、机械等领域。
本文将介绍模压聚四氟乙烯的生产工艺。
一、原料准备模压聚四氟乙烯的主要原料是聚四氟乙烯树脂粉末。
在生产过程中,需要选择质量稳定、颗粒均匀的树脂粉末,并进行筛分和干燥处理,以确保原料的质量。
二、预压制备预压是模压聚四氟乙烯的第一步。
首先,将树脂粉末放入预压模具中,然后施加适当的压力进行预压。
预压的目的是使树脂粉末形成初步的坯体,以便后续的模压加工。
三、模具设计与制备模具是模压聚四氟乙烯的关键工具。
根据产品的形状和尺寸要求,设计合适的模具结构,并选择耐高温、耐腐蚀的材料进行制备。
模具的制备过程包括加工、抛光和清洗等步骤,以确保模具表面的光洁度和精度。
四、模压加工模压是模压聚四氟乙烯的核心工艺。
在模压过程中,将预压坯体放入模具中,然后施加高温和高压力,使树脂粉末熔化并填充模具腔体。
随后,通过冷却和固化,使树脂粉末重新固化成为模压件。
模压过程需要控制温度、压力和时间等参数,以确保产品的质量和尺寸精度。
五、后处理模压聚四氟乙烯的后处理包括去模、修整和检验等步骤。
首先,将模压件从模具中取出,并进行去模处理,以避免粘连。
然后,对模压件进行修整,去除多余的材料和表面缺陷。
最后,对产品进行检验,包括尺寸、外观和性能等方面的检测,以确保产品符合要求。
六、质量控制在模压聚四氟乙烯的生产过程中,需要进行严格的质量控制。
包括对原料、模具和成品的质量进行检验,以确保产品的稳定性和一致性。
同时,还需要建立完善的记录和追溯体系,以便对产品进行溯源和质量追踪。
总结起来,模压聚四氟乙烯的生产工艺包括原料准备、预压制备、模具设计与制备、模压加工、后处理和质量控制等步骤。
通过合理的工艺参数和严格的质量控制,可以生产出质量稳定、性能优异的模压聚四氟乙烯制品。
4-3聚四氟乙烯--悬浮聚合
20世纪30年代末期发现,40年代投入工业生产。性质 聚四氟乙烯 相对分子质量较大,低的为数十万,高的达一千万以上,一般为数 百万(聚合度在104数量级,而聚乙烯仅在103)。
聚四氟乙烯可在 260℃长期使用。由于高温裂解时还产生剧毒的副 产物氟光气和全氟异丁烯等,所以要特别注意安全防护并防止聚四 氟乙烯接触明火。
在人造血管中的应用
膨体聚四氟乙烯-EPTFE是有聚四氟乙烯树脂在助剂的 作用下混合均匀,通过挤压成型,然后精细干燥、拉
用途
各可种用异于型棒制、品管,、还板可、用电作缆润料滑、剂生、料稠带化等剂材。料的制作,经二次加工还可制成薄板、薄膜及
可作为塑料、橡胶、涂料、油墨、润滑油、润滑脂等的添加剂。 密可封推材压料成。型制成薄壁管、细棒材、异型棒材、电线电缆绝缘层、滚压成薄带作管道丝扣
对于大多数化学药 品和溶剂,表现出 惰性、耐强酸强碱、 水和各种有机溶剂。
耐腐 高防 蚀滑
是固体材料中摩擦 系数最低者
是固体材料中最小 的表面张力,不粘 附任何物质
不粘 无毒 附害
具有生理惰性,作 为人工血管和脏器 植入体内无不良反 应
不足之处:
1、聚四氟乙烯具有“冷流性”。即材料制品在长时间连续载荷作 用下发生的塑性变形(蠕变),这给它的应用带来一定的限制。如 当PTFE用作密封垫时,为密封严密而把螺栓拧得很紧,以致超过 特定的压缩应力时,会使垫圈产生“冷流”(蠕变)而被压扁。这 些缺点可通过加入适当的填料及改进零件结构等方法来克服。
• PTFE材料固有的低损耗与小介电常数使其可做成漆包线,以用于 微型电机、热电偶、控制装置等;PTFE薄膜是制造电容器、无线 电绝缘衬垫、绝缘电缆、马达及变压器的理想绝缘材料,也是航 空航天等工业电子部件不可缺少的材料之一;利用氟塑料薄膜对 氧气透过性大,而对水蒸汽的透过性小的这种选择透过性,可制 造氧气传感器;利用氟塑料在高温、高压下发生极向电荷偏离现 象的特性,可制造麦克风、扬声器、机器人上的零件等;利用其 低折射率的特性,可制造光导纤维。
聚四氟乙烯造粒料综述
