重庆市南开中学九年级上册期末精选试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市南开中学九年级上册期末精选试卷检测题
一、初三数学一元二次方程易错题压轴题(难)
1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒
(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积
的7
9
,求t的值;
(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.
【答案】(1)t1=2,t2=4;(2)t 4
7
7
58.
【解析】
【分析】
(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD
的面积和是△ABC的面积的7
9
,列出方程、解方程即可解答;
(2)根据不同时间段分三种情况进行解答即可.【详解】
(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=1
2
×6×6=18,
∵AP=t,CP=6﹣t,
∴△PBC与△PAD的面积和=1
2t2+
1
2
×6×(6﹣t),
∵△PBC与△PAD的面积和是△ABC的面积的7
9
,
∴1
2t2+
1
2
×6×(6﹣t)=18×
7
9
,
解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,
①如图1,当0≤t≤2时,S=(2t)2﹣1
2
t2=
7
2
t2=8,
解得:t1=4
7
7
,t2=﹣
4
7
7
(不合题意,舍去),
②如图2,当2≤t≤3时,S=1
2
×6×6﹣
1
2
t2﹣
1
2
(6﹣2t)2=12t﹣
2
5
t2=8,
解得:t1=4(不合题意,舍去),t2=4
5
(不合题意,舍去),
③如图3,当3≤t≤6时,S=1
2
6×6﹣
1
2
t2=8,
解得:t1=25,t2=﹣25(不合题意,舍去),
综上,t的值为4
7
7或25时,重叠面积为8.
【点睛】
本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.
2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.
(1)求这两年藏书的年均增长率;
(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?
【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.
【解析】
【分析】
(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.
【详解】
解:(1)设这两年藏书的年均增长率是x,
()2
517.2x +=,
解得,10.2x =,2 2.2x =-(舍去),
答:这两年藏书的年均增长率是20%;
(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2
⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.
【点睛】
本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.
3.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.
小静同学解第一个方程x 2+2x ﹣8=0的步骤为:
“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.
(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)
【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .
【解析】
【分析】
(1)根据移项要变号,可判断;
(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.
【详解】
解:(1)小静的解法是从步骤⑤开始出现错误的,
故答案为⑤;
(2)x 2+2nx ﹣8n 2=0,
x 2+2nx=8n 2,
x 2+2nx+n 2=8n 2+n 2,
(x+n )2=9n 2,
x+n=±3n ,
x 1=2n ,x 2=﹣4n .
4.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息见下表: A 型销售数量(台)
B 型销售数量(台) 总利润(元) 5 10 2 000