高数下A试题及答案
高等数学下考试题库(附答案)
p p 122222-+--y x y x )11)1)1¶¶4,p y z2222p nA.x -11B.x -22C.x -12D.x-21 10.微分方程0ln =-¢y y y x 的通解为(的通解为( ). A.x ce y =B.x e y =C.x cxe y =D.cxe y =二.填空题(4分´5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设13323+--=xy xy y x z ,则=¶¶¶yx z 2_____________________________. 4.x +21的麦克劳林级数是___________________________. 5.微分方程044=+¢+¢¢y y y 的通解为_________________________________. 三.计算题(5分´6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ¶¶¶¶ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ¶¶¶¶ 3.计算s d y x D òò+22sin ,其中22224:p p £+£y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径). 5.求微分方程x e y y 23=-¢在00==x y 条件下的特解. 四.应用题(10分´2)1.要用铁板做一个体积为23m 的有盖长方体水箱,的有盖长方体水箱,问长、问长、宽、高各取怎样的尺寸时,高各取怎样的尺寸时,才能使用料最省?才能使用料最省?才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点÷øöçèæ31,1,求此曲线方程求此曲线方程. 试卷1参考答案一.选择题选择题 CBCAD ACCBD 二.填空题填空题1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.19622--y y x . 4. ()n n n nx å¥=+-0121. 5.()x ex C C y 221-+= . 三.计算题计算题1.()()[]y x y x y e xz xy +++=¶¶cos sin ,()()[]y x y x x e y z xy +++=¶¶cos sin . 2.12,12+=¶¶+-=¶¶z y y z z x x z . 3.òò=×p p p p r r r j 202sin d d 26p -. 4.3316R . 5.xx e e y 23-=. 四.应用题应用题1.长、宽、高均为m 32时,用料最省. 2..312x y =M 12131415p p p p ))0)0p)0p1¶¶xzr4nA.cx e y =B.x ce y =C.x e y =D.xcxe y =二填空题(4分´5) 1.直线l 过点()1,2,2-A 且与直线ïîïíì-==+=tz t y t x 213平行,则直线l 的方程为__________________________. 2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x +的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________. 三.计算题(5分´6)1.设k j b k j i a 32,2+=-+=,求.b a ´2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ¶¶¶¶ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,y z x z ¶¶¶¶ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a)所围的几何体的体积. 5.求微分方程023=+¢+¢¢y y y 的通解. 四.应用题(10分´2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积. 2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=tdt yx ¶¶,、二阶行列式 2 -3 4 4p 22,22222222222222y x z z z z z z z zA 、å¥=-0)1(n n)!2(2n x n B 、å¥=-1)1(n n )!2(2n x n C 、å¥=-0)1(n n )!2(2n x n D 、å¥=-0)1(n n )!12(12--n x n 9、微分方程(y``)4+(y`)5+y`+2=0的阶数是(的阶数是( )A 、一阶、一阶B 、二阶、二阶C 、三阶、三阶D 、四阶、四阶10、微分方程y``+3y`+2y=0的特征根为(的特征根为( )A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
大学高数下册试题及答案
大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。
令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
海南大学2018-2019高数A1-A卷下
一、 填空题(每题3分,共18分,在以下各小题中画有____处填上答案)1. 微分方程20y y y '''++=的通解为________;2. 以(0,0,0),(1,1,1),(1,2,3)A B C 为顶点的三角形的面积为________3. 函数u xyz =在点(1,1,1)处,沿着它在点(1,1,1)的梯度方向的方向导数是_________;4.2(sin )xy y dxdydz Ω+=⎰⎰⎰_______,其中Ω由曲面22z x y =+及平面1z =所围成的闭区域;5.(1)x y dS ∑++=⎰⎰_________,其中曲面2221x y z ∑++=:;6. 已知级数1nn a∞=∑收敛,则级数11()nn n aa ∞+=-∑的和为_________.二、选择题(每题3分,共18分,选择正确答案的编号,填在各题的括号内)1. 方程325y y y '''-+=的通解是( ),其中12,k k 为常数;A). 2125x x y k e k e =++ ; B)2125x xy k e k e =+-;C)21252x x y k e k e =++ ; D)21252x x y k e k e =+- .2. 直线1158:121x y z l --+==-与直线2:,,l x t y t z t ===,则这两条直线的夹角是( ); A);6π B)4π; C)3π; D) 2π.3. 函数(,)f x y 在点00(,)x y 的两个偏导数存在,是(,)f x y 在点00(,)x y 连续的( );)A 充分条件而非必要 条件; )B 必要条件而非充分条件;得分 阅卷教师得分 阅卷教师)C 充分必要条件; )D 既非充分条件又非必要 条件.4. 设D 为第二象限的有界闭区域,且01,y <<则31,DI yx dxdy =⎰⎰232,DI y x dxdy =⎰⎰ 1323,DI y x dxdy =⎰⎰的大小顺序是( ); )A 123I I I ≤≤ )B 213I I I ≤≤ )C 321I I I ≤≤ )D 312I I I ≤≤.5. 222()x y z dxdy ∑++=⎰⎰( )其中222,0z r x y r ∑=-->: 取下侧.A) 4r π; B)4r π-; C )2r π; D )2r π-.6.设常数0,k >则21(1)nn k nn∞=+-∑ ( ); A)发散; B)条件收敛; C )绝对收敛; D )敛散性与k 有关.三 、计算题(每小题8分,共48分)().f x1、求微分方程tan sec dyy x x dx-=满足初值条件00x y ==的特解.2.已知一平面与向量 (2,1,1)a =-平行,该平面在x 轴和y 轴的截距分别为3和-2, 求该平面方程.得分 阅卷教师3.设(,)z z x y =是由方程ln x zz y=所确定的隐函数,求dz .4、计算2222()Dx y dxdy a b +⎰⎰,其中{}22(,)1D x y x y =+≤.5、计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为上半圆周22(1)1,0x y y -+=≥,沿逆时针方向.6. 求级数21(1)21n nn x n +∞=-+∑的和函数.四、 证明题(8分)证明曲面(,)0F x az y bz --=上任意点处的法线与直线x yz a b==垂直,其中,a b 为常数, 函数(,)F u v 可微.五、 应用题(8分)求由曲面22z x y =+与平面1z =所围成的区域的整个边界表面的面积.得分 阅卷教师得分 阅卷教师海南大学2018-2019学年度第2学期试卷科目:《高等数学A1》(下)试题(A 卷)答案姓名: 学 号: 学院: 专业班级:成绩登记表(由阅卷教师用红色笔填写)大题号 一 二 三 四 五 六 七 八 总分 得分阅卷教师: 2019年 月 日考试说明:本课程为闭卷考试,可携带 。
高数下期末考试试题及答案解析讲解学习