聚四氟乙烯造粒料综述济南赛诺富隆新材料有限公司 251402摘要:聚四氟乙烯属于热塑性塑料,结晶性好,熔点高,具备不燃、不粘等特点,使用温度范围广。
基于这些特性,聚四氟乙烯除了会在很多特殊场合灵猴使用之外,还能够应用于工业、日常等领域,应该价值高且前景广阔。
为将聚四氟乙烯的作用充分发挥出来,需要对聚四氟乙烯造粒料深入研究,明确其特性和用途,分析聚四氟乙烯造粒应用现状。
关键词:聚四氟乙烯;造粒料;特性1聚四氟乙烯造粒料特性和用途分析聚四氟乙烯造粒料是借助凝聚的过程,提高聚四氟乙烯粉末体积密度,促进流动性能的提高。
在模压过程中,聚四氟乙烯造粒料具有分散性特点,细料的性能较为良好。
聚四氟乙烯造料的体积密度大,通常在600~1000g/L,平均粒径在200~700微米。
由于结构及性能相对良好,聚四氟乙烯造粒料适用的技术工艺较多,诸如自动模压、模压等。
现阶段,聚四氟乙烯造粒料可以在薄片的模压成型、要求充模性能优越等场合中使用,应用效果良好[1]。
2国内外主要产品2.1 国外主要产品现阶段,国外多个公司对聚四氟乙烯造粒料生产和销售,诸如日本旭硝子公司的G300系列聚四氟乙烯造粒料,其特性为:体积密度:G307为750g/L,G340为820g/L,G350为920g/L,测试方式为JIS K6891;平均粒径:测试方法为ASTM D1457,其中,G307为650μm,G340为350μm,G350为350μm;流动性:测试方法为ASTM D1457,其中,G307为优异,G340为很好,G350为很好,单位为μm;压缩性:测试方法为ASTM D1457,其中,G307为2.7μm,G340为2.5μm,G350为2.4μm;推荐模压压力:测试方法为ASTM D1457,其中,G307为30Mpa,G340为30Mpa,G350为30Mpa;抗张强度:测试方法为JIS K6891,其中,G307为36Mpa,G340为39Mpa,G350为39Mpa;伸长率:测试方法为JISK6891,其中,G307为350%,G340为350%,G350为350%;径向收缩:测试方法为JIS K6891,其中,G307为2.8%,G340为2.6%,G350为2.6%通过对以上数据的分析可以看出,在流动性方面,G307四氟乙烯造粒料最好。
ptfe薄膜制作工艺
ptfe薄膜制作工艺PTFE薄膜制作工艺PTFE(聚四氟乙烯)薄膜是一种具有优异性能的高分子材料,广泛应用于电子、化工、医疗等领域。
本文将介绍PTFE薄膜的制作工艺,包括原料准备、薄膜制备、后续处理等环节。
一、原料准备PTFE薄膜的制作首先需要准备PTFE树脂粉末作为原料。
树脂粉末的质量直接影响到薄膜的性能和质量。
在选择树脂粉末时,需要考虑其分子量、熔体流动性、熔点等因素。
一般情况下,高分子量、较低熔点的树脂粉末更适合制备高质量的PTFE薄膜。
二、薄膜制备1. 树脂粉末预处理:将树脂粉末进行筛分,去除杂质和颗粒不均匀的部分。
然后将筛选后的树脂粉末放入特定的模具中,进行预压制备。
2. 烧结:将预压制备好的树脂粉末放入烧结炉中,在高温下进行烧结。
烧结的目的是使树脂粉末颗粒之间发生熔融和结合,形成均匀致密的薄膜。
3. 拉伸:经过烧结的薄膜会变得较为脆硬,需要进行拉伸处理以提高其柔韧性和延展性。
拉伸的过程中,需要控制温度和拉伸速度,以获得所需的薄膜厚度和性能。
4. 确定薄膜厚度:通过测量薄膜的厚度,可以确定其最终的规格和用途。
常用的测量方法包括显微镜观察、电子显微镜扫描等。
三、后续处理1. 表面处理:PTFE薄膜的表面通常需要进行特殊处理,以增加其润湿性和粘附性。
常见的表面处理方法包括等离子体处理、化学处理等。
2. 检测和质量控制:对制备好的PTFE薄膜进行检测,包括检查薄膜的厚度、表面平整度、透明度等指标。
同时,还需要进行质量控制,确保薄膜的性能和质量符合要求。
