侧刚分析方法与总刚分析方法的区别

合集下载

PKPM侧刚分析方法与总刚分析方法的区别

PKPM侧刚分析方法与总刚分析方法的区别

PKPM侧刚分析方法与总刚分析方法的区别“侧刚分析方法”与“总刚分析方法”的不同之处在于是否有弹性楼板及是否有不与楼板相连的构件;另外,总刚分析方法可以准确反映结构的各项数据,但比侧刚分析方法花的计算时间长。

若有弹性楼板或有不与楼板相连的构件,则采用总刚分析较合理;若平面没有定义弹性楼板以及没有不与楼板相连的构件时,采用总刚分析方法与侧刚分析方法结果是一致的。

1.侧刚模型采用刚性楼板假定的简化的刚度矩阵模型,把房屋理想化为空间梁,柱和墙组合成的集合体,并与平面内无限刚度的楼板相互连接在一起。

不管用户在建模中有无弹性楼板,刚性楼板或越层大空间,对于无塔结构的侧刚模型假定每层为一块刚性楼板,而多塔结构则假定为一塔一层为一块刚性楼板。

对于这类建筑,每层的每块刚性楼板只有两个独立的平动自由的和一个独立的转动自由度,“侧刚模型”就是依据这些独立的平动和转动自由度而形成的浓缩刚度阵。

“侧刚分析方法”是一种简化计算方法,只适用于采用楼板平面内无限刚度假定的普通建筑和采用楼板分块平面内无限刚度假定的多塔建筑。

“侧刚分析方法”的优点是分析效率高,由于浓缩以后的侧刚自由度很少,所以计算速度很快。

但“侧刚计算方法”的应用范围是有限的,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆所等),“侧刚分析方法”是近似的,会有一定的误差,若弹性楼板范围不大或不与楼板相连的构件不多,其误差不会很大,精度能够满足工程要求;若定义有较大范围的弹性楼板或有较多不与楼板相连的构件,“侧刚分析方法”不适用,而应该采用下面介绍的“总刚分析方法”。

2.总刚模型是一种真实的结构模型转化成的刚度矩阵模型,结构总刚模型假定每层非刚性楼板上的每个节点的动力自由度有两个独立水平平动自由度。

可以受弹性楼板的约束,也可以完全独立不与任何楼板相连,而在刚性楼板上的所有节点的动力自由度只有两个独立水平平动自由度和一个独立的转动自由度。

PKPM(SATWE)的总信息参数说明(2008版)

PKPM(SATWE)的总信息参数说明(2008版)

/////////////////////////////////////////////////////////////////////////////////////////////建筑结构(SATWE)的总信息(2007版)/////////////////////////////////////////////////////////////////////////////////////////////本文以一栋7度区(0.1g)II类场地上的19层(含1层地下室)框架-剪力墙结构为例编写。

编写方式采用SATWE总信息文本格式,编入了SATWE常用参数及规范索引,并插入了“分析与设计参数补充定义”中的各个菜单,针对参数定义中的一些难点和疑点增加了较详细的说明,以方便对这些参数的理解和选择。

目录...................................................................总信息 (2)风荷载信息 (4)地震信息 (5)活荷载信息 (7)调整信息 (8)配筋信息 (10)设计信息 (12)荷载组合信息 (13)剪力墙底部加强区信息 (14)地下室信息 (14)砌体结构(底框)信息 (16)SATWE 计算参数 (17)总信息 .........................................结构材料信息: 钢砼结构..........按主体结构材料选择,底框选择[砌体结构]。

此参数便于程序正确选择相关规范计算地震力和风荷载。

混凝土容重 (kN/m3): Gc = 27.00.....框架宜取26kN/m3,剪力墙宜取28kN/m3,包含饰面材料的折算容重。

框-剪根据剪力墙数量取中间某值。

改变此参数也就改变了整个结构的砼容重,这时楼板砼重量宜采用手工输入。

见《荷规》附录A表A.1-6。

钢材容重 (kN/m3): Gs = 78.00.....取78kN/m3,考虑饰面材料重量时,应填入适当值。

PMSAP总体介绍

PMSAP总体介绍
1 圆钢管柱(斜撑)验算 2 方钢管柱(斜撑)验算
[钢管混凝土规程]
3 型钢柱(斜撑)配筋 4 型钢梁配筋
[冶金部标准]
五、后处理---结果表达
5.1 图形输出 5.2 文本输出
5.1 图形输出
1.结构变形
各静力工况位移动画 (+彩色云斑图) 各地震工况位移动画 (+彩色云斑图) 各阶固有振型动画 (+彩色云斑图) 时程响应位移动画 地震、风层间位移简图 时程分析层间位移简图 梁弹性挠度图
2.9 计算模型处理
1.剪力墙网格自动细分(LXmax,LYmax) 2.楼板网格自动细分 (LXmax) 3.与楼板相邻的梁的自动细分(LXmax) 4.与剪力墙相邻的柱的自动细分(LYmax) 5.楼层间协调性自动修复,消除悬空墙、悬空柱 6.自动实现梁、楼板和剪力墙的相互协调细分
细分墙、细分楼板、细分杆件以及 考虑自动相互协调带来的具体的
21
20