2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b 2.极限2222001lim()sinx y x y x y→→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =∆的是( ).(A )(,)f x y xy = (B )00(,),fx y x y c c =++为实数(C )(,)f x y =(D )(,)e x yf x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰Ñ( ). (A) l (B) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( ).(A)该级数收敛 (B)该级数发散(C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散 (B )若级数21nn a∞=∑发散,则级数1nn a ∞=∑也发散 (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 .2.设(,)ln(),y f x y x x=+则(1,0)y f '=______ _____.3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 .4.设22:2D x y x +≤,二重积分()d Dx y σ-⎰⎰= .5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω+⎰⎰⎰在柱面坐标系下的三次积分为 . 6.幂级数11(1)!nn n x n ∞-=-∑的收敛域是 . 7.将函数21,0()1,0x f x x x ππ--<≤⎧⎪=⎨+<≤⎪⎩以2π为周期延拓后,其傅里叶级数在点x π=处收敛于 .三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………三、综合解答题一(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤) 1.设(,)x u xf x y =,其中f 有连续的一阶偏导数,求ux∂∂,u y ∂∂.解: 2.求曲面e 3z z xy ++=在点(2,1,0)处的切平面方程及法线方程. 解:3.交换积分次序,并计算二次积分0sin d d xyx y yππ⎰⎰. 解:4.设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间闭区域,求23d d d I xy z x y z Ω=⎰⎰⎰. 解:5.求幂级数11n n nx∞-=∑的和函数()S x ,并求级数12nn n ∞=∑的和. 解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………四、综合解答题二(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为1的一切直角三角形中,求有最大周长的直角三角形. 解2.计算积分22()d Lx y s +⎰Ñ,其中L 为圆周22x y ax += (0a >). 解:3.利用格林公式,计算曲线积分22()d (2)d LI xy x x xy y =+++⎰Ñ,其中L 是由抛物线2y x =和2x y =所围成的区域D 的正向边界曲线.4. 计算d x S ∑⎰⎰,∑为平面1=++z y x 在第一卦限部分.解:5.利用高斯公式计算对坐标的曲面积分d d d d d d x y y z z x S++蝌,其中∑为圆锥面222z x y =+介于平面0z =及1z =之间的部分的下侧. 解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………2y x = 2x y =y2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8个小题,每小题2分,共16分)1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有(D ) (A)-=0a b ; (B)+=0a b ; (C)0⋅=a b ; (D)⨯=0a b .2.极限2222001lim()sin x y x y x y→→+=+ ( A ) (A) 0; (B) 1; (C) 2; (D)不存在. 3.下列函数中,d f f =∆的是( B );(A ) (,)f x y xy =; (B )00(,),f x y x y c c =++为实数; (C )(,)f x y =(D )(,)e x y f x y +=.4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( B ).(A )驻点与极值点; (B )驻点,非极值点; (C )极值点,非驻点; (D )非驻点,非极值点.5.设平面区域D :22(1)(1)2x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( A ) (A )123I I I <<; (B )123I I I >>; (C )213I I I <<; (D )312I I I <<.6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰Ñ(D )(A) l ; (B) l 3; (C) l 4; (D) l 12. 7.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( C )(A)该级数收敛; (B)该级数发散;(C)该级数可能收敛也可能发散; (D) 该级数绝对收敛. 8.下列四个命题中,正确的命题是( D ) (A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散;(B )若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散;(C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛;(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛.二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 3 。
05-06高数期末(下)试题(A)
中国农业大学2005 ~2006 学年 第 二 学期 高等数学(A 、B ) 课程考试试题 (A 卷)试 题(2006/6)一、 填空题 (满分15分,每小题3分,共5道小题),请将答案写在横线上.1.函数yz x u 2=在点)1,1,1(P 处沿(2,2,1)方向的方向导数为_____________.2.函数xy z =在条件1=+y x 下的极大值=___________.3.设L 为圆周922=+y x ,取逆时针方向,则曲线积分⎰-+-L dy x x dx y xy )2()32(2=__________.4.设⎩⎨⎧<≤+<≤--=ππx x x x f 0101)(2,且以π2为周期,则)(x f 的傅里叶级数在点π=x 处收敛于_____________.5.微分方程0)(=++dx y x xdy 的通解为__________________.二、选择题 (满分15分,每小题3分,共5道小题),请将合适选项填在括号内.1. 设有直线L :21211-=+=-z y x 和平面0224:=-+-∏z y x ,则L 与∏ ( ) (A) 垂直; (B) L 在∏上 ; (C) 平行; (D) 斜交.2.下列命题不正确的是( )(A)),(y x f 在点),(00y x 可微,则),(y x f 在该点连续;(B)),(y x f 在点),(00y x 的偏导数存在,则),(y x f 在该点连续;(C)),(y x f 的偏导数在点),(00y x 连续,则),(y x f 在该点可微;(D)),(y x f 在点),(00y x 可微,则),(y x f 在该点的偏导数存在.3.设∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分⎰⎰∑ydS 的值是( ) (A) 334 ; (B) 0; (C) 34; (D) π.4.设α为常数,则级数∑∞=-13]1sin [n nn n α( ) (A) 绝对收敛; (B) 条件收敛; (C) 敛散性与α有关; (D) 发散.5.若21,y y 是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个特解,21,C C 为两个任意常数,则2211y C y C y +=( )(A ) 是该方程的解; (B ) 是该方程的特解;(C ) 是该方程的通解; (D ) 不一定是该方程的解.三、(10分)求过点)2,1,3(0-P 且通过直线12354:z y x l =+=-的平面方程.四、(10分)设函数),(y x z z =由方程)(22z x yf z x -=+确定,其中f 为可微函数, 证明:x y z y x z z =∂∂+∂∂.五、(10分)计算积分:⎰⎰⎰⎰+x x x dy y x dx dy y x dx 242212sin 2sin ππ.六、(11分)设)(x f 具有二阶连续导数,1)0(',0)0(==f f ,曲线积分dy y x x f dx y x f xy y x L ])('[])([222++-+⎰与路径无关,求)(x f .解:由xQ y P ∂∂=∂∂,整理得)(x f 满足微分方程2)()(x x f x f =+''七、(12分)求幂级数∑∞=-1121n n n x n 的收敛域,并求其和函数.八、(12分)计算曲面积分⎰⎰∑++++212222)()(z y x dxdy a z axdydz ,其中∑为222y x a z ---=的上侧,a 为大于零的常数.九、(5分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(='=f f , 证明级数∑∞=1)1(n n f 绝对收敛.。
2010—2011学年(A)答案成都理工大学第二学期《高等数学 I、Ⅱ》(下)期末考试试卷 高数下试题及答案
(2 分)
P 1 1 1 2 [1 y 2 f ( xy)] [2 yf ( xy) xy 2 f ( xy)] 2 f ( xy) xyf ( xy) y y y y
(2 分)
Q P ,故曲线积分 I 与路径无关。 x y
(1 分)
3
(1 分)
F
1 2 x 0 x 1 Fy 2y 0 y 3 Fz 2z 0 z 2 x y 2 z 2 5R 2 0 Fx
(2 分)
解出 x y R,
Z 3R
(2 分) (2 分)
则 u 的最大值为 ln( 3 3R 5 ) 2. 添加 1 : z 1 ( x 2 y 2 1) ,取法向量朝上,则
xdydz 2 ydzdx 3( z 1)dxdy 0
1
(2 分)
根据奥高公式,
xdydz 2 ydzdx 3( z 1)dxdy xdydz 2 ydzdx 3( z 1)dxdy
1 1 ,此时极限为 8 8
(4 分)
由于 ( x, y) 沿不同路径趋于 (0,0) 时 f ( x, y ) 极限结果不一样,故 ( x, y) (0,0) 时
f ( x, y ) 的极限不存在。
2.