3. 切割和包装:根据客户需求,将PTFE薄膜进行切割和包装,以便于运输和使用。
PTFE薄膜的制作工艺包括原料准备、薄膜制备和后续处理等环节。
通过精确控制每个环节的参数和工艺,可以制备出高质量的PTFE 薄膜,满足不同领域的需求。
在实际应用中,还需要根据具体要求进行进一步的加工和处理,以满足特定的功能和性能要求。
聚四氟乙烯工艺流程
聚四氟乙烯工艺流程
《聚四氟乙烯工艺流程》
聚四氟乙烯,简称PTFE,是一种具有优良的化学稳定性、耐
高温、耐腐蚀、绝缘性能和摩擦力低的高分子材料。
由于其独特的性能,在工业领域得到了广泛的应用,特别是在制造润滑脂、密封材料、导管和阀门等产品中。
聚四氟乙烯的生产工艺流程一般包括以下几个主要步骤:聚合、预制形态制备、加工成型和表面处理。
首先是聚合步骤。
将四氟乙烯气体通过聚合反应制成聚合物颗粒。
聚合反应通常在高温高压下进行,通过引入引发剂,使得四氟乙烯分子发生聚合反应,形成均一的聚合物颗粒。
接下来是预制形态制备。
将聚合后的PTFE颗粒通过多次压制、加热和冷却等过程,制备成板材、棒材、管材等不同的预制形态。
然后是加工成型。
通过热压、挤出、注塑等不同的成型方法,将预制的PTFE形态加工成各种产品。
如利用挤出方法可获得PTFE管材,利用压制和模压方法可获得PTFE板材和轴承等。
最后是表面处理。
PTFE制品的表面常常需要进行特殊的处理,如涂覆、改性、去毛刺等,以提高其表面的光滑度和润滑性。
综上所述,聚四氟乙烯的生产工艺流程涵盖了聚合、预制形态
制备、加工成型和表面处理等多个步骤。
通过这些步骤,可以生产出具有优异性能的PTFE制品,满足不同领域对高温、耐腐蚀和耐磨损材料的需求。
聚四氟乙烯主要成型制品及生产工艺
1、聚四氟乙烯被称为“塑料之王”具有无色、无毒、耐温范围宽、化学惰性和摩擦系数小等多种优异性能使其成为当今以汽车、国防、机械、化工、电子、建筑等工业为中心的所有产业部门都不可缺少的重要材料。
本文着重对市场上主要的聚四氟乙烯成型制品及其技术指标、生产工艺和应用领域等作一综述。
2聚四氟乙烯主要成型制品根据聚四氟乙烯的性能特点和加工特点其制品主要应用于防腐、防粘、电子电气、静态和动态的密封、医药包装等领域产品的种类有板材、管材、薄膜、多孔材料、玻璃纤维浸渍布以及填充改性制品等。
2.1聚四氟乙烯板材按ZBG33002—85分类PTFE板材可分为三类:SFB—1主要用于电气绝缘SFB—2用于腐蚀介质的衬垫、密衬件及润滑材料SFB—3用于腐蚀介质中的隔膜和视镜。
根据其成型工艺不同可分模压板及旋切板两种。
模压法比旋切成型设备简单生产周期短但对大型板材压机模具体积较大生产场地空间要求大所以要进行大面积防尘工作另外预成型板材极易破碎在进入烧结炉前应轻拿轻放。
大型模压板材成型工艺流程:原料检验→捣碎过筛→计量→模压→半成品检验→烧结→冷却→成品检验→包装。
工艺参数: 原料处理:捣碎过10~20目筛并将其置于23℃~25℃环境中24h~48h进行温度调整。
模压:压力1715~35MPa保压时间1~10min。
烧结:烧结温度360℃~380℃升温速度30℃/h330℃保温2h370℃保温3h。
冷却:降温速度20℃/h在PTFE熔点附近330℃左右缓慢冷却。
主要设备: YJ79—3500工程塑料液压机DL—88A 大型烧结炉主要技术指标见表1。
应用:利用其化学稳定性好的特点。
主要用于石油、化学、化工行业大型管道的垫圈、衬里、大型阀门的阀片、隔膜、各种反应容器、贮槽、反应塔的衬里、塔板分配板等。
利用其介电性能优异用于热电站、电解槽、密封环、电子电器和电子计算机工业的印刷线路、复铜板基材、各种尖端及特殊设备的部件。
利用其摩擦系数低的特点用于海上钻油井架滑轨贴面、船坞滑道贴面、拦河大坝闸门滑道贴面、桥梁伸缩支承滑块贴面、各种机床镗床磨床刨床滑动导轨贴面等。
铁氟龙是什么材料
