重庆市南开中学九年级上册期末精选试卷检测题

合集下载

重庆市南开中学2023-2024学年九年级上学期期末考试物理试题(无答案)

重庆市南开中学2023-2024学年九年级上学期期末考试物理试题(无答案)

重庆市南开中学初2024届(九上)期末考试物理试题(本卷共四道大题满分80分考试时间:与化学共用120分钟)一、选择题(本题共8个小题,每小题只有一个合理的选项,请将你的答案涂在答题卡对应的选项上,每小题3分,共24分)1.下列说法正确的是( )A.家用冰箱正常工作时的电流约为10AB.教室里日光灯工作时电功率约为400WC.家庭电路中不能用铜丝或铁丝代替保险丝D.可以用湿手把电饭煲上的三脚插头拔下来2.在如图所示的生活现象中,关于物态变化及吸放热的分析都正确的是( )甲乙丙丁A.甲图:壶嘴冒白汽--液化放热B.乙图:湿衣服晒干--汽化放热C.丙图:樟脑丸消失--汽化吸热D.丁图:冰雪消融--熔化放热3.在下列光现象中,与“一道残阳铺水中,半江瑟瑟半江红”中“水中残阳”所蕴含的光学原理相同的是( )A.手影的形成B.镜子中的自己C.筷子“弯折”D.激光准直4.下列说法正确的是( )A.燃料未完全燃烧时,热值变小B.物体内能增加,一定是外界对物体做功C.冰熔化成水的过程中,温度不变,内能不变D.热传递时,热量总是从高温物体传向低温物体5.“尊老爱幼”系列活动中,小南帮助爷爷奶奶们播放广场舞音乐时,发现音响设备里有一个场声器,以下各图所反映的物理知识与扬声器工作原理相同的是( )A B CD6.小江同学设计了一个智能保险箱,该智能保险箱可以通过指纹独立开锁(闭合S1),也可通过两把钥匙同时操作开锁(闭合S2、S3),该智能锁还配有24小时常亮的指示灯。

图中能准确表示该智能保险箱电路的是( )7.如图所示,电源两端电压不变,不考虑小灯泡电阻受温度的影响,闭合开关S后,滑动变阻器的滑片P向b端滑动过程中,下列说法正确的是( )A.电压表V与电流表A1示数的比值变小B.电压表V与电流表A1示数的乘积不变C.电压表V与电流表A2示数的比值不变D.电流表A2的示数与电流表A1的差值变小8.如图,电源电压恒定不变,R1为定值电阻,电流表的量程为“0~0.6A”,电压表的量程为“0~15”,滑动变阻器R2上标有“160Ω0.5A”。

