2020年高二数学(人教版)选修4-4教案:第1节 平面直角坐标系
高二数学人教A版选修4-4第一讲第一节《平面直角坐标系》课件(共65张PPT)
![高二数学人教A版选修4-4第一讲第一节《平面直角坐标系》课件(共65张PPT)](https://img.taocdn.com/s3/m/7865c6a8e45c3b3567ec8be8.png)
x
y
2x 3y
后的图形.
(2)x2+y2=1.
(1)变成直线x′+y′=0.
【例3】在平面直角坐标系中,求下列方程
所对应的图形经过伸缩变换 (1)2x+3y=0;
x
y
2x 3y
后的图形.
(2)x2+y2=1.
(1)变成直线x′+y′=0.
(2)变成椭圆 x2 y2 1. 49
【例4】求伸缩变换φ,使得曲线4x2+9y2=36 变成曲线x′2+y′2=4.
平面直角坐标系中任意一点,将横坐标缩短到原来的 1 ,
2
纵坐标伸长到原来的3倍,得到点P′(x′,y′),那么x与x′,y
与y′的关系如何?
思考5:根据图象变换原理,怎样由正弦曲线y=sinx
得到曲线y=3sin2x? 图象上各点的横坐标缩短到原来的
1
倍,纵坐标伸长
到原来的3倍.
2
思考6:这是一种伸缩变换,一般地,设点P(x,y)为
P的位置更方便?
P(680 5,680 5)
y
北
PC 东
B ГO l A x
位置:西北方向距离中心 680 10m 处.
思考5:一般地,用坐标法解决几何问题的基本 思路是什么?
思考5:一般地,用坐标法解决几何问题的基本 思路是什么?
建立直角坐标系
思考5:一般地,用坐标法解决几何问题的基本 思路是什么?
思考8:在伸缩变换φ中,若λ,μ不同时为1, 则共可产生多少种不同的伸缩变换类型?
λ>1,u>1; λ>1,u=1; λ>1,u<1;
λ<1,u>1; λ<1,u=1; λ<1,u<1;
思考8:在伸缩变换φ中,若λ,μ不同时为1, 则共可产生多少种不同的伸缩变换类型?
一平面直角坐标系-人教A版选修4-4坐标系与参数方程教案
![一平面直角坐标系-人教A版选修4-4坐标系与参数方程教案](https://img.taocdn.com/s3/m/76e8c158a31614791711cc7931b765ce04087a71.png)
一平面直角坐标系-人教A版选修4-4 坐标系与参数方程教案1. 基本概念1.1 平面直角坐标系平面直角坐标系是指在平面上建立起一个直角坐标系,将二维平面上的任意点都能用其坐标表示出来。
平面直角坐标系由两条互相垂直的坐标轴组成,分别为x轴和y轴。
坐标轴的交点称为坐标原点O,x轴和y轴的正方向分别取向右和向上。
1.2 参数方程参数方程是指用含有参数的方程表示函数的方法。
其中,参数是自变量,函数的值是关于参数的函数。
通常用一组参数,如t、θ等来表示函数。
2. 教学目标本节课教学目标为:•掌握平面直角坐标系的建立方法,能将二维平面上的任意点用其坐标表示出来。
•掌握用参数方程描述平面曲线的方法,能解决相关应用问题。
3. 教学重点•平面直角坐标系的建立方法。
•参数方程的概念,应用与推导方法。
4. 教学难点•参数方程描述平面曲线的方法。
•参数方程在几何应用中的解题方法。
5. 教学内容及过程5.1 知识讲解5.1.1 平面直角坐标系要求学生掌握平面直角坐标系的建立方法,说出x轴和y轴的正方向,确定坐标原点,并会将二维平面上的任意点用其坐标表示出来。
5.1.2 参数方程要求学生掌握参数方程的概念,了解参数方程与常规方程的区别,掌握参数方程描述平面曲线的方法,并能解决相关应用问题。
5.2 课堂互动5.2.1 平面直角坐标系练习让学生在纸上绘制出平面直角坐标系并标注好坐标轴、坐标原点以及x轴和y 轴的正方向。
然后,教师可以随机给出几个点的坐标进行练习,并让学生互相交换练习答案。
5.2.2 参数方程的练习让学生练习参数方程的应用,例如让学生求出直线 y = 2x - 1 的参数方程,并根据所求出的参数方程进行绘制。
另外,也可以出一些实际应用中相关的问题,例如让学生通过参数方程求出某行星的轨道方程等。
5.3 课堂小结教师对本节课所讲内容进行总结,强调重点、难点内容,并进行提问、讨论。
同时,对本节课的拓展内容进行展示,并引导学生进行初步了解。
高中数学教案 选修4-4教案 第一讲 坐标系 一、平面直角坐标系
![高中数学教案 选修4-4教案 第一讲 坐标系 一、平面直角坐标系](https://img.taocdn.com/s3/m/4265a813bd64783e08122b04.png)
平面直角坐标系第一课时1.平面直角坐标系教学目的:知识目标:回顾在平面直角坐标系中刻画点的位置的方法能力目标:体会坐标系的作用教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定二、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置例2 已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?变式训练1一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3 已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)变式训练用两种以上的方法证明:三角形的三条高线交于一点。
第一讲 1.1平面直角坐标系(高中数学人教版选修4-4)
![第一讲 1.1平面直角坐标系(高中数学人教版选修4-4)](https://img.taocdn.com/s3/m/24b2700059eef8c75fbfb3eb.png)
y=sin2x
2
x
O
y=sinx
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变, 1 将横坐标x缩为原来的 ,就得到正弦曲线y=sin2x. 2 上述的变换实质上就是一个坐标的压缩变换,即: 设P(x,y)是平面直角坐标系中任意一点,保持纵坐标 不变,将横坐标x缩为原来 1 ,得到点 p x, y 2 坐标对应关系为:
1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2
O
x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
1.平面直角坐标系
y
Y=f(x)
(1)平面直角坐标系的作用:使平面
上的点与 坐标 、曲线与 方程 建立联系, 从而实现 数与形 的结合. (2)坐标法解决几何问题的“三部曲”:
O
x
第一步:建立适当坐标系,用坐标和方
程表示问题中涉及的 几何 元素,将几何
曲线的方程
问题转化为 代数 问题;第二步:通过 代数运算解决代数问题;第三步:把代 数运算结果翻译成 几何 结论.