铁氟龙是什么材料铁氟龙,又称聚四氟乙烯(Polytetrafluoroethylene,简称PTFE),是一种具有优异耐热、耐腐蚀和绝缘性能的高分子材料。
铁氟龙是由氟化单体四氟乙烯(TFE)通过聚合反应制得的。
铁氟龙在工业和日常生活中有广泛的应用,下面将从材料性质、制备工艺和应用领域三个方面介绍铁氟龙。
一、材料性质1. 耐高温性能:铁氟龙的熔点为327℃,因此可以在高温环境下长时间使用。
其工作温度范围为-200℃至260℃,能在极端的温度环境下保持其原有性能。
2. 抗腐蚀性能:铁氟龙对大多数化学品都具有优异的耐腐蚀性,对酸、碱、溶剂等有很强的稳定性,可在强酸和强碱环境下长时间使用。
3. 电气绝缘性:铁氟龙是一种优异的绝缘材料,具有良好的电绝缘性能,能有效阻止电流流通。
4. 自润滑性:铁氟龙具有良好的自润滑性,具有低摩擦系数,对机械装置可起到减少能量损失、延长使用寿命的作用。
5. 低表面张力:铁氟龙的表面张力很低,具有很好的润湿性,能使水和其他液体在其表面快速扩散。
二、制备工艺铁氟龙的制备一般分为聚合、烧结、拉延和后处理等步骤:1. 聚合:将四氟乙烯单体在加热、压力和催化剂的作用下,聚合成铁氟龙颗粒。
2. 烧结:将聚合好的铁氟龙颗粒,通过热压、烧结工艺,使之形成致密的薄片。
3. 拉延:通过烧结后的薄片,经过拉伸、扩展,得到所需的铁氟龙板材或管材。
4. 后处理:对铁氟龙进行表面处理,最常见的方式是钝化处理,以增加表面的耐腐蚀性能。
三、应用领域1. 化工领域:铁氟龙具有优异的耐腐蚀性和耐高温性能,广泛应用于化工设备和管道的润滑和密封材料,如阀门垫片、填料、密封圈等。
2. 电子领域:铁氟龙具有良好的电绝缘性能,常用于电线电缆的绝缘材料、电子元件的保护材料等。
3. 医疗领域:铁氟龙对人体无毒、无味,具有良好的生物相容性,用于人工血管、外科缝线等医疗器械。
4. 各类机械设备领域:由于铁氟龙具有良好的自润滑性和低摩擦性,常被用于轴承、密封圈、轴瓦、齿轮、润滑脂等机械部件。
聚四氟乙烯的制备方法
聚四氟乙烯的制备方法
1. 光解聚合法:使用紫外线辐射或紫外线光催化剂,在四氟乙烯单体中引入剂和溶剂,产生自由基反应,从而形成聚四氟乙烯。
2. 液相聚合法:在特定的溶剂中,将四氟乙烯单体渗入催化剂所在的反应器中,使其与催化剂在液态环境下进行聚合反应。
3. 悬浮聚合法:将四氟乙烯单体和催化剂加入反应器中,通过机械或气体搅拌使其悬浮在溶液中,实现聚合反应。
4. 溶液聚合法:将四氟乙烯单体溶于合适的溶剂中,并加入催化剂,使其在液态环境下发生聚合反应。
5. 高温聚合法:在高温下,将四氟乙烯单体注入聚合反应器中,与催化剂发生聚合反应,从而制备聚四氟乙烯。
聚四氟乙烯复合材料的制备及其应用研究
聚四氟乙烯复合材料的制备及其应用研究近年来,聚四氟乙烯(PTFE)复合材料在工业制造和科技领域中得到了广泛的应用,成为了新型材料领域的研究热点之一。
作为一种具有高强度、高稳定性、耐腐蚀性和生物惰性等优异性能的材料,PTFE不仅可以单独使用,而且还可以与其他材料复合加工,制成更加优质的复合材料,用于制造和生产多种产品。
一、PTFE复合材料的制备PTFE复合材料的制备方法多种多样,常见的有机械混合法、化学修饰法、物理吸附法、化学沉积法等。
在制备复合材料时,首先需要选取可与PTFE相容的材料,然后进行充分的混合和加工。
1.机械混合法机械混合法是指将PTFE和其他材料用机械方式进行混合。
这种方法的优点是简单易操作,生产成本低,但需要耗费大量的能量和时间。
机械混合法常用于制备各种PTFE/复合材料密封材料和弹性材料。
2.化学修饰法化学修饰法是指对PTFE表面进行化学修饰,使其表面具有亲和力能够与其他材料进行复合。
这种方法优点是可以制备出优异的化学和物理性能,一般适用于生产电子、化工和环保等行业的材料。