【物理】重庆市南开中学九年级上册期末精选试卷检测题

【物理】重庆市南开中学九年级上册期末精选试卷检测题

【物理】重庆市南开中学九年级上册期末精选试卷检测题一、初三物理电流和电路易错压轴题(难)1.某小组同学通过自学得知:在两种金属组成的回路中,如果使两个接触点的温度不同,便在回路中将会出现电流.为了验证和探究其中规律,该小组利用铁丝和铜丝两种导线组成图(a)所示的闭合回路,并将相连的两个交叉点A、B分别置于烧杯中和酒精灯上方.做了如图(a)、(b)、(c)、(d)所示的四次实验.请仔细观察图中的装置、操作和现象,归纳得出初步结论.(1)分析比较图中(a)(b)两图中的装置、操作和现象,归纳得出初步结论:当相互连接的两种金属丝的材料不变时,接触点之间的温度差越小,电路中的电流________.(2)分析比较图中(a)(c)两图[或(b)(d)两图],发现当相互连接的两种金属丝的材料相同,金属导线接触点之间的温度差也相同,且用酒精灯对金属导线中部进行加热时,闭合回路中的电流表示数________(选填“变大”、“不变”或“变小”).据此可得出初步结论:当相互连接的两种金属丝的材料相同,金属导线接触点之间的温度差也相同时,电路中的电流大小与金属导体中部温度高低________.【答案】越小不变无关【解析】【分析】【详解】(1)比较a、b两次实验可知,当相互连接的两种金属丝的材料不变时,(a)中冰水混合物与酒精灯火焰的温度差比较大,电流表示数大;(b)中开水与酒精灯火焰的温度差较小,电流表的示数小,故可得出的结论为:当相互连接的两种金属丝的材料不变时,接触点之间的温度差越小,电路中的电流越小;(2)分析比较图中(a)(c)两图(或(b)(d)两图),发现当相互连接的两种金属丝的材料相同,金属导线接触点之间的温度差也相同,且用酒精灯对金属导线中部和最长处进行加热时,闭合回路中的电流表示数相同,据此可得出初步结论:当相互连接的两种金属丝的材料相同,金属导线接触点之间的温度差也相同时,电路中的电流大小与金属导体中部温度高低无关.【点睛】根据图示判断两个接触点的温度差,然后比较实验中电流表的示数,并与已有的结论对比.2.实验室备有下列器材:A.待测定值电阻R x:阻值在49~52Ω之间B.滑动变阻器:最大阻值如图甲C.滑动变阻器:最大阻值如图乙D.定值电阻R0:阻值20ΩE.电压表V:测量范围0~3VF.电源E:电源电压恒为4.5VG.单刀双掷开关(双向开关)S及导线若干为了较精确地测出待测电阻R x的电阻,小明设计了图丙所示的电路.(1)在小明设计的电路中,滑动变阻器应选________(填器材前面的序号字母).(2)小明在实验中的主要操作步骤及记录的数据是:Ⅰ.将开关S掷向1,由________(填“a至b”或“b至a”)移动滑动变阻器的滑片P 至某一位置,读出V表的示数为2.5V;Ⅱ.保持滑动变阻器滑片P的位置不变,将开关S掷向2,读出V表的示数为1.5V.根据小明的测量数据可以得到待测电阻的阻值R x=________Ω.【答案】C b至a 50【解析】【分析】【详解】(1)根据串联电路的分压特点可知,若接最大阻值为20Ω的滑动变阻器时,根据串联电路电压与与电阻成正比的规律,电阻两端分得的电压最小为49Ω4.5 3.249Ω20ΩXXRU V VR R⨯≈++甲=>3V,即此滑动变阻器的最大阻值过小,故应选择最大阻值较大的C规格的滑动变阻器.(2)将开关S掷向1时,因开关闭合前,保护电路的滑动变阻器处于最大阻值的b,由b至a移动滑动变阻器的滑片P至某一位置,如下图所示:则,X XXU U UIR R-==,即2.5V 4.5V 2.5VXR R-=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①;保持滑动变阻器滑片P的位置不变,将开关S掷向2时,如下图所示:则000'U U U I R R ==-,即1.5V 4.5V 1.5V 20ΩR=-﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②,由①②两式可得:50ΩX R =.【点睛】根据串联电路的分压特点求出待测电阻与滑动变阻器串联时分得的最小电压,再与电压表的量程相比较即可选择滑动变阻器的规格;闭合开关前,保护电路的滑动变阻器处于最大阻值处;当开关S 掷向1时,待测电阻与滑动变阻器串联,电压表测待测电阻两端的电压;保持滑动变阻器滑片P 的位置不变,将开关S 掷向2时,定值电阻与滑动变阻器串联,电压表测定值电阻两端的电压,根据串联电路的电流特点和欧姆定律分别得出等式,解等式即可求出待测电阻的阻值.3.如图是一个模拟交通路口红绿灯工作的实验电路,请你用笔画线代替导线,只添加两根导线,实物电路图补充完整.要求:红灯亮时,黄灯和绿灯都不亮; 当红灯灭时,黄灯和绿灯可以分别亮一盏.【答案】【解析】由题意知红灯亮时,黄灯和绿灯都不亮; 当红灯灭时,黄灯和绿灯可以分别亮一盏.说明三盏灯互不影响,也就是说三盏灯是并联;结合实物图,S1是控制红灯和黄灯;S2控制绿灯和黄灯,故连接电路图如图.4.小丽做测量小灯泡电功率的实验(小灯泡标有“2.5V”字样,电阻约10Ω)。