x′=λx(λ>0), 解:设变换为 代入第二个方程,得 2λx-μy y′=μy(μ>0), x′=x, =4, 与 x-2y=2 比较系数得 λ=1, μ =4, 即 因此, y′=4y. x′=x, 经过变换 后,直线 x-2y=2 变成直线 2x′-y′=4. y′=4y
高中数学 第1章(坐标系)教案 新人教版选修4-4 教案
![高中数学 第1章(坐标系)教案 新人教版选修4-4 教案](https://img.taocdn.com/s3/m/993cfe5d302b3169a45177232f60ddccda38e6bc.png)
坐标系【基础知识导学】1、 坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。
2、 “坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。
3、 坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。
应注意:通过一个表达式,平面直角坐标系中坐标伸缩变换将x 与y 的伸缩变换统一成一个式子了,即⎩⎨⎧>='>=0,0,/μμλλy y x x 我们在使用时,要注意对应性,即分清新旧。
【知识迷航指南】【例1】(2005年某某)圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN ,试建立适当的坐标系,求动点P 的轨迹方程。
解:以直线O 1O 2为X 轴,线段O 1O 2的垂直平分线为Y轴,建立平面直角坐标系,则两圆的圆心坐标分别为O 1(-2,0),O 2(2,0),设P (y x ,) 则PM 2=PO 12-MO 12=1)2(22-++y x 同理,PN 2=1)2(22-+-y x 因为PM=2PN ,即1)2(22-++y x =2[1)2(22-+-y x ],即,031222=++-y x x 即,33)6(22=+-y x 这就是动点P 的轨迹方程。
【点评】这题考查解析几何中求点的轨迹方程的方法应用,考查建立坐标系、数形结合思想、勾股定理、两点间距离公式等相关知识,及分析推理、计算化简技能、技巧等,是一道很综PX合的题目。
【例2】在同一直角坐标系中,将直线22=-y x 变成直线42='-'y x ,求满足图象变换的伸缩变换。
分析:设变换为⎩⎨⎧>⋅='>⋅='),0(,),0(,μμλλy y x x 可将其代入第二个方程,得42=-y x μλ,与22=-y x 比较,将其变成,442=-y x 比较系数得.4,1==μλ【解】⎩⎨⎧='='y y x x 4,直线22=-y x 图象上所有点的横坐标不变,纵机坐标扩大到原来的4倍可得到直线42='-'y x 。
人教A版高中数学选修4-4:1.1平面直角坐标系 教学案
![人教A版高中数学选修4-4:1.1平面直角坐标系 教学案](https://img.taocdn.com/s3/m/620db5b26c85ec3a87c2c5fe.png)
第一章 坐标系1.1平面直角坐标系一、内容及其解析本节课要学习的内容是平面直角坐标系,指的是回顾直角坐标系中解决实际问题的过程、直角坐标系中的伸缩变换,其核心是直角坐标系中的伸缩变换。
学生以前已经学习过直角坐标系的构建方程、直角坐标系在实际中的应用(解析几何)、三角函数图象的变换等,本节课要学习的内容就是此基础上归纳总结直角坐标系在解决实际问题中的作用、以及图象的伸缩变换方法。
是本单元的基础内容。
重点是直角坐标系中的伸缩变换,解决重点的关键是理解掌握伸缩变换公式。
二、目标及其解析目标定位:1.进一步理解掌握直角坐标系在实际问题中的作用;2.理解直角坐标系中的伸缩变换。
目标解析:1.通过实例理解怎样建立直角坐标系,怎样建立适当的直角坐标系,如何用直角坐标系来表示某点的位置等等;2.理解直角坐标系中的伸缩变换的特征和变换公式。
三、教学过程问题1.如何用直角坐标系解决实际问题?设计意图:通过实例让学生回归直角坐标系解决实际问题的过程。
师生活动:1.思考:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s 。
已知各观测点到中心的距离都是1020m 。
试确定巨响发生的位置。
(假定声音传播的速度为340m/s ,各观测点均在同一平面上。
)2.已知ABC ∆的三边,,a b c 满足2225b c a +=,BE,CF 分别为边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系。
问题2.平面直角坐标系中的伸缩变换有什么意义?设计意图:让学生通过三角函数的伸缩变换归纳总结出平面直角坐标系中的伸缩变换。
师生活动:1.怎样由正弦曲线sin y x =得到曲线sin 2,3sin ,3sin 2y x y x y x ===?2.将上述的变换用数量关系式表示的结果是什么?3.定义:设点(,)P x y 是平面直角坐标系中的任意一点,在变换',(0):',(0)x x y y λλϕμμ=>⎧⎨=>⎩的作用下,点(,)P x y 对应到点'(',')P x y ,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
人教课标版高中数学选修4-4第一讲-坐标系一-平面直角坐标系教案
![人教课标版高中数学选修4-4第一讲-坐标系一-平面直角坐标系教案](https://img.taocdn.com/s3/m/cfb1c814172ded630a1cb670.png)
人教课标版高中数学选修4-4第一讲 坐标系一 平面直角坐标系教案考纲要求 备考指津1.会画直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标. 2.掌握坐标平面内点的坐标特征. 3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析. 4.能确定函数自变量的取值范围,并会求函数值. 中考题型以选择题、填空题为主,有时也作为函数综合题的一个方面来考查,难度较低.这部分知识常以生活实际为背景,与生活实际应用相联系进行命题,解题时往往要用数形结合、分类讨论等数学方法进行思考.考点一 平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相竖直的数轴的交点O 称为原点,水平的数轴叫x 轴(或横轴),竖直的数轴叫y 轴(或纵轴),整个坐标平面被x 轴、y 轴分割成四个象限. 2.各象限内点的坐标特征点P (x ,y )在第一象限x >0,y >0;点P (x ,y )在第二象限x <0,y >0;点P (x ,y )在第三象限x <0,y <0; 点P (x ,y )在第四象限x >0,y <0.3.