(1 分)
Q [ y 2 f ( xy) 1] xy 3 f ( xy) 1 f ( xy) 2 xyf ( xy) 2 x y y
1
6dv
(3 分)
6
2
3
(2 分) (2 分) (2 分)
3. P( x) cos x, Q( x) e sin x , P( x)dx sin x
2005-2006高数下(8学分)期末试题A及解答
华东理工大学2005-2006学年高等数学下(8学分)期末考试试卷A 2006.6一. 填空题(每小题4分, 共36分) 1.一阶微分方程0)21(22=-+'y x y x 的通解是y =____________.2.微分方程052=+'+''y y y 满足初始条件3)0(,1)0(='=y y 的特解为y =___________.3.已知ABC ∆的三个顶点为)2,3,4(),4,3,2(),1,1,1(C B A =, 则ABC ∆的面积S =_______.4.已知)0,2,2(),1,,0(-=ππB A , 则函数)sin(2yz e u x =在点A 处沿方向B A方向 导数A lu |∂∂=_______.5.空间曲线)(),(z g y y f x ==(其中g f ,是可微函数)上对应于0z z =点的切线方程是_____________________6.设函数)(⋅f 具有二阶连续导数, ),(⋅⋅g 具有二阶连续偏导数, ),()(z xyz g z xy f u ++=,则zx u ∂∂∂2=_____________.7.二次积分dy e dx xy ⎰⎰-2222的值等于______________.8.某公司生产产品A , 当生产到第x 个单位的边际成本是34)(+='x x c (万元/单位), 其固定成本是100万元, 则生产量为10单位时的平均成本等于_______(万元/单位). 9.设22224|),,{(y x z y x z y x --≤≤+=Ω, 则Ω的体积V =________. 10.函数)1ln(),,(2z x ye z y x f z ++=在点)0,1,1(P 处的梯度)(P gradf ________.二. 选择题(每小题4分, 共32分)1. 微分方程1+=-''x e y y 的一个特解应具有形式(式中b a ,为常数), ( ) (A)b ae x +; (B)b axe x +; (C)bx ae x +; (D)bx axe x +.2.函数),(y x f y =在点),(00y x 处具有偏导数),(00y x f x , ),(00y x f y 是该函数在点),(00y x 可微的()(A)充要条件; (B)必要条件; (C)充分条件; (D)既非充分条件也非必要条件.3.已知非零向量b a,满足||||b a b a +=-,则必成立的是 ( )(A)b a b a +=-; (B)b a =; (C)0=⨯b a ; (D)0=⋅b a.4.下列广义积分中收敛的是( ) (A)dx xx e⎰1ln 1; (B)dx xx e⎰+∞ln 1; (C)dxxx e⎰+∞ln 1; (D)dxxx e⎰12ln 1.5*.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在)0,0(点处( )(A)连续且偏导数存在; (B)连续, 偏导数不存在;(C)不连续, 偏导数存在; (D)不连续, 偏导数不存在三. (本题8分) 设函数yz e x u =, 而)(x z z =与)(y z z =分别是由方程1=-xz e z 与2sin =-y z e z所确定,计算yux u ∂∂∂∂,. 四. (本题6分)曲线过点)1,1(, 其上任一点与原点的距离平方等于该点横坐标与该点的法线在x 轴上截距的乘积的两倍, 求曲线方程.五. (本题6分) 计算数列极限2)1tan511(lim 2nn nn-+∞→.六. (本题8分)在曲面1:=++∑z y x 上作一切平面, 使它与三个坐标面所围成的四面体体积最大, 求切平面方程.七、(本题8分)设1D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,2D 是由抛物线22x y =和直线a x y ==,0所围成的平面区域, 其中20<<a .(1)求1D 绕x 轴旋转而生成的旋转体体积)(1a V , 求2D 绕x 轴旋转而生成的旋转体体积)(1a V ; (2)当a 取何值时, )()(21a V a V +取得最大值? 并求此最大值. 八、设函数)(x f 在]1,0[上连续, 2)(1=⎰dx x f , 证明:3)(1)(11)(≥⋅⎰⎰dx x f dx ex f x f .华东理工大学2005-2006学年第二学期《高等数学(下)》课程期终考试试卷参考答案与评分标准一.填空题(每小题4分,共40分)1.cx x +-2||ln 1 2.)2si n (cos x x e y x +=- 3. 62 4.32π+5.1)()()()]([)]([000000z z z g z g y z g z g f z g f x -='-='⋅'- 6. 22321221g zx g zy g zf y -+-''7. 41--e 8. 33 9.二.选择题(每小题4分,共32分):5.C;A ; 4.D; 3.;B 2.;1.B三.xz xyeexu yzyz∂∂+=∂∂,yz xyexze yu yzyz∂∂+=∂∂而xe z xz z-=∂∂,ye z z yz zsin cos -=∂∂, ------------------------------------------------(2分xe xyzeex z zyzyz-+=∂∂, ------------------------------------------------(2分)ye xyzexzeyz zyzyzsin -+=∂∂, -----------------------------------------(2分)四.曲线在点),(y x 处的法线方程为: )(1x X y y Y -'-=-,令0=Y , 得曲线在x 轴上截距为: y y x X '+=,根据题意得: )(222y y x x y x '+=+或 x y xy y -=-'212, 1)1(=y , -------------( 2分)令2y z =,x z xdxdz -=-1 ------------(3分))())(()1()1(2c x x c dx ex ez y dxxdxx+-=+-==⎰⎰-⎰--, -------------------------------------(3分)由1)1(=y , 得2=c ,所求曲线为)2(2x x y -=或.222x y x =+ ----------------------------(1分)六.(本题8分)曲面∑在点),,(000z y x 处的切平面方程为:0)(1)(1)(1000000=-+-+-z z z y y y x x x , -------------------------------(2分),100=++z z y y x x ,截距分别为000,,z y x ,问题为求xyz V 61=在条件1000=++z y x 下的最大值, ---------(2分)令 )1(6100-+++=z y x xyz L λ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==+==+==+=010212102121,02121z y x L zzxy L yy xz L xx yz L zy yxλλλ, 解得: 91===z y x ,-----------------------------------------(3分)因为问题的最大值存在,故91===z y x 就是最大值点,此时截距为31000===z y x ,所求切平面为: 31=++z y x . --------------------------(1分)七、)32(54)2()(52221a dx x a V a-==⎰ππ, -------------------------(2分)422222)(a dx x x a V aππ=⋅=⎰, -------------------------(2分)设)()()(21a V a V a V +=, 令 0)1(4)(3=-='a a a V π, 得唯一驻点: 1=a , ----(2分)当10<<a 时, 0)(>'a V ; 当21<<a 时, 0)(<'a V ;故当1=a 时, )()()(21a V a V a V +=取到最大值π5129)1(=V . --------------------(2分) 八、dx x f dx e x f x f ⎰⎰⋅110)()(1)(dy y f dx ex f x f ⎰⎰⋅=11)()(1)(⎰⎰=Dx f dxdy ey f x f )()()(,其中}10,10|),{(≤≤≤≤=y x y x D , --------------------(2)又dx x f dy ey f y f ⎰⎰⋅=11)()(1)(⎰⎰=Dy f dxdy ex f y f )()()(,所以dx x f dx ex f x f ⎰⎰⋅11)()(1)(⎰⎰+=Dy f x f dxdy ex f y f ey f x f ])()()()([21)()(⎰⎰+≥Dy f x f dxdye)]()([21--------------------(2)⎰⎰++≥Ddxdy y f x f ]2)()(1[3)(21)(2111111=++≥⎰⎰⎰⎰dy y f dx dy dx x f . ----------(2)填空题解答:1. 