3.物理吸附法物理吸附法是利用PTFE表面的分子力或静电作用,将材料自然吸附于其表面。
这种方法优点是简单快捷,但存在着吸附量小、不牢固的问题。
物理吸附法常用于制备PTFE的表面性能改良剂。
4.化学沉积法化学沉积法是通过一个或多个反应进行PTFE/复合材料的制备。
这种方法的优点是制备速度快,材料齐全,但存在着制备条件严苛、成本高等问题。
化学沉积法的应用范围很广泛,可以用于制备高级传热材料、高性能材料、电子器件材料等。
二、PTFE复合材料的应用研究随着科技的不断发展,PTFE复合材料的应用领域也在不断拓展。
据统计,PTFE复合材料已广泛用于制造化学、电子、纺织、航空、船舶、汽车、建筑等工业领域。
以下是几种常见的PTFE复合材料的应用研究。
1.PTFE防爆电缆此电缆采取了PTFE与FEP的共混和配合制成的新型复合材料作为绝缘材料,具有高使用温度、强抗拉强度、抗化学腐蚀、不爆燃等特点,非常适用于石油、化工、冶金、纺织、军工等行业的防爆设备。
ptfe膜的制备
ptfe膜的制备PTFE膜(聚四氟乙烯膜)是一种具有优异性能的高分子材料,广泛应用于电子、化工、医药等领域。
本文将介绍PTFE膜的制备方法以及其特点和应用。
一、PTFE膜的制备方法PTFE膜的制备方法主要包括压延法和浸渍法两种。
1. 压延法:首先将PTFE树脂加热熔化,然后通过挤出机将熔融的PTFE挤出成片状,再通过辊压和拉伸的方式将其压延成薄膜。
该方法制备的PTFE膜具有较高的机械强度和耐热性,适用于制备较厚的膜材。
2. 浸渍法:将PTFE树脂分散在有机溶剂中,形成PTFE悬浮液。
然后将基材浸入悬浮液中,使PTFE颗粒附着在基材表面形成薄膜。
最后通过干燥和烧结等工艺将有机溶剂去除,得到PTFE膜。
该方法制备的PTFE膜具有较高的孔隙度和吸附性能,适用于制备微孔膜。
二、PTFE膜的特点PTFE膜具有以下特点:1. 耐高温性:PTFE膜具有良好的耐高温性能,可在高达260℃的温度下长期使用。
2. 抗粘附性:PTFE膜表面具有极低的表面张力和非常低的摩擦系数,不易附着杂质和污染物。
3. 良好的化学稳定性:PTFE膜具有优异的耐酸碱性能,对大多数化学物质具有良好的稳定性。
4. 优异的电绝缘性:PTFE膜是一种优秀的电绝缘材料,可用于电子元件的绝缘保护。
5. 超低温韧性:PTFE膜在低温下仍保持较好的柔韧性和耐寒性能。
三、PTFE膜的应用PTFE膜由于其独特的性能,在多个领域得到广泛应用。
1. 电子领域:PTFE膜可用于制备电子元件的绝缘层、介质膜和隔离膜,具有良好的电绝缘性和耐高温性能。
2. 化工领域:PTFE膜可用于制备化工设备的密封垫片、填料、膜片和过滤材料,具有优异的耐腐蚀性和抗粘附性能。
3. 医药领域:PTFE膜可用于制备药物过滤器、医用导管和人工血管等医疗器械,具有良好的生物相容性和耐高温性能。
4. 环保领域:PTFE膜可用于制备空气过滤器、水处理膜和污水处理设备等,具有良好的过滤性能和耐腐蚀性能。
聚四氟乙烯分散树脂用途
聚四氟乙烯分散树脂用途聚四氟乙烯分散树脂是一种具有优越特性的分散树脂。
它具有高温抗性、耐化学腐蚀性、耐磨损性等特性,因此在工业生产中被广泛应用。
本文将从材料科学角度探讨聚四氟乙烯分散树脂的用途。
一、聚四氟乙烯分散树脂的制备聚四氟乙烯分散树脂的制备往往采用乳液聚合技术。
具体的制备方法是:首先将四氟乙烯和不溶于水的溶剂(如氯化烃)放入反应釜中。
反应釜中注入氧气进行氧化反应,产生自由基。
接着将表面活性剂和乳化剂加入反应釜中,将产生的四氟乙烯均匀分散在溶液中。
然后加入引发剂,开始聚合反应。
聚合完毕后,存储于容器中即可获得聚四氟乙烯分散树脂。
二、聚四氟乙烯分散树脂的应用1. 涂料聚四氟乙烯分散树脂的分散性良好,在涂料中可以使得溶液、颜料等原材料充分混合,涂层器物的附着性强、光泽度高、耐化学腐蚀性和耐磨性强。