坐标轴上的点的坐标的特征 点P (x ,y )在x 轴上y =0,x 为任意实数; 点P (x ,y )在y 轴上x =0,y 为任意实数;点P (x ,y )在坐标原点x =0,y =0.考点二 特殊点的坐标特征1.对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ).2.与坐标轴平行的直线上点的坐标特征平行于x 轴:横坐标不同,纵坐标相同;平行于y 轴:横坐标相同,纵坐标不同.3.各象限角平分线上点的坐标特征第一、三象限角平分线上的点横坐标与纵坐标相同,第二、四象限角平分线上的点横坐标与纵坐标互为相反数.考点三 距离与点的坐标的关系1.点与原点、点与坐标轴的距离(1)点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b |;点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a |.(2)点P (a ,b )到原点的距离等于点P 的横、纵坐标的平方和的算术平方根,即a 2+b 2.2.坐标轴上两点间的距离(1)在x轴上两点P1(x1,0),P2(x2,0)间的距离|P1P2|=|x1-x2|.(2)在y轴上两点Q1(0,y1),Q2(0,y2)间的距离|Q1Q2|=|y1-y2|.(3)在x轴上的点P1(x1,0)与y轴上的点Q1(0,y1)之间的距离|P1Q1|=x12+y12.考点四函数有关的概念及图象1.函数的概念一般地,在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说y是x的函数,x是自变量.2.常量和变量在某一变化过程中,保持一定数值不变的量叫做常量;可以取不同数值的量叫做变量.3.函数的表示方法函数主要的表示方法有三种:(1)解析法;(2)列表法;(3)图象法.4.函数图象的画法(1)列表:在自变量的取值范围内取值,求出相应的函数值;(2)描点:以x的值为横坐标,对应y的值作为纵坐标,在坐标平面内描出相应的点;(3)连线:按自变量从小到大的顺序用光滑曲线连接所描的点.考点五函数自变量取值范围的确定确定自变量取值范围的方法:1.自变量以分式形式出现,它的取值范围是使分母不为零的实数.2.当自变量以二次方根形式出现,它的取值范围是使被开方数为非负数;以三次方根出现时,它的取值范围为全体实数.3.当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数.4.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.1.在平面直角坐标系中,点P(-1,3)位于().A.第一象限B.第二象限C.第三象限D.第四象限2.点A(2,-3)关于x轴的对称点的坐标为().A.(2,3) B.(-2,-3) C.(-2,3) D.(2,-3)3.点P在第四象限内,P到x轴的距离是2,到y轴的距离是3,则P的坐标为__________.4.函数y=1x-2的自变量x的取值范围是__________.5.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间内,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是().6.甲、乙两人准备在一段长为1 200 m的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s和6 m/s.起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m)与时间t (s)的函数图象是( ).一、平面直角坐标系内点的坐标特征【例1】 在平面直角坐标系中,若点(2x +1,x -2)在第四象限,则x 的取值范围是( ).A .x >-12B .x <2C .x <-12或x >2D .-12<x <2 解析:根据平面直角坐标系中点的坐标特征可得⎩⎪⎨⎪⎧2x +1>0,x -2<0,解得-12<x <2. 答案:D掌握平面直角坐标系中各象限及坐标轴上点的坐标特征,构造不等式(组)是解决此类问题的常用方法.在平面直角坐标系中,如果mn >0,那么点(m ,|n |)一定在( ).A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第三象限或第四象限二、距离与点坐标的关系【例2】 如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,A 点坐标为(2,-1),则△ABC 的面积为__________平方单位.解析:利用数轴得出B 点坐标为(4,3),C 点坐标为(1,2),然后利用割补法,结合点的坐标与距离的关系求出△ABC 的面积.答案:5图形的割补法是解决有关图形面积的常用方法,需要同学们在解题时合理地利用图形进行巧妙分割,此类题型的解法往往不唯一.三、函数图象的应用【例3】 如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).解析:本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.答案:C利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题.四、函数自变量取值范围的确定【例4】 函数y =x +2x -2的自变量x 的取值范围是( ). A .x ≥-2且x ≠2 B .x >-2且x ≠2 C .x =±2 D .全体实数解析:要使函数有意义,必须同时满足二次根式的被开方数是非负数,分式的分母不能为零,即⎩⎪⎨⎪⎧x +2≥0,x -2≠0,解得x ≥-2且x ≠2. 答案:A求函数自变量的取值范围,往往通过解不等式或不等式组来确定.因此,掌握一元一次不等式、一元一次不等式组的解法,是求函数自变量取值范围的基础,同时要学会这种转化的思想方法.1.(2012四川成都)如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ).A .(-3,-5)B .(3,5)C .(3,-5)D .(5,-3)2.(2012重庆)2012年“国际攀岩比赛”在重庆举行,小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为s ,下面能反映s 与t 的函数关系的大致图象是( ).3.(2011广东湛江)如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是-1,则顶点A 的坐标是( ).A .(2,-1)B .(1,-2)C .(1,2)D .(2,1)4.