0)21(22=-+'y x y x , 是可分离变量微分方程,分离变量得: dx xx dy y )12(2-=, 积分得: c x x y--=-||ln 12,化简为:cx x +-2||ln 1.2. 特征方程: 0522=++λλ, 解得: i 212542222,1±-=⨯-±-=λ,故通解为: )2si n (co s x x e y x +=-. 3.|}1,2,3{}3,2,1{|21||21⨯=⨯=AB AC S 6216641621|}4,8,4{|21=++=--=.4.}1,2,2{--=B A , 32cos =α,32cos -=β, 31cos -=γ ,0|)sin(2|2==∂∂A xA exy x xu ,1|)cos(|2-==∂∂A xA eyz z yu ,π-==∂∂A xeyz y zu |)cos(2,γβαcos |cos |cos |A A A zu yu xu lu ∂∂+∂∂+∂∂=∂∂=323132)1(320ππ+=-⨯+-⨯-+⨯.。
高数试题A卷试题及答案
4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)
内曲线弧y=f(x)为 ( )
①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧
5.设F'(x) = G'(x),则 ( )
① F(X)+G(X) 为常数
dp
② 设y'=p,则 y"= ───
dy
dp
③ 设y'=p,则 y"=p───
3.下列说法正确的是 ( )
①若f( X )在 X=Xo连续, 则f( X )在X=Xo可导
②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续
③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在
④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导
_______
R √R2-x2
8.累次积分∫ dx ∫ f(X2 + Y2 )dy 化为极坐标下的累次积分为
____________。
0 0
n=1 n=1000
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的( )内,
1~10每小题1分,11~20每小题2分,共30分)
(一)每小题1分,共10分
1
高数试题 A卷
一、填空题(每小题1分,共10分)
________ 1
1.函数y=arcsin√1-x2 + ────── 的定义域为
_________
3
xy
17.lim xysin ───── = ( )
x→0 x2+y2
高数(下)试题1及解答
一.计算下列各题:1. [7分] 计算∑⎰⎰∑其中,zdS x 是x 2+y 2=1介于z=0,z=1之间部分.2.[7分]利用函数x-11麦克劳林公式逐项微分求级数∑∞=-112n n n 的和3. [7分] 判别级数∑∞=++111n nn是否收敛?若收敛求其和。
4.[7分] 计算I zdv Ω=⎰⎰⎰,其中Ω是由曲面zyx222=+及平面2=z 所围成的区域。
5.[7分]求微分方程 (1-x)y ”=1的通解 二、[13分]在椭圆14222=+yx的第一象限部分上求一点,使过该点的切线,椭圆及坐标轴在第一卦限围成的图形的面积最小三.[11分]:设L 是⎪⎩⎪⎨⎧==te y t e x ttsin cos ππ从t=0至t=π 所对应的一段曲线计算:曲线积分⎰L (πx-y)dx+(x+πy)dy四.[11分]:求微分方程xdy+2y(lny-lnx)dx=0的通解 五.[13分] 求微分方程y ”-y ’-2y= 0通解六.[10分]:设级数∑∞=+-=12211)()(n nn n n xx x S x U 的部分和试求U n (x)及和函数S(x).七.[7分]设区域D 是由直线y=x 和曲线y=x 3围成,f(x,y)是D 上的连续函数,试写出⎰⎰Ddxdy y x f ),(直角坐标系下两种次序的二次积分。
一.计算下列各题:1.[7分] 计算∑⎰⎰∑其中,zdS x 是x 2+y 2=1介于z=0,z=1之间部分.解:∑1记前半柱面介于z=1,z=2之间部分其在yoz 面投影D 为: 由对称性I=zdSx ⎰⎰∑2=zdxdy⎰⎰∑2=22.[7分] 利用函数x-11麦克劳林公式逐项微分求级数∑∞=-112n n n 的和解:211)1(1x nxn n -=∑∞=- 级数∑∞=-112n n n =43. [7分] 判别级数∑∞=++111n nn是否收敛?若收敛求其和。
答案:发散4.[7分] 计算.⎰⎰⎰Ω=zdv I ,其中Ω是由曲面z yx 222=+及平面2=z 所围成的区域。
05-06(2)高数A(A)
第1页(共3页)潍坊学院2005-2006学年第二学期期末考试《高等数学A 》(下)试卷(A 卷)适用专业年级:05级物理、计算机、机电、信控、现教、化工等专业一、填空题(共36分,每小题3分)1. 已知k j k i3,3+=+=,则OAB ∆的面积是 。
2.过点(2,0,3)A - ,(1,1,3)B - 的直线方程是。
3.曲线⎩⎨⎧==02z x y 绕y 轴旋转一周所成的旋转曲面方程为 。
4.设xye xy z +=3,则dz = 。
5.二元函数225y x z --=的极大值点是 。
6.交换积分序⎰⎰⎰⎰-+2220211),(x x dy y x f dx dy f(x,y)dx =7.三重积分⎰⎰⎰≤++1222),,(z y x dv z y x f 表示成球面坐标下的三次积分为 8.若曲线L 是抛物线2x y =上点)0,0(O 与点)1,1(B 之间的一段弧,L 上任意点),(y x 处的线密度是y (g/cm ),则L 的总质量是 (g)。
9.在函数x x f =)( ]),[(ππ-∈x 的傅立叶系数中=1b 。
10.级数=+∑+∞=1)1(1n n n 。
11.微分方程0)2()2(=+++dy y x dx y x 是否是全微分方程? 。
12.当p 满足条件 时级数∑+∞=-1)1(n pnn条件收敛。
二、解答题(共64分,除最后一小题4分外,其余每小题6分) 13.设022=-++xyz z y x ,求x z ∂∂及yz ∂∂14.求曲线2,1,1t z tt y t t x =+=+=在对应于1=t 的点处的切线及法平面方程。
此线第2页(共3页)15.求函数xy z = 在适合附加条件1=+y x 下的极值。
16.计算 ⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限内的闭区域。
17.计算三重积分⎰⎰⎰Ωzdv ,其中Ω是由曲面222y x z --=及22y x z +=所围成的闭区域。
高数a第二章习题答案
高数A (一)习题答案习题2-1 (A)1.63. 4. (1) ;)(0x f ' (2) ;)(0x f '- (3) ;)0(f ' (4) .)(20x f '5. (1);54x (2);3231-x (3) ;3.231.x (4) 32--x ; (5) 2527x ; (6) 1013x 103--.6. (1) 19.6 米; 19.6 米/秒 .7. 切线方程 ,0632=--+πy x法线方程 .03232=-+-πy x 8.(2,4).9. (1)在0=x 连续且可导; (2)在0=x 连续且可导. 10. ;0)0(='+f ;-1)0(='-f )(x f 在点0=x 处不可导.习题2-1 (B)4.e1. 7. 0)0(='f .习题2-2 (A)1.(1) 33464xx x --; (2) 21232121----x x ; (3) x x sin 5cos 3+;(4) x x x x x x tan sec cos sin 22++; (5) 1ln +x ; (6)x x x x x22csc sec tan 21-+; (7) 2ln log 22xx x +; (8) b a x --2; (9)2)cos 1(1sin cos x x x +++;(10)2sin cos x xx x -; (11)2ln 1xx- (12)3)2(xe x x-; (13) x x x x x x x x sin ln cos cos ln 22⋅⋅-+⋅⋅;(14) x x cos 2;2. (1) 218332ππ-; (2) )42(22π-; (3) 181-;(4) 1517)2(,253)0(='='f f . 