2. 油墨聚四氟乙烯分散树脂在油墨颜料中的应用可以防止颜料沉淀结固,提高流动性和乳化性,使得油墨墨层稳定、光泽度高、耐水性和耐光性好。
3. 粘合剂聚四氟乙烯分散树脂的高温抗性及耐化学腐蚀能力使其在制备高强度粘合剂中有广泛的应用。
在制备汽车制动片及轮胎等高强度接合件时经常使用此类粘合剂。
4. 塑料在高分子塑料中添加聚四氟乙烯分散树脂可使产品变得具有更高的耐温性和耐化学腐蚀性,如高温容器、防腐酸碱等。
三、总结聚四氟乙烯分散树脂具有优越的高温抗性、耐化学腐蚀性、耐磨损性等特性,因此在涂料、油墨、粘合剂和塑料等领域中得到了广泛应用。
制备聚四氟乙烯分散树脂的乳液聚合技术成熟,具有较高的生产效率和经济效益。
随着科技的不断进步,我相信聚四氟乙烯分散树脂将会在更多领域中发挥重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚四氟乙烯的制备和应用1. 聚四氟乙烯的简述随着社会文明的进步和科学技术的发展,材料化学也在日新月异地发展,许多新型的无机材料越来越多地被使用在日常生活中。
聚四氟乙烯(PTFE)作为一种新型的无机非金属材料,在人们的生活和生产实践中起着举足轻重的作用。
四氟乙烯(TFE)的发现首先是被用于冰箱的制冷剂。
1938年4月6日,杜邦公司(Do Pont)的研究员Plunkett和他的助手首次从装有TFE的钢瓶中得到了粉末状的聚四氟乙烯(PTFE),引起杜邦公司的重视,并探索其聚合条件及材料的性能和应用前景。
在第二次世界大战中,PTFE以其优异的性能被列为军需品,同时其专利也被保护起来。
直到1946年JAC才报导了杜邦公司在聚四氟乙烯的研究工作,同时美国专利局批准了多项专利。
聚四氟乙烯的性能特点主要有耐高低温性、耐化学腐蚀和耐候性、摩擦系数低、优异的电气绝缘性、自润滑性和非粘附性等众多优良品质,因此聚四氟乙烯被用于防腐材料、无油润滑材料、电子设备的高级介质材料、医学材料、防粘材料等。
虽然PTFE材料具有其它材料无法替代的优异性能,但是本身也存在着一定的缺点,例如:难熔融加工性、难焊接性和冷流性。
随着材料应用技术的不断发展,这些缺点正在逐渐被克服,从而使它在石油化工、电子、医学、光学等多种领域的应用前景更加广阔。
2. 聚四氟乙烯的制备聚四氟乙烯由四氟乙烯经自由基聚合而生成。
工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。
聚合一般在40~80℃,0.3~2.6MPa压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。
每摩尔四氟乙烯聚合时放热171.38kJ。
分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。
聚四氟乙烯的聚合方法包括本体聚合、溶液聚合、悬浮聚合和乳液聚合( 亦称分散聚合) 等,工业生产中主要采用悬浮聚合和乳液聚合。
2.1. 悬浮聚合悬浮聚合PTFE的加工方法基本步骤包括预成型、烧结和冷却三部分。
预成型是将粉末状PTFE树脂压成具有一定形状的预成品;烧结是将预成品加热至树脂熔点使树脂粒子密集为均相结构;冷却是在一定的冷却速度下降温以获取一定形状的聚四氟乙烯材料。
(1)PTFE挤压成型工艺。
挤压成型是将聚四氟乙烯树脂加入挤压机的料腔中加压,挤入口模使它形成密实的管材、棒材等制品,然后经烧结、冷却制成具有一定规格的产品,挤压成型的特点在于可连续成型,是模压成型工艺的连续化。
(2)PTFE等压成型。
等压成型又称为液压成型,用于制造体积较大的PTFE 的套筒、贮槽、半球壳体、大圆板、塔柱、圆管和用于切削大张薄板的大毛坯、方坯等,也可制造整体的内衬PTFE复合结构的三通弯头、导流管等形状复杂的制品。