(2011内蒙古呼和浩特)函数y =1x +3中,自变量x 的取值范围为__________. 5.(2011江苏盐城)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60 km 的博物馆参观,10分钟后到达距离学校12 km 处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12 km 后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s (千米)与汽车行驶时间t (分钟)之间的函数关系如图所示,假设学生上下车时间忽略不计.(1)汽车载人时的速度为__________km/min ;第一批学生到达博物馆用了__________分钟.(2)求汽车在回头接第二批学生途中(即空载时)的速度.(3)假设学生在步行途中不休息且步行速度每分钟减小0.04 km ,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.1.如图所示,小手盖住的点的坐标可能为( ).A .(5,2)B .(-6,3)C .(-4,-6)D .(3,-4)2.若点P (a ,a -b )在第四象限,则点Q (b ,-a )在( ).A .第四象限B .第三象限C .第二象限D .第一象限3.如图是中国象棋棋盘的一部分,若在点(1,-1)上,在点(3,-1)上,则的坐标是( ).A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2)4.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是().5.点P(1,2)关于x轴的对称点P1的坐标是__________,点P(1,2)关于原点O的对称点P2的坐标是__________.6.已知一条直线l平行于x轴,P1(-2,3),P2(x2,y2)是直线l上的两点,且P1,P2的距离为4,则P2的坐标为__________.7.如图所示,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是__________.8.如图,在平面直角坐标系中,菱形OABC的顶点C坐标是(3,4),求顶点B的坐标.9.在如图所示的方格纸中,把每个小正方形的顶点称为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:(1)请描述图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的?(2)若以直线a,b为坐标轴建立平面直角坐标系后,点C的坐标为(-3,1),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.参考答案基础自主导学自主测试1.B 2.A 3.(3,-2) 4.x ≠2 5.C 6.C规律方法探究变式训练 A 知能优化训练中考回顾1.B 2.B 3.D 4.x >-35.(1)1.2 50 (2)1.8 km/min(3)解:能够合理安排.方案:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,当两批学生同时到达博物馆,时间可提前10分钟. 理由:设从故障点开始第一批学生乘车t 1分钟,汽车回头时间为t 2分钟,由题意得:⎩⎪⎨⎪⎧1.2t 1+0.2(t 1+t 2)=48,0.2(t 1+t 2)+1.8t =1.2t 1. 解得⎩⎪⎨⎪⎧t 1=32,t 2=16. 从出发到达博物馆的总时间为:10+2×32+16=90(分钟),即时间可提前100-90=10(分钟).模拟预测1.D 2.A 3.D 4.C 5.(1,-2) (-1,-2) 6.(2,3)或(-6,3)7.y =152x (0<x <10) 8.(8,4) 9.解:(1)先将△ABC 绕点C 按顺时针方向旋转90°,再向右平移5个单位得到△A ′B ′C ′(或先平移再旋转也可).(2)D (0,-2),E (-4,-4),F (2,-3).S △DEF =6×2-12×4×2-12×2×1-12×6×1=4.。
高二数学 4-4第一章坐标系全部教案
![高二数学 4-4第一章坐标系全部教案](https://img.taocdn.com/s3/m/1fadbefc5901020206409c48.png)
表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)
高中数学 第一章 坐标系 第1节 平面直角坐标系教学案 新人教A版选修44
![高中数学 第一章 坐标系 第1节 平面直角坐标系教学案 新人教A版选修44](https://img.taocdn.com/s3/m/5cfa7200a0116c175f0e48ab.png)
第1节 平面直角坐标系[核心必知]1.平面直角坐标系 (1)平面直角坐标系的作用通过直角坐标系,平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法解决几何问题的“三部曲”第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[问题思考]1.用坐标法解决几何问题时,坐标系的建立是否是唯一的?提示:对于同一个问题,可建立不同的坐标系解决,但应使图形上的特殊点尽可能多地落在坐标轴,以便使计算更简单、方便.2.伸缩变换中的系数λ,μ有什么特点?在伸缩变换下,平面直角坐标系是否发生变化?提示:伸缩变换中的系数λ>0,μ>0,在伸缩变换下,平面直角坐标系保持不变,只是对点的坐标进行伸缩变换.已知Rt △ABC ,|AB |=2a (a >0),求直角顶点C 的轨迹方程.[精讲详析] 解答此题需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.以AB 所在直线为x 轴,AB 的中点为坐标原点,建立如图所示的直角坐标系,则有A (-a ,0),B (a ,0),设顶点C (x ,y ).法一:由△ABC 是直角三角形可知|AB |2=|AC |2+|BC |2,即(2a )2=(x +a )2+y 2+(x -a )2+y 2,化简得x 2+y 2=a 2.依题意可知,x ≠±a .故所求直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).法二:由△ABC 是直角三角形可知AC ⊥BC ,所以k AC ·k BC =-1,则yx +a ·yx -a=-1(x ≠±a ),化简得直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).