3. 3t 2t ==或.4. 切线方程 x y 2=,法线方程 x y 21-=.5. (1) 410; (2) 0 ; (3) 410- .13.(1)4)32(10+x ; (2) )31(cos 3x --; (3)212x x+; (4) a a e xxln +; (5)22)110(ln10102e 2+⋅+-x x x x x ; (6) 4x12-x ; (7) 222sin x a x x ---; (8) )(sec 3322x x ;(9) x2x ee +1; (10) a x x x 2ln )1(12+++. 14.(1) 322)41(38-+x x ; (2) )2(cos 2ln 2x x ⋅(3) x e x e xx 3sec 33tan 21222--+-; (4) 122-x x x ;(5)x xarctan 122+; (6)xxx-33sin 3ln 3cos 3;(7)221xx -; (8)22xa +1;(9) sec x ; (10) csc x .15.(1) )(cos 22cos 22x x x-; (2) csc x ; (3)2ln 22)1(22arctanx xx x x e ++; (4))(ln ln ln 1x x x ;(5)22)arccos (12x x x-; (6) -2sec2x .16.(1) cosh(cosh x )sinh x (2))(ln cosh 12x x ; (3) (3sinh x +2)sinh x cosh x (4) ⎪⎭⎫ ⎝⎛+a x a 1x e x cosh 2sinh 22cosh ; (5) )1(cosh 222x x --; (6) 22224++x x x;(7)1242-x x e e ; (8) x 3tanh .17. (1))32(2x x +; (2) )3sin 93cos 7(x x e x --;(3) 2ln 2cos 2sin 2ln 2sin xxxx +; (4)222)arcsin (1arcsin 1x x x -x x --;(5)1ln 1+-n x x n ; (6) 3xx arctan 962+;(7) x cosh 12; (8) 222arctan2x)()4x 1()4x 1(2arctan2x )4x 1(4++-+.习题2-2 (B)1. (1)22)1(2x x-; (2) 23323)2()321()(-)2()211(x x-x-x x x x-x++;(3) )cos (cos )cos sin ()cos (sin )sin (sin αx x αx x x x x α++++-;(4) 23)cos 1(sin 2sin )cos 1(x xx x +++; (5) 22)tan (sec 2-tan 2x x x x x +;(6) )sec 2()ln 2(cos )tan (cos 1)tan ()ln 2(sinx 222x x x x x x x xx x x +-++-+--;(7) )49283(224+-x x x ; (8))ln (1x x 2-+.2.2)()(d xx g x g x dx y -'=. 3. 切线方程:022=--y x 和 022=+-y x .6. (1) 400英尺;(2) v(2) = 96英尺/秒 ; v(8) = - 96英尺/秒 ; (3) 10秒 7. (1) )()(e ()()(x x x f x f x e f x f e )e f e '+'; (2) )()]([x f x f f '';(3) x x f x x f )sin2(cos )sin2(sin 22'-'; (4) )(n n 1n b ax f x a -+'. 8. (1))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'-'=. (2))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'+'=. 9. x21)(='x f ; 21)21(='f .10. x xx f 121)(3---='. 12. (1) 211x +; (2)xx x xxx +++++2)21(1211; (3) 242x -;(4) xx x 2455ln 212⋅++; (5) a b a b x b b a a x a b xa b ln 11⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-;(6) ()2111ln ln a aa x axa xa a x a a x a a +-+-++; (7) 222-1)(1)-(12xx x +;(8) x e x x 1sin 222sin-; (9) 3/22)(1arcsin x x x -; (10) xx x x 21254e11ln55151++--. 13. )1(sin )1(sin 1cos 22x f x f x x'-. 14.)(22x xcos dx y d =; )()(22x cos x d y d =; )(32)(23x cos x x d y d =. 15. )2arcsin()]([x x f ='ϕ; 411)]([xx f -='ϕ; 412])]([[xx x f -='ϕ.16.1sin cos 222+πππe e e .17.)()1(2x 2x xe sin x xe dx yd +=. 18. 2e .习题2-3 (A)1. (1) 214x-; (2) x e 214-; (3) x x x sin cos 2-; (4) x exsin 22-; (5) 2/3222)(x a a --; (6) 232)1(/x x +-; (7) )23(222x xe x +; (8) 3)22(xx x e 2x +--; (9) x x tan sec 22; (10) 212tan 2xxx arc ++.习题2-3 (B)1. (1) n! (2) 1)1(!2)1(+--n nx n (3) )2(!)2()1(1≥---n xn n n ;(4) ]2)1(2[21π-+n x sin -n ; (5) )(n x e x +;(6) ])1(1)2(1[!)1(11++----n n n x x n ; (7) ])(1)()1([!)1(1nn n nbx a bx a b n -++---; (8) n m x n mm m m -++---1)1()11()21()11(1 ;(9) ]22[2π⋅+-n x cos n(10) 11)21(!2+--n n x n 2. (1) x cos e y x 4)4(-=; (2) x cosh xsinhx y 100)100(+=; (3) )2sin 212252cos 502sin (2250)0(x x x x x y 5++-=; 3. (1) )()(222x f 4x x f 2''+'; (2) 22x f x f x f x f )]([)]([)()('-''. 5. 21+=x y , 3x y )2(2+=''. 7. 0=+y dt yd 22.8. 0=+y dt yd 22.习题2-4 (A)1.(1) x y y -; (2) ax y x ay 22--; (3) yy xe e +-1; (4) y x y x e x y e ++-- (5) )(1)(11xy cos x yxy cos y x +-+ (6) )(1)(2222y x f 2y y x f 2x +'-+'. 3. 切线方程:022=-+a y x ; 法线方程:0=-y x .4. (1) ]1)1([)1(222x2xsinxx cos ln cosx x sinx +++⋅+; (2) ]2222[)(2x cot x sec cosx x tan ln sinx tanx cosx ⋅⋅+⋅-;(3) ]163112[)1(3)1(232x xx x x x x 2++--++-+; (4)])(251121[2)1(3122x x x x x x x 35-+++-+; (5) ])1(21[121xx xe e cotx x e sinx x --+-; (6) )1()1()(1lnx x lnxlnlnx lnx 2x x-++-;(7) )1(1+++-lnx x ln x x x ππππ;(8) ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x a b b a ln a x x b b a ba x .5. (1)t 2a 3b dx y d =; (2) t cos 2cos2tdx y d =; (3)ϕtan dxy d -=; (4) θθθθθθcos -sin -sin -cos dx y d 1=. 