重庆市南开中学2022-2023学年九年级上学期期末英语试题

重庆市南开中学2022-2023学年九年级上学期期末英语试题

重庆市南开中学2022-2023学年九年级上学期期末英语试题一、听句子选答语1.A.Not bad.B.How do you do?C.Glad to see you, too.2.A.I hope not.B.My pleasure.C.I think so.3.A.Not at all.B.Take it easy.C.Here you are.4.A.Because it’s scary.B.Because it’s funny.C.Because it’s meaningless.5.A.Shake hands.B.Kiss.C.Bow.6.A.Good idea!B.What a pity!C.Sorry to hear that.二、听短对话选答案7.A.Rock music.B.Smooth music.C.Electronic music.8.A.Brazil.B.South Africa.C.China.9.A.A dress.B.A suit.C.A T-shirt.10.A.At 6:00.B.At 6:30.C.At 7:00.11.A.Once a day.B.Twice a day.C.Three times a day.12.A.At a train station.B.At a museum.C.At a cinema.三、听长对话选答案听材料,回答下列小题。

13.When is the Chinese Spring Festival this year?A.On January 22nd.B.On January 23rd.C.On February 22nd.14.What is Bert going to visit?A.The Golden Gate Bridge.B.The Disneyland Park.C.The White House.听材料,回答下列小题。

重庆市沙坪坝区南开中学校2022-2023学年九年级上学期期末数学试题

重庆市沙坪坝区南开中学校2022-2023学年九年级上学期期末数学试题

重庆市沙坪坝区南开中学校2022-2023学年九年级上学期期
末数学试题
学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.
CF
1
3
7
二、填空题
成本6元/个.已知每袋开心果和每袋腰果的成本价之比为5:4,每袋夏威夷果和每袋纸皮核桃的成本价之比为2:1.甲种礼盒的售价为168元,利润率是40%,第一周售出甲、乙两种礼盒共60盒,销售总额为10270元,总利润率为30%.第二周直营店通过减少坚果的袋数推出甲、乙两种年货的小号礼盒,甲种小号礼盒的成本价(包含包装盒成本)降为原甲种礼盒总成本的35%,乙种小号礼盒相比原乙种礼盒开心果、腰果、纸皮核桃各减少2袋,小号包装盒成本每个4元.如果第二周售出的甲、乙小号礼盒恰好分别与第一周甲、乙两种礼盒数量相同,则第二周售出的所有小号礼盒的总成本是______元.
三、解答题
甲组学生平均每日作业完成时长
条形统计图。