法三:由△ABC 是直角三角形可知|OC |=|OB |,且点C 与点B 不重合,所以x 2+y 2=a (x ≠±a ),化简得直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).——————————————————求轨迹方程,其实质就是根据题设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程.(1)求轨迹方程的一般步骤是:建系→设点→列式→化简→检验.(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性.(3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从多角度思考问题.1.已知线段AB与CD互相垂直平分于点O,|AB|=8,|CD|=4,动点M满足|MA|·|MB|=|MC|·|MD|,求动点M的轨迹方程.解:以O为原点,分别以直线AB,CD为x轴、y轴建立直角坐标系,则A(-4,0),B(4,0),C(0,2),D(0,-2).设M(x,y)为轨迹上任一点,则|MA|=(x+4)2+y2,|MB|=(x-4)2+y2,|MC|=x2+(y-2)2,|MD|=x2+(y+2)2,∴由|MA|·|MB|=|MC|·|MD|,可得[(x+4)2+y2][(x-4)2+y2]=[x2+(y-2)2][x2+(y+2)2].化简,得y2-x2+6=0.∴点M的轨迹方程为x2-y2=6.已知△ABC中,AB=AC,BD、CE分别为两腰上的高.求证:BD=CE.[精讲详析] 本题考查坐标法在几何中的应用.解答本题可通过建立平面直角坐标系,将几何证明问题转化为代数运算问题.如图,以BC所在直线为x轴,BC的垂直平分线为y轴建立平面直角坐标系.设B(-a,0),C(a,0),A(0,h).则直线AC 的方程为y =-h ax +h ,即:hx +ay -ah =0. 直线AB 的方程为y =h ax +h , 即:hx -ay +ah =0.由点到直线的距离公式:|BD |=|2ah |a 2+h2,|CE |=|2ah |a 2+h2,∴|BD |=|CE |, 即BD =CE . ——————————————————(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即“形”转化为“数”,再回到“形”中,此为坐标法的基本思想,务必熟练掌握.(2)建立坐标系时,要充分利用图形的几何特征.例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等.2.已知△ABC 中,BD =CD ,求证:AB 2+AC 2=2(AD 2+BD 2). 证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则D (a +b 2,c2),∴AD 2+BD 2=(a +b )24+c 24+(a -b )24+c24=12(a 2+b 2+c 2), AB 2+AC 2=a 2+b 2+c 2.∴AB 2+AC 2=2(AD 2+BD 2).在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=13x,y ′=12y后的图形是什么形状?(1)y 2=2x ;(2)x 2+y 2=1.[精讲详析] 本题考查伸缩变换的应用,解答此题需要先根据伸缩变换求出变换后的方程,然后再判断图形的形状.由伸缩变换⎩⎪⎨⎪⎧x ′=13x ,y ′=12y .可知⎩⎪⎨⎪⎧x =3x ′,y =2y ′.(1)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入y 2=2x ,可得4y ′2=6x ′,即y ′2=32x ′.即伸缩变换之后的图形还是抛物线. (2)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入x 2+y 2=1,得(3x ′)2+(2y ′)2=1,即x ′219+y ′214=1,即伸缩变换之后的图形为焦点在y 轴上的椭圆. ——————————————————利用坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)求变换后的曲线方程,其实质是从中求出⎩⎪⎨⎪⎧x =1λx ′,y =1μy ′,然后将其代入已知的曲线方程求得关于x ′,y ′的曲线方程.3.将圆锥曲线C 按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.解:设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′), 由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 得⎩⎪⎨⎪⎧x ′=13x ,y ′=12y .代入x ′2-y ′2=1得(x3)2-(y2)2=1,即x 29-y 24=1为所求.本课时考点常以解答题(多出现在第(1)小问)的形式考查轨迹方程的求法,湖北高考将圆锥曲线的类型讨论同轨迹方程的求法相结合,以解答题的形式考查,是高考命题的一个新热点.[考题印证](湖北高考改编)设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.[命题立意] 本题考查圆锥曲线的相关知识以及轨迹方程的求法. [解]如图,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题1.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y后,曲线方程变为( )A .y ′=3cosx ′2B .y ′=3cos 2x ′C .y ′=13cos x ′2D .y ′=13cos 2x ′解析:选A 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎪⎨⎪⎧x =12x ′,y =13y ′.又∵y =cos x ,∴13y ′=cos x ′2,即y ′=3cos x ′2. 2.直线2x +3y =0经伸缩变换后变为x ′+y ′=0,则该伸缩变换为( ) A.⎩⎪⎨⎪⎧x ′=12x ,y ′=3yB.⎩⎪⎨⎪⎧x ′=2x ,y ′=3yC.⎩⎪⎨⎪⎧x ′=2x ,y ′=13yD.⎩⎪⎨⎪⎧x ′=12x ,y ′=13y解析:选B 设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0),将其代入方程x ′+y ′=0,得,λx +μy =0.又∵2x +3y =0,∴λ=2,μ=3.即⎩⎪⎨⎪⎧x ′=2x ,y ′=3y . 3.