6. (1) 切线方程:042=-+y x ; 法线方程:032=-+y x . (2) 切线方程:01234=-+a y x ; 法线方程:0643=+-a y x .习题2-4 (B)1. (1) )()()()()()()(x ln x x ln x x ln x x 2ϕϕψϕϕψψ'-';(2) )()()()()()()()()(x x x ln x x x x x 2x ψϕψψϕϕψψϕ'-'. 2. ye e x y d dx yx y x --=++.3. (1) θθa sec dx y d 222=; (2) )(1t f dxy d 22''=;(3) )1(2222t t 6dyx d +=; (4) )1(832533t t dx y d +-=;(5) 343381tt dx y d -=; 4.4π. 5. 2e .6. 0 .8. (1) a (1)= - 6 (m/s 2) ; a (3)= 6 (m/s 2 ). (2) |v(2)| = 3 (m/s) ;9. 144π (m 2/s)10. 20402516.π≈(m/min). 11.640225144.π=(cm/min).12. 70 英里/小时. 习题2-5 (A)2. (a ) 0dy y 0dy 0y >->>∆∆,,;(b ) 0dy y 0dy 0y <->>∆∆,,; (c ) 0dy y 0dy 0y <-<<∆∆,,; (d ) 0dy y 0dy 0y >-<<∆∆,,.3. (1) dx x x)12(3+-; (2) dx x x x )2cos 22(sin +; (3) dx e x x 2x )1(2+; (4)dx xx412+-; (5) dx x x e x )]cos(3)[sin(3----; (6) dx x x x )21(sec )21(tan 8223++;(7)dx x xx 222)]1([ln 16---; (8)dx x x x xxx +++++2)211(211.4. (1)dx xy x +--182; (2) dx y x csc )(2+-; 5. (1) C x +2; (2) C x +223; (3) C t sin +; (4) C t cos 1+-ωω;(5) C x ++)(1ln ; (6) C e x +--221; (7) C x +2; (8) C x +3tan 31.习题2-5 (B)1. h R 0π2.2. 7683,4,0010,.V l .r l r V 2='===∆π, 0037680.dV V =≈∆; 用铜约为033550.(克).3. 0021021603.π-≈-. 4. 050.T =∆(秒),设摆长约需加长 d l , d l 2292140050..≈⨯=π(厘米) .5. R 约增加了43.63 cm 2, 扇形面积约增加了 104.72 cm 2 .6. (1) 0. 87476 ; (2) - 0. 96509 .7. (1) 7430''o ; (2) 260'o .8. (3) 01309054tan .≈'; 0020)0021(ln ..≈.9. (1) 9.9867; (2) 2.0052 .总复习题二一、1. B 2. D 3. A 4. A 5. D 二、1. 充分; 必要; 充要.2. t 2e t t f =)(, t 2e 2t t f )1()(+='.3.1)1='-0(x f . 4. 1+=x y . 5. b. 6. [10, 20] .三、1. 212xx y +='.2. (1))]}([)]([)]([)({)]([)(2222222222x f sin x f x f cos x f x 4x f cos x f dx yd 2'-''+'=;(2) )(4)(2)()(2)]([2222222x f x x f x f x f x f dxyd ''+'+''+'=.3.xx ydx y d ln 2-=. 4. 32222)1ln ()1ln ()1ln (++-+=y xy x x y y dx y d . 5. 322)1(f f dx y d '-''=. 6. ⎪⎩⎪⎨⎧>-<≤<='1,110,20,3)(2x x x x x x f7. (1)⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0,21)0(0,)1()()()(2x g x x e x x g x g x x f x;(2) )(x f ' 在 ),(∞+-∞上是连续函数。
浙江理工大学07~08高数A2期末试卷(含答案)
浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。
L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。
(A) 20, (B) 30, (C) 35, (D) 40。
5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。
(A) a , (B) a1, (C)ba , (D)ba1。
6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。
南林高数a2期末试题及答案
南林高数a2期末试题及答案一、选择题(每题4分,共20分)1. 若函数f(x) = x^2 + 3x + 2,则f'(x)等于()。
A. 2x + 3B. 2x + 6C. x^2 + 3D. x^2 + 3x答案:A2. 极限lim(x→0) (sin(x)/x)的值为()。
A. 0B. 1C. -1D. ∞答案:B3. 设函数f(x) = e^x,g(x) = ln(x),则f(g(x))等于()。
A. e^(ln(x))B. ln(e^x)C. xD. e^x * ln(x)答案:A4. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率为()。
A. 0B. 3C. -2D. 1答案:B5. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a3的值。
A. 5B. 9C. 17D. 33答案:C二、填空题(每题4分,共20分)6. 若函数f(x) = x^3 - 6x^2 + 11x - 6,则f'(x) = ________。
答案:3x^2 - 12x + 117. 设函数f(x) = sin(x) + cos(x),则f'(x) = ________。
答案:cos(x) - sin(x)8. 若数列{an}是等比数列,且a1 = 2,q = 3,则a5 = ________。
答案:4869. 设函数f(x) = ln(x),则f'(x) = ________。
答案:1/x10. 曲线y = x^2 + 4x + 4在x = 2处的切线方程为y = ________。
答案:8x三、解答题(每题10分,共60分)11. 求函数f(x) = x^3 - 3x^2 + 2x + 1的极值点。
答案:首先求导数f'(x) = 3x^2 - 6x + 2,令f'(x) = 0,解得x =1/3 或 x = 2。
检查二阶导数f''(x) = 6x - 6,当x = 1/3时,f''(x) < 0,此时为极大值点;当x = 2时,f''(x) > 0,此时为极小值点。
(完整版)大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号姓名成绩大题一二三四五六七小题12345得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.a b0a b += 2a = 2b = a b ⋅= 2、设,则.ln()z x xy =32zx y ∂=∂∂3、曲面在点处的切平面方程为.229x y z ++=(1,2,4)4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数()f x 2π[,)ππ-()f x x =()f x 在处收敛于,在处收敛于.3x =x π=5、设为连接与两点的直线段,则.L (1,0)(0,1)()Lx y ds +=⎰※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2222222393x y z z x y⎧++=⎪⎨=+⎪⎩0M (1,1,2)-2、求由曲面及所围成的立体体积.2222z x y =+226z x y =--3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?11(1)lnn n n n∞=+-∑4、设,其中具有二阶连续偏导数,求.(,sin x z f xy y y =+f 2,z zx x y∂∂∂∂∂5、计算曲面积分其中是球面被平面截出的顶部.,dSz ∑⎰⎰∑2222x y z a ++=(0)z h h a =<<三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小22z x y =+1x y z ++=值.四、(本题满分10分)计算曲线积分,(sin )(cos )x x Le y m dx e y mx dy -+-⎰其中为常数,为由点至原点的上半圆周.m L (,0)A a (0,0)O 22(0)x y ax a +=>五、(本题满分10分)求幂级数的收敛域及和函数.13nn n x n∞=⋅∑六、(本题满分10分)计算曲面积分,332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰其中为曲面的上侧.∑221(0)z x y z =--≥七、(本题满分6分)设为连续函数,,,其中是由曲面()f x (0)f a =222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰t Ω与所围成的闭区域,求 .z =z =30()lim t F t t+→-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;→→不得带走试卷。