PTFE等压成型具有设备简单、投产快、模具结构简单操作方便、制品受压均匀、质量好、节约树脂等特点。
(3)PTFE模压成型。
模压成型是PTFE最常用的方法,一些形状简单的制品如板、棒、套管、薄膜毛坯、垫板等都可用模压成型。
模压成型方法基本上包括混料、预成型、烧结、冷却四步组成。
即在室温下使聚四氟乙烯成型成密实的预成型品,加热到熔点以上,使其由结晶相转变为无定形相,形成密集、连续、透明的弹性体,在通过降温转变为结晶相的过程。
聚四氟乙烯的烧结过程由升温、保温、降温三个阶段组成。
升温是将预成型品由室温加热到烧结温度的过程,是从结晶相转变为无定形相的过程。
聚四氟乙烯受热后体积膨胀,在熔点时体积膨胀25%左右。
保温是将达到烧结温度的预成型品在此温度下保持一段时间,使整个制件达到完全透明的过程。
在保温过程中,聚四氟乙烯的分子运动加剧,颗粒间的界面消失,成为密实的连续的整体。
聚四氟乙烯的烧结温度一般为375℃。
降温是将以烧结的预成型品从保温温度降至室温的过程。
在此过程中,树脂由无定形转变为结晶相,降温速度的快慢受到制品大小的限制。
降温时在其结晶速度最快的温度范围中保温一段时间,使预成型品的内外温度趋于平衡,这种制品称为不淬火制品。
采取快速冷却方式的制品称为淬火制品。
2.2. 乳液聚合(分散聚合)分散PTFE是PTFE分散粒子经凝聚后形成的次级粒子,直径为500μm,粉状,比表面积大,吸收有机溶剂后,经剪切力的作用形成糊膏状,通常采用挤压成型工艺,故称糊膏挤压成型。
采用糊膏挤压成型的PTFE制品品种较多,有小口径棒、电线、薄壁管、导型材、生料带、生料棒和PTFE膨体制品,如弹性带、膨体生料带、膨体纤维和膨体膜等。
(1)PTFE分散液浸渍。
用PTFE分散液浸渍石棉、玻璃纤维、玻璃布、多孔金属等材料所制得的制品具有优良的性能,如不吸水、良好的不粘性、润滑性与气密性,及在高温时仍具有优良的耐化学腐蚀性。
(2)PTFE分散液的涂覆成型。
PTFE分散液在金属、陶瓷、木材、塑料表面形成涂层,使这些材料表面具有防粘、低摩擦系数和防湿性能,从而大大开拓了这些材料的应用范围。
涂覆工艺有静电喷涂、等离子喷涂等。
(3)湿法混合与填充PTFE。
湿法混合就是将PTFE分散液和填充剂均匀混合后使其共凝聚。
用此法制得的PTFE制品力学强度较高,耐磨性及介电性能较好,但由于乳液聚合树脂热稳定性较差,仅限于制造薄壁小型制品。
(4)PTFE分散液流延成型。
PTFE分散液流延成型是在一条连续运转的高度抛光的金属带上持续不断地用PTFE分散液涂布,然后将涂布好的PTFE送入高温塔进行烘焙,在水分及表面活性剂完全挥发后再在360-380℃下烧结成制品,用该方法加工的制品为PTFE流延薄膜,表面光滑、柔软,用作电容器的绝缘材料。
3. 聚四氟乙烯的结构和特点PTFE的分子构形在温度低于19℃时呈三棱体形,螺旋形大分子中每13个碳原子扭转180°,其轴向间距为117nm;温度高于19℃时呈六面体形,每15个碳原子扭转180°,轴向间距为2nm。
这种由温度变化引起的大分子链型式的转变可以引起聚合物的比容有1%的突然变化。
PTFE分子的主链由C - C键构成,所有的侧键都为氟原子取代,C - F 键结合能很大,所以PTFE有很高的耐热性能;氟原子较氢原子半径大,且带负电,对主链碳原子的正电荷起有效的屏蔽作用,而相邻大分子上的氟原子的负电荷具有排斥作用,导致了PTFE极低的内聚能,分子间结合力很弱;氟原子体积大,又相互排斥,使PTFE分子链不能呈平面锯齿形而呈螺旋形,并且比较僵硬。
由于PTFE的特殊分子结构特征,使其具有如下的特点:1).摩擦系数小。
由于PTFE大分子间的相互引力小,且表面对其它分子的吸引力也很小,因此其摩擦系数非常小,是已知固体工程材料中最低的,仅为0.04 (静摩擦系数) ,小于其动摩擦系数,在极低的滑动速度下也不会出现爬行现象,是金属摩擦学中从未出现的奇特现象。