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆 D .双曲线 解析:选D 由伸缩变换的意义可得.4.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|PA |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆, 它的面积为4π. 二、填空题5.将点P (2,3)变换为点P ′(1,1)的一个伸缩变换公式为________.解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=hx (h >0)y ′=kx (k >0),由⎩⎪⎨⎪⎧1=2h1=3k ,解得⎩⎪⎨⎪⎧h =12,k =13∴⎩⎪⎨⎪⎧x ′=x 2,y ′=y 3. 答案:⎩⎪⎨⎪⎧x ′=x 2,y ′=y36.将对数曲线y =log 3x 的横坐标伸长到原来的2倍得到的曲线方程为________. 解析:设P (x ,y )为对数曲线y =log 3x 上任意一点,变换后的对应点为P ′(x ′,y ′),由题意知伸缩变换为⎩⎪⎨⎪⎧x ′=2xy ′=y ,∴⎩⎪⎨⎪⎧x =12x ′,y =y ′.代入y =log 3x 得y ′=log 312x ′,即y =log 3x2.答案:y =log 3x27.把圆x 2+y 2=16沿x 轴方向均匀压缩为椭圆x ′2+y ′216=1,则坐标变换公式是________.解析:设φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),则⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ.代入x 2+y 2=16得x ′216λ2+y ′216μ2=1.∴16λ2=1,16μ2=16. ∴⎩⎪⎨⎪⎧λ=14,μ=1.故⎩⎪⎨⎪⎧x ′=x 4,y ′=y .答案:⎩⎪⎨⎪⎧x ′=x 4,y ′=y8.已知A (2,-1),B (-1,1),O 为坐标原点,动点M ,其中m ,n ∈R ,且2m 2-n 2=2,则M 的轨迹方程为________.解析:设M (x ,y ),则(x ,y )=m (2,-1)+n (-1,1)=(2m -n ,n -m ),∴⎩⎪⎨⎪⎧x =2m -n ,y =n -m .又2m 2-n 2=2,消去m ,n 得x 22-y 2=1.答案:x 22-y 2=1三、解答题9.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足条件的伸缩变换.解:x 2-36y 2-8x +12=0可化为 (x -42)2-9y 2=1.①x ′2-y ′2-4x ′+3=0可化为(x ′-2)2-y ′2=1.②比较①②,可得⎩⎪⎨⎪⎧x ′-2=x -42,y ′=3y ,即⎩⎪⎨⎪⎧x ′=x 2,y ′=3y .所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象.10.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|PA |,|PB |,|PC |,且满足|PA |2=|PB |2+|PC |2,求点P 的轨迹方程.解:以BC 的中点为原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的直角坐标系,设点P (x ,y ),B (-a ,0),C (a ,0),A (0,3a ),(y >0,a >0)用点的坐标表11 示等式|PA |2=|PB |2+|PC |2,有x 2+(y -3a )2=(x +a )2+y 2+(x -a )2+y 2, 化简得x 2+(y +3a )2=(2a )2,即点P 的轨迹方程为x 2+(y +3a )2=4a 2(y >0). 11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)∴e =33, ∴e 2=c 2a 2=a 2-b 2a 2=13, ∴b 2a 2=23. 又圆x 2+y 2=b 2与直线y =x +2相切, ∴b =21+1= 2. ∴b 2=2,a 2=3.因此,a =3,b = 2.(2)由(1)知F 1,F 2两点的坐标分别为(-1,0),(1,0),由题意可设P (1,t ). 那么线段PF 1的中点为N (0,t 2). 设M (x ,y ),由于MN ―→=(-x ,t2-y ), PF 1―→=(-2,-t ),则⎩⎪⎨⎪⎧MN ―→·PF 1―→=2x +t (y -t 2)=0y =t,消去t 得所求轨迹方程为y 2=-4x ,曲线类型为抛物线.。
人教版高中选修4-4一平面直角坐标系课程设计
![人教版高中选修4-4一平面直角坐标系课程设计](https://img.taocdn.com/s3/m/40d2413391c69ec3d5bbfd0a79563c1ec5dad7f7.png)
人教版高中选修4-4一平面直角坐标系课程设计一、设计目的本次课程设计旨在通过对一平面直角坐标系的学习和掌握,使学生能够熟练运用一平面直角坐标系解决各种数学问题,同时锻炼学生的逻辑思维能力和创新能力。
二、设计内容本次课程设计共分为五个部分,分别为:一、一平面直角坐标系的基本概念;二、一元二次方程的图像和性质;三、直线与圆的位置关系;四、正多边形的坐标和对称性;五、三角函数的概念和性质。
2.1 一平面直角坐标系的基本概念本部分主要介绍一平面直角坐标系的基本概念,包括坐标轴、坐标和坐标系等概念,同时讲解如何在一平面直角坐标系中表示点、线段、向量等数学概念,并通过实例演示如何计算两点之间的距离、点到直线的距离等问题。
2.2 一元二次方程的图像和性质本部分主要介绍一元二次方程的图像和性质,包括一元二次方程的标准式、顶点式和根式等,以及如何利用一平面直角坐标系表示一元二次方程的图像。
同时,通过实例演示如何求解一元二次方程的顶点、轴、对称轴等问题,培养学生分析和解决问题的能力。
2.3 直线与圆的位置关系本部分主要介绍直线与圆的位置关系,包括直线与圆的相离、相切和相交等情况,同时演示如何利用一平面直角坐标系求解直线与圆的位置关系的问题。
通过实例演示,培养学生观察和判断几何关系的能力,提高学生的实际应用能力。
2.4 正多边形的坐标和对称性本部分主要介绍正多边形的坐标和对称性,包括正三、四、五边形等多边形的坐标和对称性特点。
同时通过实例演示如何在一平面直角坐标系中表示正多边形的顶点和对称轴等问题,培养学生分类和归纳问题的能力。
2.5 三角函数的概念和性质本部分主要介绍三角函数的概念和性质,包括正弦函数、余弦函数、正切函数等的定义、周期、对称性和图像等特性。