重庆市沙坪坝区南开中学2022年数学九上期末经典试题含解析

重庆市沙坪坝区南开中学2022年数学九上期末经典试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)2.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)3.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A.B.C.D.4.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23°B.70°C.77°D.80°5.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)6.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx的图象经过A,B两点,则菱形ABCD的面积为()A .2B .4C .22D .427.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >48.一次函数y =ax +b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B . C .D .9.已知△ABC ∽△A 1B 1C 1,若△ABC 与△A 1B 1C 1的相似比为3:2,则△ABC 与△A 1B 1C 1的周长之比是( ) A .2:3 B .9:4 C .3:2 D .4:910.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A .2B .4C .6D .8 二、填空题(每小题3分,共24分)11.如图,有一张矩形纸片,长15cm ,宽9cm ,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为_____.12.如图,D 、E 分别是△ABC 的边AB 、AC 上的点,连接DE ,要使△ADE ∽△ACB ,还需添加一个条件 (只需写一个).13.如图,矩形纸片ABCD 中,8cm AB =,12cm BC =,将纸片沿EF 折叠,使点A 落在BC 边上的A '处,折痕分别交边AB 、AD 于点F 、E ,且5AF =.再将纸片沿EH 折叠,使点D 落在线段EA '上的D 处,折痕交边CD 于点H .连接FD ',则FD '的长是______cm .14.将抛物线y =﹣x 2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.15.二次函数y =x 2﹣4x +3的对称轴方程是_____.16.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m .17.如图,已知正方形ABCD 的边长为1,点M 是BC 边上的动点(不与B ,C 重合),点N 是AM 的中点,过点N 作EF ⊥AM ,分别交AB ,BD ,CD 于点E ,K ,F ,设BM =x .(1)AE 的长为______(用含x 的代数式表示);(2)设EK =2KF ,则EN NK的值为______.18.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m 个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为______.三、解答题(共66分)19.(10分)正方形ABCD 的边长为6,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =CF+AE ;(2)当AE =2时,求EF 的长.20.(6分)在一个不透明的盒子里装有4个分别标有:﹣1、﹣2、0、1的小球,它们的形状、大小完全相同,小芳从盒子中随机取出一个小球,记下数字为x ,作为点M 的横坐标:小华在剩下的3个小球中随机取出一个小球,记下数字为y ,作为点M 的纵坐标.(1)用画树状图或列表的方式,写出点M 所有可能的坐标;(2)求点M (x ,y )在函数y =2x -的图象上的概率. 21.(6分)如图,在菱形ABCD 中,点E 是BC 上的点,AE BC ⊥,若3sin 5B =,3EC =,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为___________.22.(8分)某校九年级(2)班A 、B 、C 、D 四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B 参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B 、C 两位同学参加校篮球队的概率.23.(8分)如图,已知抛物线2143y x bx =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为()2,0A -.(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使ACP∆为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.24.(8分)若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.25.(10分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B(1) 如图1,若AB=AC,求证:CE BD CD AC=;(2) 如图2,若AD=AE,求证:CE BD CD AE=;(3) 在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=12,则AB=____________.26.(10分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是_________度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.参考答案一、选择题(每小题3分,共30分)1、D【解析】二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k),据此进行判断即可.【详解】∵﹣1<0,∴函数的开口向下,图象有最高点,这个函数的顶点是(﹣1,2),对称轴是x=﹣1,∴选项A、B、C错误,选项D正确,故选D.【点睛】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.2、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.3、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.4、C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.5、A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.6、D【解析】试题解析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴2,S菱形ABCD=底×高2×2故选D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.7、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.8、C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小9、C【分析】直接利用相似三角形的性质求解.