高等数学下考试题库(附答案)
《高等数学》试卷1(下)(一)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xex C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB.1≥rC.1<rD.1≤r8.幂级数()nn x n ∑∞=+01的收敛域为( ). A.[]1,1- B.[)1,1- C.(]1,1- D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. 《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22,22 B 、,2222- C 、22-22- D 、22-,22 5、设x2+y2+z2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R2AB 、2R2AC 、3R2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分) 1、直线L1:x=y=z 与直线L2:的夹角为z y x =-+=-1321___________。
高数下册期末a卷考试题及答案
高数下册期末a卷考试题及答案一、选择题(每题5分,共30分)1. 以下哪个函数不是周期函数?A. \( \sin(x) \)B. \( \cos(x) \)C. \( e^x \)D. \( \tan(x) \)答案:C2. 函数 \( f(x) = x^2 \) 在 \( x=1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C3. 以下哪个选项是 \( \int_0^1 x^2 dx \) 的正确计算结果?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A4. 以下哪个选项是 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值?A. 0B. 1C. 2D. 3答案:B5. 以下哪个选项是 \( \int \frac{1}{x} dx \) 的原函数?A. \( \ln|x| + C \)B. \( x + C \)C. \( e^x + C \)D. \( \sin x + C \)答案:A6. 以下哪个选项是 \( \int e^x \cos x \, dx \) 的正确积分结果?A. \( \frac{1}{2} e^x (\cos x + \sin x) + C \)B. \( \frac{1}{2} e^x (\cos x - \sin x) + C \)C. \( \frac{1}{2} e^x (\cos x + \sin x) - C \)D. \( \frac{1}{2} e^x (\cos x - \sin x) - C \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \ln(x) \) 的定义域是 \( ______ \)。
答案:\( (0, +\infty) \)2. 函数 \( f(x) = \sqrt{x} \) 的导数是 \( ______ \)。
高数A2试卷A
《高等数学》考试试卷A一、单项选择题(每小题3分,共15分)1.幂级数1(1)3nnn x ∞=-∑的收敛域为( ); A (2,4]- B [2,4)- C (2,4)- D [2,4]-2.极限2(,)(0,2)1cos()limx y xy x y →-=( );A 0 B12C 1D 2 3.设322(,)(0,0)(,)0(,)(0,0)y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩,则(0,0)y f '=( );A 3B 1C 0D 不存在 4.直线321021030x y z x y z +++=⎧⎨--+=⎩ 与平面4220x y z -+-=的位置关系是( );A 与平面斜交B 平行C 在平面上D 垂直5.设L 是曲线31y x =+上点(0,1)A 到点(1,4)B 的一段弧,则Lxyds =⎰( ).B 92二、填空题(每小题3分,共15分)1.动点(,,)M x y z 到平面yOz 的距离与到(1,2,1)-的距离相等,则该动点(,,)M x y z 的轨迹方程为 ;2. 设2sin()z x y =,则2zx y∂=∂∂ ; 3. 改变二次积分的积分次序2220(,)y y dy f x y dx =⎰⎰;4. 已知级数1nn aa ∞==∑,则级数11()n n n a a ∞+=+=∑ ;5. 设∑是锥面z =及平面1z =所围成的区域的整个边界曲面,则曲面积分22()x y dS ∑+=⎰⎰ .三、计算与解答题(每小题8分,共64分)1、计算Dxydxdy ⎰⎰,其中D 是由2y x =,0y =,2x =所围成的闭区域.2、设(,)xz f x y y=+,且f 具有二阶连续偏导数,求2z x y ∂∂∂.3、求过点(1,1,1)且平行于向量(1,1,2)a =-和(1,2,3)β=-的平面的方程.4、求过点(0,1,2)且与平面3410x y z -+=垂直相交的直线方程.5、计算22Lxydx x dy +⎰,其中L 是22y x =+上从点(0,2)A 到点(2,6)B 的一段弧.6、将给定的正数a 分为三个正数之和,问这三个数各为多少时,它们的乘积最大?7、计算zdxdydz Ω⎰⎰⎰,其中Ω是由曲面22z xy =+及平面4z =所围成的闭区域.8、求幂级数211n n nx∞-=∑的和函数.四、证明题(6分)已知lim 1n n u →∞=,证明级数 1111n n+n ()u u ∞=-∑收敛.。
海南大学高数A下试卷及答案
海南大学高数A下试卷及答案试卷题目一:函数的极限1.计算下列极限:(a)$\\lim_{x\\to0}\\frac{\\sin x}{x}$(b)$\\lim_{x\\to\\infty}\\left(1+\\frac{1}{x}\\right)^x$(c)$\\lim_{x\\to\\infty} \\frac{x+2}{x+3}$2.求函数$f(x)=\\frac{x^2+x-2}{x-1}$的极限,并说明极限存在的条件。
题目二:导数与微分1.求函数$f(x)=\\sqrt{x+1}$的导数。
2.求曲线y=y y在y=0处的切线方程。
题目三:积分1.计算定积分$\\int_{0}^{1}(3x^2-2x+1)dx$。
2.求曲线y=y2与y轴所围成的面积。
题目四:级数1.讨论级数$\\sum_{n=1}^{\\infty}\\frac{1}{n^2}$的敛散性。
2.求级数$\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n}$的和。
答案题目一:函数的极限(a)使用夹逼定理可知,$\\lim_{x\\to0}\\frac{\\sin x}{x}=1$(b)根据自然对数的性质,$\\lim_{x\\to\\infty}\\left(1+\\frac{1}{x}\\right)^x=e$(c)当$x\\to\\infty$时,$\\frac{x+2}{x+3}\\to1$1.当y yy1时,根据因式分解,$f(x)=\\frac{x^2+x-2}{x-1}=(x+2)$。
当y=1时,y(1)不存在。
所以存在极限的条件是y yy1。