同时,演示如何利用一平面直角坐标系表示三角函数图像和解决三角函数的应用问题。
通过实例演示,培养学生掌握三角函数的基本技能,并锻炼学生的抽象思维和推理能力。
三、教学方法本次课程设计采用传统教学法与探究式教学法相结合的教学方法。
人教版选修4-4教案新部编本【第1节】平面直角坐标系
![人教版选修4-4教案新部编本【第1节】平面直角坐标系](https://img.taocdn.com/s3/m/2f958017640e52ea551810a6f524ccbff121ca8f.png)
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校第一部分坐标系第 1 节:平面直角坐标系教课目的:1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的地点的方法。
2.掌握坐标法解决几何问题的步骤;领会坐标系的作用。
教课要点:领会直角坐标系的作用。
教课难点:能够成立适合的直角坐标系,解决数学识题。
讲课种类:新讲课教课模式:启迪、引诱发现教课.教具:多媒体、实物投影仪教课过程:一、复习引入:情境 1:为了保证宇宙飞船在预约的轨道上运转,并在按计划达成科学观察任务后,安全、正确的返回地球,从火箭升空的时辰开始,需要随时测定飞船在空中的地点机器运动的轨迹。
情境 2:运动会的开幕式上经常有大型集体操的表演,此中不停变化的背景图案是由看台上座位摆列齐整的人群不停翻着手中的一本画布组成的。
要出现正确的背景图案,需要弊端不一样的画布所在的地点。
问题 1:怎样刻画一个几何图形的地点?问题 2:怎样创立坐标系?二、学生活动学生回首刻画一个几何图形的地点,需要设定一个参照系1、数轴它使直线上任一点P 都能够由唯一的实数x 确立2、平面直角坐标系在平面上,当取定两条相互垂直的直线的交点为原点,并确立了胸怀单位和这两条直线的方向,就成立了平面直角坐标系。
它使平面上任一点 P 都能够由唯一的实数对( x,y)确立。
3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确立了胸怀单位和这三条直线方向,就成立了空间直角坐标系。
它使空间上任一点P 都可以由唯一的实数对(x,y,z)确立。
三、解说新课:1、成立坐标系是为了确立点的地点,所以,在所建的坐标系中应知足:随意一点都有确立的坐标与其对应;反之,依照一个点的坐标就能确立这个点的地点2、确立点的地点就是求出这个点在设定的坐标系中的坐标四、数学运用例 1 选择适合的平面直角坐标系,表示边长为 1 的正六边形的极点。
选修4-4 第一讲 坐标系(平面直角坐标系)教案
![选修4-4 第一讲 坐标系(平面直角坐标系)教案](https://img.taocdn.com/s3/m/2372726fa45177232f60a25a.png)
②
我们把②式叫做平面直角坐标系中的一个坐标伸长变换。 3 怎样由正弦曲线 y=sinx 得到曲线 y=3sin2x? 它是 1、2 的合成,先保持纵坐标 y 不变,将横坐标 x 缩为原来 y 的 1/2,在此基础上,再将纵坐标变为原来的 3 倍,就得到正弦曲线 x y=3sin2x。 o 即在正弦曲线 y=sinx 上任取一点 P(x,y),若设点 P(x,y)经变换得到点为 P’(x’,y’), 坐标对应关系为
2012.05.05
选修 4-4 第一讲 坐标系
第 6 页 共 6 页
y
边 AC,CF 上的中线, 建立适当的平面直角坐标系探究 BE 与 CF
C E
的位置关系。 以△ABC 的顶点A为原点O,边 AB 所在的直线 x 轴,建
F O (A)
Bx
立直角坐标系,由已知,点 A、B、F 的坐标分别为 A ( 0, 0 ) , B
( c ,0 ) , F ( c/2 ,0 ).
平面直角坐标系中的伸缩变换 在三角函数图象的学习中,我们研究过这样的问题: 1 怎样由正弦曲线 y=sinx 得到 y=sin2x? 在正弦曲线 y=sinx 上任取一点 P(x,y), 保持纵坐标不变, 将横坐标 x 缩为原来的 1/2, 就得到正弦曲线 y=sin2x。 “保持纵坐标不变, 将横坐标 x 缩为原来的 1/2”, 上述变换实 质上就是一个坐标的压缩变换(如何解释?) ,即:设 P(x,y)是平面 直角坐标系中任意一点,保持纵坐标 y 不变,将横坐标 x 缩为原来 1/2,得到点 P’(x’,y’),坐标对应关系为:
2012.05.05
选修 4-4 第一讲 坐标系
第 5 页 共 6 页
2020秋高中数学人教A版选修4-4:第一讲一平面直角坐标系
![2020秋高中数学人教A版选修4-4:第一讲一平面直角坐标系](https://img.taocdn.com/s3/m/84255976b0717fd5370cdcb6.png)
代入 y=log3 x 得 y′=log3 12x′,
即 y=log3
x 2.
答案:y=log3
x 2
类型 1 运用坐标法解决平面几何问题(自主研析)
[典例 1] 已知 ABCD,求证|AC|2+|BD|2=2(|AB|2 +|AD|2).
证明:以 A 为坐标原点,AB 所在的直线为 x 轴,建 立平面直角坐标系 xAy,第一讲 坐系一、 平面直角坐标系
[学习目标] 1.体会直角坐标系的作用,掌握平面直 角坐标系中刻画点的位置的方法和坐标法的解题步 骤 . 2. 会 运 用 坐 标 法 解 决 实 际 问 题 与 几 何 问 题 ( 难 点). 3.通过具体例子,了解在平面直角坐标系伸缩变换 下平面图形的变化情况及作用(重点).
C.9x-y+1=0 D.x-4y+1=0
解析:由伸缩变换xy′′==13x2,y 得xy==123yx′′,, 代入方程 3x-2y+1=0,得 9x′-y′+1=0. 故经过伸缩变换后得到的直线方程为 9x-y+1=0. 答案:C
4.将点(2,3)变成点(3,2)的伸缩变换是________. x′=32x,
答案:y′=23y
5.将对数曲线 y=log3x 的横坐标伸长到原来的 2 倍 得到的曲线方程为____________.
解析:设 P(x,y)为对数曲线 y=log3 x 上任意一点, 变 换后的对 应点 为 P′(x′, y′), 由题意知 伸缩变换 为 x′=2x, y′=y,
所以x=12x′, y=y′.
2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形 的伸缩变换就可归纳为坐标伸缩变换,这就是用代数方法 研究几何变换. (2)平面直角坐标系中的坐标伸缩变换的定义:设点 P(x , y) 是 平 面 直 角 坐 标 系 中 任 意 一 点 , 在 变 换 φ : xy′′==μλ··xy((λμ>>00)),的作用下,点 P(x,y)对应到点 P′(x′,y′), 称 φ 为平面直角坐标系中的坐标伸缩变换,简称伸缩变 换.