【详解】解:∵△ABC与△A1B1C1的相似比为3:1,∴△ABC与△A1B1C1的周长之比3:1.故选:C.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.10、D【解析】试题解析:袋中球的总个数是:2÷14=8(个).故选D.二、填空题(每小题3分,共24分)11、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.12、AD AE AED B ADE CAC AB ∠=∠∠=∠=或或【解析】试题分析:有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似. 所以在本题的条件的需要满足AD AE AED B ADE C AC AB∠=∠∠=∠=或或考点:相似三角形的判定 点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.13、89【分析】过点E 作EG ⊥BC 于G ,根据矩形的性质可得:EG=AB=8cm ,∠A=90°,12cm AD BC ==,然后根据折叠的性质可得:5A F AF '==cm ,A E AE '=,90FA E A '∠=∠=︒,ED ED ,根据勾股定理和锐角三角函数即可求出cos ∠BA F ',再根据同角的余角相等可得A EG BA F ''∠=∠,再根据锐角三角函数即可求出A E ',从而求出A D '',最后根据勾股定理即可求出FD '.【详解】过点E 作EG ⊥BC 于G∵矩形纸片ABCD 中,8cm AB =,12cm BC =,∴EG=AB=8cm ,∠A=90°,12cm AD BC == 根据折叠的性质5A F AF '==cm ,A E AE '=,90FA E A '∠=∠=︒,ED ED∴BF=AB -AF=3cm 根据勾股定理可得:224A B A F BF ''=-=cm ∴cos ∠45A B BA F A F ''==' ∵18090BA F EA G FA E '''∠+∠=︒-∠=︒,90A EG EA G ''∠+∠=︒∴A EG BA F ''∠=∠∴4cos 5EG A EG BA F A E cos ''∠==∠=' 解得:10A E '=cm∴AE=10cm ,∴ED=AD -AE=2cm∴2ED ED cm∴8A D A E ED cm ''''=-=根据勾股定理可得:2289FD A D A F ''''=+=【点睛】此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.14、y =﹣(x ﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y =﹣x 1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y =﹣(x ﹣1)1+1. 故答案是:y =﹣(x ﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.15、x =1【分析】二次函数y =ax 1+bx+c 的对称轴方程为x =﹣2b a ,根据对称轴公式求解即可. 【详解】解:∵y =x 1﹣4x+3,∴对称轴方程是:x =﹣421-⨯=1. 故答案为:x =1.【点睛】本题考查了根据二次函数的一般式求对称轴的公式,需要熟练掌握.16、1【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE ∴AB DC BE CE=, 由题意知AB=50,CD=15,CE=18, 即,501518x =, 解得x =1,经检验,x=1是原方程的解,即高为50m 的旗杆的影长为1m .故答案为:1.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.17、212x+x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=12AM=AN,然后根据相似三角形的性质求得ENAN=BM AB =x,即可得出ENNK=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM21x+∵点N是AM的中点,∴AN21x+,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴AEAM=ANAB21x+21x+,∴AE=212x+,故答案为:212x+;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=12AM=AN,∴ENNK=ENAN,∵△AEN∽△AMB,∴ENAN=BMAB=x,∴ENNK=x,故答案为:x.【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN= AN是解题的关键.18、1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意,得:m0.2 100=,解得:m20=,故答案为:1.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)见解析;(2)1,详见解析.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF 为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=CF+AE;(2)由(1)的全等得到AE=CM=2,正方形的边长为6,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=8﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【详解】(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,AE=CM,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,∵DE DMEDF MDFDF DF=⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS),∴EF=MF,∴EF=CF+AE;(2)解:设EF=MF=x,∵AE=CM=2,且BC=6,∴BM =BC+CM =6+2=8,∴BF =BM ﹣MF =BM ﹣EF =8﹣x ,∵EB =AB ﹣AE =6﹣2=4,在Rt △EBF 中,由勾股定理得222EB BF EF +=,即()22248x x +-=,解得:x =1,则EF =1.