2).优异的耐老化性能和抗辐射性能。
在苛刻环境下性能不变,潮湿状态下不受微生物侵袭,而且对各种射线辐射具有极高的防护能力,在真空中,辐照剂量为1 ×107 rad时,仍可保持原有拉伸强度的50%。
3).极佳的化学稳定性。
PTFE不与环境介质发生反应,能承受大部分强酸(包括王水、氢氟酸、浓盐酸、发烟硫酸、有机酸等)、强碱、强氧化剂、还原剂和各种有机溶剂的作用。
4).极小的吸水率( 0.001% ~0.005% ) 。
渗透率较低,除了对其组成相似的氟碳化合物有较高的渗透率外,对大部分气体和液体的渗透性较小。
5).良好的电性能。
PTFE 为高度非极性材料,具有极优良的介电性,并且不随频率和温度而变化,也不受湿度和腐蚀性气体的影响。
6).宽广的使用温度(从- 250℃到260℃) 。
7).突出的表面不粘性和良好的自润滑性。
8).PTFE表面张力小( 0.019N /m),是目前表面能最小的一种固体材料,几乎所有的固体材料都不能粘附在其表面。
9).极好的热稳定性。
PTFE熔点327℃,高于其它一般高聚物。
在260℃时其断裂强度仍保持5MPa左右(约为室温的1 /5) ,抗屈服强度达114MPa。
同时,它还具有极可贵的不燃性,其限氧指数(LO I)在95 以上,在火焰上只能熔融,不生成液滴,最终只被碳化。
在具有以上优异性能的同时,PTFE的结构也产生了如下一些缺点:1).成型和二次加工困难。
PTFE的成型收缩率较大,熔体粘度极高,不能用塑料常用的注射成型、压延成型等二次加工工艺。
2).机械性能和承载能力差。
PTFE的机械强度仅为14~25MPa,无回弹性,硬度较低,但断裂延伸率较大。
3).线膨胀系数较大。
在- 50 ~250℃之间,PTFE线膨胀系数达1.13 ×10-4~2.16 ×10-5 /℃,是钢铁的13倍,故与其它材料复合易发生变形、开裂等现象。
4).导热性差。
导热系数仅0.24kcal/ (m ·h·℃) ,易造成热膨胀、热疲劳和热变形。
5).耐蠕变性差,易冷流。
PTFE在负荷长期作用下,蠕变较大,易发生冷流现象。
6).耐磨性差。
PTFE硬度较低,磨耗较大,当负荷( P)和滑动速度(V)超过一定条件时,其摩耗会变得很大,因此在应用中PV值有一定限制。
7).生产成本较高。
PTFE的以上缺陷限制了其应用,为提高其综合性能,国内外对PTFE的研究重点在于寻找适当的方法对其进行改性,从而在一定程度上改善其性能,扩大其应用范围。
4. 聚四氟乙烯的应用因为聚四氟乙烯在多方面的优异性能,所以它在化工、机械、电子、医学、纺织等工业中被广泛用作耐高低温材料、耐腐蚀材料、绝缘材料、医用材料、防粘涂层等。
4.1. 用作防腐材料由于橡胶、玻玻、金属合金等材料在耐腐蚀方面存在缺陷,难以满足条件苛刻的温度、压力和化学介质共存的环境,由此造成的损失相当惊人。
PTFE材料克服了普通塑料、金属等耐腐蚀能力较差的缺点,以其卓越的耐高低温和耐腐蚀性能,已经成为石油、化工、纺织等行业的主要耐腐蚀材料。
其具体应用包括:输送腐蚀性气体的输送管、排气管、蒸汽管,轧钢机高压油管,飞机液压系统和冷压系统的高中低压置道,精馏塔、热交换器、釜、塔、槽的衬里,阀门等化工设备。
4.2. 用作无油润滑材料因为PTFE材料的摩擦系数是已知固体材料中最低的,所以这就使填充PTFE 材料成为机械设备零件无油润滑的最理想材料。
其具体用途包括用于化工设备、造纸机械、农业机械的轴承,用作活塞环、机床导轨、导向环;在土木建筑工程广泛用作桥梁、隧道、钢结构屋架、大型化工管道、贮槽的支承滑块,以及用作桥梁支座和架桥转体等。
4.3. 用作电子设备的高级介质材料PTFE固有的低损耗与介电常数使其成为电线和电缆的理想绝缘材料:其独特的多孔结构可以使损耗和失真降至最低并使信号以近光速的速度进行传输,并且具有热稳定性和机械柔韧性。