人教A版高中数学选修4-4第一讲1.1平面直角坐标系教案
![人教A版高中数学选修4-4第一讲1.1平面直角坐标系教案](https://img.taocdn.com/s3/m/dbee1797e43a580216fc700abb68a98270feac5b.png)
⼈教A版⾼中数学选修4-4第⼀讲1.1平⾯直⾓坐标系教案平⾯直⾓坐标系本课提要:本节课的重点是体会坐标法的作⽤,掌握坐标法的解题步骤,会运⽤坐标法解决实际问题与⼏何问题.⼀、温故⽽知新1.到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2.在⊿ABC 中,已知A (5,0),B (-5,0),且6=-BC AC ,求顶点C 的轨迹⽅程.回顾:⼆、重点、难点都在这⾥【问题1】:某信息中⼼接到位于正东、正西、正北⽅向三个观测点的报告:正西、正北两个观测点同时听到⼀声巨响,正东观测点听到巨响的时间⽐它们晚4s.已知各观测点到中⼼的距离都是1020m.试确定巨响发⽣的位置.(假定声⾳传播的速度为340m/s ,各观测点均在同⼀平⾯上.)练⼀练:3.相距1400m 的A 、B 两个哨所,听到炮弹爆炸声的时间相差3s.已知声速为340m/s ,问炮弹爆炸点在怎样的曲线上?4.有三个信号检测中⼼A 、B 、C ,A 位于B 的正东,相距6千⽶,C 在B 的北偏西300,相距4千⽶.在A 测得⼀信号,4秒后B 、C 同时测得同⼀信号.试求信号源P 相对于信号A 的位置(假设信号传播速度为1千⽶/秒).课前⼩测典型问题【问题2】:已知⊿ABC 的三边c b a ,,满⾜2225a c b=+,BE ,CF 分别为边AC ,AB 上的中线,建⽴适当的平⾯直⾓坐标系探究BE 与CF 的位置关系.三、懂了,不等于会了5.选择适当的坐标系,表⽰边长为1的正三⾓形的三个顶点的坐标.6.两个定点的距离为6,点M 到这两个定点的距离的平⽅和为26,求点M 的轨迹.7.求直线0532=+-y x 与曲线xy 1=的交点坐标.8.求证:三⾓形的三条⾼线交于⼀点.四、试试你的⾝⼿呀9.已知A (-2,0),B (2,0),则以AB 为斜边的直⾓三⾓形的顶点C 的轨迹⽅程是 . 10.已知A (-3,0),B(3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为94,则点M 的轨迹⽅程是 .11.已知B 村位于A 村的正西⽅向1公⾥处,原计划经过B 村沿着北偏东600的⽅向埋设⼀条地下管线m.但在A 村的西北⽅向400⽶处,发现⼀古代⽂物遗址W.根据初步勘察的结果,⽂物管理部门将遗址W 周围100⽶范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?技能训练变式训练五、你有什么收获?写下你的⼼得应该记住的内容:重点内容:个⼈⼼得:12.在体育场排练团体操,甲、⼄两名同学所在位置的坐标分别为(2,1)、(3,2),丙同学所在位置的坐标为),5(a .若这三名同学所位置是在⼀条直线上,则a 的值为.13.到两坐标轴距离相等的点的轨迹⽅程是.14.已知直线2=-y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是.本课⼩结七、记下你的疑惑4.1.1—第⼀课【问题1】解:巨响在信息中⼼的西偏北450⽅向,距离m 10680处,.【问题2】解:BE 与CF 互相垂直,解答见课本第4页. 1.轨迹是线段AB 的垂直平分线,轨迹⽅程是x y -=;2.轨迹是双曲线的左⽀,轨迹⽅程是)3(116922-<=-x y x ;本课质疑3.爆炸点在以A 、B 为焦点的双曲线上,双曲线⽅程为122990026010022=-y x ;4.点P 位于点A 的北偏东300,相距10千⽶的位置;5.答案不唯⼀.对于图(1),)23,0(),0,21(),0,21(C B A -;对于图(2),)23,21(),0,1(),0,0(C B A ;6.点M 的轨迹是以这两个定点的中点为圆⼼,2为半径的圆; 7.)31,3(),2,21(--; 8.如图,以AB 所在直线为x 轴,边AB 上的⾼CD 所在直线为y 轴建⽴直⾓坐标系.设),0(),0,(),0,(c C b B a A -,则bck a c k BC AC -==,.∵AC BE BC AD ⊥⊥,,∴c a k c b k BEAD -==,,∴直线AD 、BE 的⽅程分别为)(),(b x cay a x c b y --=+=,联⽴解得0=x .所以AD 、BE 的交点H 在y 轴上.因此,三⾓形的三条⾼线交于⼀点;9.)0(422≠=+y y x;10.)0(14922≠=-y y x ; 11.如图,以A 为原点,正东⽅向和正北⽅向分别为x 轴和y 轴的正⽅向建⽴直⾓坐标系,则A (0,0),B (-1000,0),)2200,2200(-W .由于直线m 的⽅程是010003=+-y x ,于是点W 到直线m 的距离为100)625(100>--=d ,所以埋设地下管线m 的计划可以不修改;12.4; 13.0=-y x ;14.(4,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分坐标系
第1节:平面直角坐标系
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:体会直角坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
授课类型:新授课
教学模式:启发、诱导发现教学.
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运
动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需
要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的PMN ∆中,2tan ,2
1
tan -=∠=
∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程
例3 已知Q (a,b ),分别按下列条件求出P 的坐标
(1)P 是点Q 关于点M (m,n )的对称点
(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线
14
)1(9)1(2
2=-++y x 变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业:
.....................................
使用本文档删除后面的即可
致力于打造全网一站式文档服务需求,
为大家节约时间
文档来源网络仅供参考
欢迎您下载可以编辑的word文档
谢谢你的下载
本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,
打造全网一站式精品需求!
欢迎您的下载,资料仅供参考!
(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。