【点睛】本题主要考查正方形的性质、旋转的性质、三角形全等及勾股定理,关键是根据半角旋转得到三角形的全等,然后利用勾股定理求得线段的长.20、(1)见解析;(2)16【分析】(1)画树状图即可得到12种等可能的结果数;(2)利用反比例函数图象上点的坐标特征得到点(﹣2,1)和点(1,﹣2)满足条件,然后根据概率公式计算,即可.【详解】(1)画树状图为:共有12种等可能的结果,它们为(﹣1,﹣2),(﹣1,0),(﹣1,1),(﹣2,﹣1),(﹣2,0),(﹣2,1),(0,﹣1),(0,﹣2),(0,1),(1,﹣1),(1,﹣2),(1,0);(2)∵点M (x ,y )在函数y =2x -的图象上的点有(﹣2,1),(1,﹣2), ∴点M (x ,y )在函数y =2x -的图象上的概率=212=16. 【点睛】本题主要考查简单事件的概率和反比例函数的综合,画树状图,是解题的关键.21、485【分析】设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =3,所以BE =x−3,解直角△ABE 即可求得x 的值,即可求得BE 、AE 的值,根据AB 、PE 的值和△ABE 的面积,即可求得PE 的最小值,再根据勾股定理可得BP 的长.【详解】解:设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =3,所以BE =x−3,因为AE ⊥BC 于E ,所以在Rt △ABE 中,3cos x B x , ∵3sin 5B =,AE ⊥BC 设AE=3a ,AB=5a ,则BE=4a ,∴cosB=45∴345x x 于是5x−1=4x ,解得x =1,即AB =1.所以易求BE =12,AE =9,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:12AB•PE =12BE•AE , 求得PE 的最小值为365. 在Rt △BPE 中,223648()55 故答案为:485. 【点睛】 本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE 的值是解题的关键.22、(1)14;(2)P (BC 两位同学参加篮球队)16= 【分析】(1)根据概率公式P m n =(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14. (2)列表格如下:∴P (BC 两位同学参加篮球队)21126== 【点睛】 本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.23、(1)214433y x x =-++;(2)243y x =-+;(3)存在,(2,2)或(2,-2)或(2,0)或(2,12) 【分析】(1)将A 点代入抛物线的解析式即可求得答案;(2)先求得点B 、点C 的坐标,利用待定系数法即可求得直线BC 的解析式;(3)设出P 点坐标,然后表示出△ACP 的三边长度,分三种情况计论,根据腰相等建立方程,求解即可.【详解】(1)将点()20A -,代入2143y x bx =-++中, 得:()()2122403b --+-+=, 解得:43b =, ∴抛物线的解析式为214433y x x =-++; (2)当0x =时,4y =,∴点C 的坐标为(0,4) ,当0y =时,2144033x x -++=, 解得:1226x x =-=, ,∴点B 的坐标为(6,0) ,设直线BC 的解析式为y kx n =+,将点B (6,0),点C (0,4)代入,得:064k n n=+⎧⎨=⎩,∴234k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为243y x =-+, (3)抛物线的对称轴为()6222x +-==, 假设存在点P ,设(2,)P t ,则AC ==AP ==CP ==∵△ACP 为等腰三角形,①当ACAP ==解之得:2t =±,∴点P 的坐标为(2,2)或(2,-2);②当ACCP ==,解之得:0t =或8t =(舍去),∴点P 的坐标为(2,0)或(2,8),设直线AC 的解析式为y kx b =+,将点A(-2,0)、C (0,4)代入得204k b b -+=⎧⎨=⎩, 解得:24k b =⎧⎨=⎩, ∴直线AC 的解析式为24y x =+,当2x =时,2248y =⨯+=,∴点(2,8)在直线AC 上,∴A 、C 、P 在同一直线上,点(2,8)应舍去;③当APCP ==解之得:12t =, ∴点P 的坐标为(2,12); 综上,符合条件的点P 存在,坐标为:(2,2)或(2,-2)或(2,0)或(2,12). 【点睛】本题为二次函数的综合应用,涉及待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的性质,方程思想及分类讨论思想等知识点.在(3)中利用点P 的坐标分别表示出AP 、CP 的长是解题的关键. 24、50n =【分析】根据弧长公式计算即可. 【详解】∵180n r l π=, 5,92l r π==, ∴592180n ππ⨯=, ∴50n =【点睛】此题考查弧长公式,熟记公式并掌握各字母的意义即可正确解答.25 【解析】分析:(1)180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒∠ADE =∠B,可得,BAD CDE ∠=∠ ,AB AC = 根据等边对等角得到,B C ∠=∠△BAD ∽△CDE ,根据相似三角形的性质即可证明.(2) 在线段AB 上截取DB =DF ,证明△AFD ∽△DEC ,根据相似三角形的性质即可证明.(3) 过点E 作EF ⊥BC 于F ,根据tan ∠BAD =tan ∠EDF =12EF DF =,设EF =x ,DF =2x ,则DE ,证明△EDC ∽△GEC ,求得C G =,根据CE 2=CD ·CG ,求出CD = 根据△BAD ∽△GDE,即可求出AB 的长度.详解:(1) 180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒∠ADE =∠B,可得,BAD CDE ∠=∠,AB AC =∴,B C ∠=∠∵△BAD ∽△CDE , ∴CE BD BD CD AB AC==; (2) 在线段AB 上截取DB =DF∴∠B =∠DFB =∠ADE∵AD =AE ∴∠ADE =∠AED ∴∠AED =∠DFB ,同理:∵∠BAD +∠BDA =180°-∠B ,∠BDA +∠CDE =180°-∠ADE ∴∠BAD =∠CDE∵∠AFD =180°-∠DFB ,∠DEC =180°-∠AED ∴∠AFD =∠DEC ,∴△AFD ∽△DEC ,∴CE DF BD CD AD AE== (3) 过点E 作EF ⊥BC 于F∵∠ADE =∠B =45°∴∠BDA +∠BAD =135°,∠BDA +∠EDC =135° ∴∠BAD =∠EBC (三等角模型中,这个始终存在) ∵tan ∠BAD =tan ∠EDF =12EF DF = ∴设EF =x ,DF =2x ,则DE 5x ,在DC 上取一点G ,使∠EGD =45°, ∴△BAD ∽△GDE ,∵AD =AE ∴∠AED =∠ADE =45°,∵∠AED =∠EDC +∠C =45°,∠C +∠CEG =45°,∴∠EDC =∠GEC , ∴△EDC ∽△GEC ,∴CG EG CE CE DE CD == ∴245CG x x =,4105CG = 又CE 2=CD ·CG , ∴42=CD ·4105,CD =210, ∴41022105x x ++=,解得2105x = ∵△BAD ∽△GDE∴2DE DG AD AB==, ∴365522DG x AB ===. 