题目二:导数与微分1.根据求导法则,$f'(x)=\\frac{1}{2\\sqrt{x+1}}$2.在y=0处,y=y y的斜率为1,所以切线方程为$y=1\\cdot x= x$题目三:积分1.根据积分的基本公式,$\\int_{0}^{1}(3x^2-2x+1)dx=\\left[x^3-x^2+x\\right]_{0}^{1}=1$2.曲线y=y2与y轴所围成的面积为$\\int_{0}^{1}x^2dx=\\left[\\frac{x^3}{3}\\right]_{0}^{1} =\\frac{1}{3}$题目四:级数1.根据比较判别法,级数$\\sum_{n=1}^{\\infty}\\frac{1}{n^2}$收敛,因为$\\frac{1}{n^2}$与y-级数$\\frac{1}{n^p}$(其中y>1)同阶,且y=2>1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学A (下) 课程考试试题参考解答一、单项选择题(满分15分,每小题3分,共5道小题), 请将合适选项填在括号内.1. 函数3yz x e =-的全微分dz =【 C 】.(A) 22yx dx e dy -; (B) 23yx dx e dy +;(C) 23y x dx e dy -; (D) 23y e dx x dy -.2. 球面2221x y z ++=在点P 处的切平面方程是【 D 】. (A)0x y -=; (B)0x y ++=; (C)0x y -=; (D)0x y +=.3. 设区域{}2(,)11, 1.D x y x x y =-≤≤≤≤,二重积分()2cos Dx xxy dxdy +=⎰⎰【 B 】. (A) 1-; (B) 0; (C) 1; (D)12. 4.级数nn ∞= A 】.(A) 条件收敛; (B) 绝对收敛; (C) 发散; (D) 其它选项都不对.5. 曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点)5,4,2(处的切线对于x 轴的倾角为【 C 】. (A) 3π; (B) 3π-;(C) 4π; (D) 4π-.二、填空题 ( 满分15分,每小题3分,共5道小题 ),请将答案填在横线上.1. dx xy dy I y⎰⎰=551ln 1= 4 . 2. 设L 是圆周222R y x =+,曲线积分()22Lxy ds +⎰= 32R π .3. 设⎪⎩⎪⎨⎧≤<≤≤=πππx x x f 20201)(可以展开为正弦级数,此正弦级数在4x π=处收敛于 1 . 解 由于4π=x 是)(x f 的连续点,则)(x f 的正弦级数在4π=x 收敛于1)4(=πf .4. 微分方程20y y y '''-+=的通解为 12()xy c c x e =+ .5. 函数33(,,)3f x y z z xyz y =-+在点(1,2,3)处的梯度为 (18,3,21)- .三.(满分10分)设()22,ln 2z f xy x y =+,求zx∂∂和2z x y ∂∂∂(其中f 具有二阶连续偏导数).解2122zf y f xy x∂''=+∂ 2zx y∂∂∂33221211221222225yf xf xy f x yf x y f ''''''''=++++ 四. (满分10分)计算曲线积分22Lxy dy x ydx -⎰,其中L 为圆周222a y x =+的正向.解22,xy Q y x P =-=,22,y xQ x y P =∂∂-=∂∂,由格林公式,得 ydx x dy xy L22-⎰=222x y a Q P dxdy x y +≤⎛⎫∂∂- ⎪∂∂⎝⎭⎰⎰ ()22222x y a xy dxdy +≤=+⎰⎰24320a dr r d aπθπ==⎰⎰.五.(满分10分)试将函数()2x t f x e dt =⎰展成x 的幂级数,(要求写出该幂级数的一般项并指出其收敛域)。
解:因为 ∑∞==0!n ntn t e ()+∞<<∞-t则∑∞==02!2n nt n t e ()+∞<<∞-t ,将上式两端逐项积分,得()⎰∑⎰⎪⎪⎭⎫⎝⎛==∞=xn n x t dt n t dt e x f 0020!2∑⎰∞==002!n xndt n t()∑∞=++=012!12n n n n x ()+∞<<∞-x六.(满分12分)计算曲面积分323232222()()()x z dydz y x dzdx z y dxdyI x y z∑+++++=++⎰⎰, 其中∑是上半球面221y x z --=的上侧.解 添加辅助曲面*∑:0=z 取下侧,使*,∑∑构成封闭曲面,记所围成的空间闭区域为Ω,由高斯公式, 得,323232()()()I x z dydz y x dzdx z y dxdy ∑=+++++⎰⎰()()()323232*P Q R x z dydz y x dzdx z y dxdy dxdydz x y z Ω∑+∑⎛⎫∂∂∂+++++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰()⎰⎰⎰Ω++=dxdydz z y x 2223πϕϕθππ56sin 31042020==⎰⎰⎰dr r d d ,()()()3232322**xz dydz y x dzdx z y dxdy y dxdy ∑∑+++++=⎰⎰⎰⎰21232001sin 4D xyy dxdy d d πθρθρπ=-=-=-⎰⎰⎰⎰()()()()()()323232323232**I xz dydz y x dzdx z y dxdyx z dydz y x dzdx z y dxdy∑+∑∑=+++++-+++++⎰⎰⎰⎰6129.5420πππ⎛⎫=--= ⎪⎝⎭ 七. (满分12分)设()y x 是一个连续函数,且满足0()cos 2()sin x y x x y t tdt =+⎰,求()y x 。
解 由已知条件得微分方程初值问题 sin 2sin 2(0)1y y x xy '-=-⎧⎨=⎩方程sin 2sin 2y y x x '-=-的通解是cos 44xy cecosx -=+-由初值条件(0)1y =得c e = 所以 1cos 44xy e cosx -=+-八. (满分10分)某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R (万元)与电台广告费用x (万元)及报纸广告费用y (万元)有如下关系: ()22,1514328210R x y x y xy x y =++---,(1)在广告费用不限的情况下,求最佳广告策略; (2)如果提供的广告费用为1.5万元,求相应的广告策略。
解 (1)设()()()22,,1513318210F x y R x y x y x y xy x y =-+=++---,(或()22(,),1514328210F x y R x y x y xy x y ==++---)令 13840,318200,F y x x F x y y ∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩ (或14840,328200,Fy x x F x y y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩)解得 3535,,,4444x y ⎛⎫== ⎪⎝⎭为(),F x y 唯一的驻点。
(或33,1,,122x y ⎛⎫== ⎪⎝⎭)35,39.2544F ⎛⎫= ⎪⎝⎭(万元)。
当电台广告费用与报纸广告费用分别为0.75万元和1.25万元时,最大利润为39.25(万元),此时为最佳广告策略。
(2)求广告费用为1.5万元的条件下的最佳广告策略,即为在条件 1.5x y +=下,(),F x y 的最大值。
令 (),G x y =(),F x y (),x y λϕ+()221513318210 1.5x y xy x y x y λ=++---++-,由 13840,318200,1.50,Gy x x Gx y yx y λλ∂⎧=--+=⎪∂⎪∂⎪=--+=⎨∂⎪⎪+-=⎪⎩解得, 0,1.5x y ==这是唯一的驻点,又由题意(),G x y 一定存在最大值,故()0,1.539F =(万元)为最大值。
九. (满分6分) 设()t f 在[)+∞,1内有连续二阶导数,1)1(,0)1(='=f f ,且二元函数 )()(2222y x f y x z ++= 满足 ,02222=∂∂+∂∂yzx z 求()t f .解 (1)设r =),()(r z r xx r r z x z '=∂∂'=∂∂ 2222321()().z x x z r z r x r r r ⎛⎫∂'''=-+ ⎪∂⎝⎭同理 2222321()().z y y z r z r y r r r⎛⎫∂'''=-+ ⎪∂⎝⎭ 代入方程有 .0)(1)(='+''r z rr z 又 ,0)1()1(==f z r r f r r rf r z 2)()(2)(222⋅'+=',于是 .1)1(,2)1(='='f z(2)解初值问题 ⎪⎩⎪⎨⎧='=='+''.2)1(,0)1(,0)(1)(z z r z rr z 这是可降阶的二阶线性变系数微分方程. 方程两边乘以r 并积分,利用初始条件得 ()0')(='r z r , .2)(='r z r 所以, .ln 2)(r r z =(3)由 r r f r r z ln 2)()(22== ⇒ .ln )(222rr r f =所以, .ln )(ttt f =。