点睛:属于相似三角形的综合题,考查相似三角形的判定于性质,掌握相似三角形的判定方法是解题的关键.26、(1)20;(2)见解析,36;(3)见解析,12【分析】(1)由题意根据对应人数除以所占比值即可求出陈老师一共调查了多少名学生;(2)根据题意补充条形统计图并D 类学生所对应的整个数据的比例乘以360°即可求值;(3)根据题意利用列表法或树状图法求概率即可.【详解】解:(1)由题意可得:(6+4)÷50%=20; (2)C 类学生人数:20×25%=5(名),C 类女生人数:5-2=3(名),D 类学生占的百分比:1-15%-50%-25%=10%,D 类学生人数:20×10%=2(名),D 类男生人数:2-1=1(名),补充条形统计图如图D类学生所对应的圆心角:220×360°=36°;(3)由题意画树形图如下:所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=36=12;解法二:列表如下,A类学生中的两名女生分别记为A1和A2,女A1 女A2 男A男D (女A1,男D) (女A2,男D) (男A,男D) 女D (女A1,女D) (女A2,女D) (男A,女D) 共有6种等可能的结果,其中,一男一女的有3种,所以所选两名学生中恰好是一名男生和一名女生的概率为36=12.【点睛】本题考查列表法或树状图法求概率以及条形统计图与扇形统计图.熟练掌握概率等于所求情况数与总情况数之比是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市南开中学九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的79,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t 47758.【解析】【分析】(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD的面积和是△ABC的面积的79,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=12×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与△PAD的面积和=12t2+12×6×(6﹣t),∵△PBC与△PAD的面积和是△ABC的面积的79,∴12t2+12×6×(6﹣t)=18×79,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣12t2=72t2=8,解得:t1=477,t2=﹣477(不合题意,舍去),②如图2,当2≤t≤3时,S=12×6×6﹣12t2﹣12(6﹣2t)2=12t﹣25t2=8,解得:t1=4(不合题意,舍去),t2=45(不合题意,舍去),③如图3,当3≤t≤6时,S=126×6﹣12t2=8,解得:t1=25,t2=﹣25(不合题意,舍去),综上,t的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【解析】【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是x,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.3.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .4.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息见下表: A 型销售数量(台)B 型销售数量(台) 总利润(元) 5 10 2 000(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.5.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;②ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c=++与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为1x=-,∴{312a b ccba++==-=-,解得:1{23abc=-=-=,∴二次函数的解析式为223y x x=--+=2(1)4x-++,∴顶点坐标为(﹣1,4);(2)令2230y x x=--+=,解得3x=-或1x=,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在223y x x=--+上,∴设点P(x,223x x--+),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即2232y x x=--+=,解得21(舍去)或x=21-,∴点P(21-,2);②设P(x,y),则223y x x=--+,∵ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x⨯⨯⨯+++-=333222x y-+=2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.二、初三数学 二次函数易错题压轴题(难)6.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G ) (1)当a =1时,①直接写出图象G 对应的函数表达式②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(32,1),(32,1)--+--;(2)0a <或2635a <<;(3)314125a --<,1153a <<,1123a <<-【解析】【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可.【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)----(2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321a x a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点 将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a >∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点, 综上,0a <或2635a << (3)266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时, ()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x >3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<; 当2221561a a a a ⎧+>⎨-+>-⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点解得:315a +-+<<,与前提条件a <0不符,故舍去; ②当a ≥0时, ()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +,必过点(-1,-1),即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>,此时当x=3a 时,y 的最小值为296a a -+,由()2310a --≤可得2961a a -+≤,即此图象必有一个点到x 轴的距离为1当222221561961961a a a a a a a a ⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:115a <<-+且13a ≠; 当222221561961961a a a a a a a a ⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:315a--<或1153a<<或113a<<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.7.在平面直角坐标系中,点(),p tq与(),q tp()0t≠称为一对泛对称点.(1)若点()1,2,()3,a是一对泛对称点,求a的值;(2)若P,Q是第一象限的一对泛对称点,过点P作PA x⊥轴于点A,过点Q作QB y⊥轴于点B,线段PA,QB交于点C,连接AB,PQ,判断直线AB与PQ的位置关系,并说明理由;(3)抛物线2y ax bx c=++()0a<交y轴于点D,过点D作x轴的平行线交此抛物线于点M(不与点D重合),过点M的直线y ax m=+与此抛物线交于另一点N.对于任意满足条件的实数b,是否都存在M,N是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M MM x y,(),N NN x y探究当My>Ny时Mx的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB∥PQ,见解析;(3)对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0【解析】【分析】(1)利用泛对称点得定义求出t的值,即可求出a.(2)设P,Q两点的坐标分别为P(p,tq),Q(q,tp),根据题干条件得到A(p,0),B (0,tp),C(p,tp)的坐标,利用二元一次方程组证出k1=k2,所以AB∥PQ.(3)由二次函数与x轴交点的特征,得到D点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a)是一对泛对称点,设3t=2解得t=23所以a=t×1=23(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.分别将点A(p,0),B(0,tp)代入y=k1x+b1,得111pk b tpb tp+=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得2222pk b tpqk b tp+=⎧⎨+=⎩. 解得22k tb tp tp=-⎧⎨=+⎩所以k1=k2.所以AB∥PQ(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,所以点D的坐标为(0,c).因为DM∥x轴,所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.可得ax M 2+bx M+c=c,即x M(ax M+b)=0.解得x M=0或x M=-ba.因为点M不与点D重合,即x M≠0,也即b≠0,所以点M的坐标为(-ba,c)因为直线y=ax+m经过点M,将点M(-ba,c)代入直线y=ax+m可得,a·(-ba)+m=c.化简得m=b+c所以直线解析式为:y=ax+b+c.因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,由ax2+bx+c=ax+b+c,可得ax2+(b-a)x-b=0.因为△=(b-a)2+4ab=(a+b)2,解得x1=-ba,x2=1.即x M=-ba,x N=1,且-ba≠1,也即a+b≠0.所以点N的坐标为(1,a+b+c)要使M(-ba,c)与N(1,a+b+c)是一对泛对称点,则需c=t ×1且a+b+c=t ×(-ba ).也即a+b+c=(-ba )·c也即(a+b)·a=-(a+b)·c.因为a+b≠0,所以当a=-c时,M,N是一对泛对称点.因此对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形.此时点M的坐标为(-ba,-a),点N的坐标为(1,b).所以M,N两点都在函数y=bx(b≠0)的图象上.因为a<0,所以当b>0时,点M,N都在第一象限,此时 y随x的增大而减小,所以当y M>y N时,0<x M<1;当b<0时,点M在第二象限,点N在第四象限,满足y M>y N,此时x M<0.综上,对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.8.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k .∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.10.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c 是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC-∠BAC=45°-∠BAC,∠OFA=∠OCA-∠FAC=45°-∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.三、初三数学旋转易错题压轴题(难)11.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.12.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222++=39.DN PD=(3)6【点睛】本题考查四边形综合题.13.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.14.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2,图3-2中,当P 、E 、B 共线时,BE 最大,最大值2,∴22,即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.15.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,。

相关文档
最新文档