19

7
18

17
6
16

15

5
14

4
13

12 3
11

2
10
9 1
8
楼层灵活编号,避免因打断造成的过矮楼层, 楼层位移、楼层刚度等结果统计更符合规范
16
15 10
9
14
8
13
7 12
6
5
11
4
3
2 1
(多塔+错层)情况的编号
15
14
13
22
12
11
21
10
20
9
8

技术措施-PKPM参数

技术措施-PKPM参数

技术措施-PKPM参数结构专业技术措施之PKPM-SATWE参数取值:⼀.总信息:1)⽔平⼒与整体坐标夹⾓:该参数主要针对风荷载计算,同样对地震⼒起作⽤。

只需考虑其它⾓度的地震作⽤时,⽆需在此填数值,应填“斜交抗侧⼒构件⽅向地震数,相应⾓度”或勾选“程序⾃动考虑最不利⽔平地震作⽤”⼀般按0输⼊。

2)混凝⼟容重:钢筋砼计算重度,考虑饰⾯的影响应⼤于25,不同结构构件的表⾯积与体积⽐不同饰⾯的影响不同,⼀般按结构类型取值:结构类型框架结构框剪结构剪⼒墙结构重度 26 26.5 273) 钢材容重:⼀般情况下,钢材容重为78KN/m3,若要考虑钢构件表⾯装修层重,钢材的容重可以填⼊适当值。

4)裙房层数:层数要从最底层算起,包括地下室层数。

此参数主要⽤来确定剪⼒墙底部加强区⾼度。

抗规第6。

1。

3条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各⼀层应适当加强抗震措施;但是该参数的作⽤在程序中并没有反应。

绘图中采⽤构造加强。

注意:对于体型收进的⾼层建筑结构、底盘⾼度超过总⾼度20%的多塔尚应符合⾼规10.6.5条;⽬前程序不能⾃动将体型收进部位上、下各两层塔楼周边竖向构件抗震等级提⾼⼀级,需要在“特殊构件定义”中⾃⾏定义,不宜事后提⾼配筋。

5)转换层所在层号:层数要从最底层算起,包括地下室层数。

如果有转换层,必须在此指明其层号,以便进⾏正确的内⼒调整。

注意:程序不能⾃动识别转换构件!作⽤:a、程序⾃动判断加强区层数;b、输⼊转换层数,并选择相应的楼层刚度算法,软件会输出上下层楼层刚度⽐。

C、计算参数中有将转换层号⾃动识别为薄弱层的选项。

抗震等级:程序设有“框⽀剪⼒墙结构底部加强区剪⼒墙抗震等级⾃动提⾼⼀级”的选项。

(⾼位转换可以⾃动再提⾼)转换层全层应设置为“弹性膜”(平⾯内刚度真实考虑,平⾯外为0)转换层结构选择“施⼯模拟3”时,施⼯次序:宜将转换层与其上2层设为同⼀施⼯次序。

SATWE空间结构墙元分析软件

SATWE空间结构墙元分析软件

41
5
75
第 1 层墙柱 墙梁编号及节点简图 梁总数 = 92 柱总数 = 52 墙梁数 = 0
37
1
墙柱数 = 0
图四 有斜交抗侧力结构
1
2
43
30
57
58
32
2)
混凝土容重、钢材容重 混凝土按25kN/m3,若为轻骨料或考虑装修,可按实际情况填写。 一般民用建筑可填写为26~27kN/m3。钢材可按78kN/m3。 3) 裙房层数、转换层所在层号 指定高层建筑的裙房层数是为了是为了0.2Q0的调整.对于立面 有变化的高层,程序给出0.2Q0调整可能偏大,可人工干预调整。转 换层所在层号按实际所在楼层填写。 4) 地下室层数 地下室和上部结构一起建模进行内力分析时须指定地下室层 数。这是为了导算风荷载(地下室无风荷载)和自动形成嵌固约束 信息。 5) 墙元细分最大控制长度。 隐含值为2m。填写范围在1≤D≤5。对于一般工程取2m,对框支 剪力墙取1m。 6) 对所有楼层强制采用刚性楼板假定 验算结构层间位移比和判断参与振型数足够与否时选择。除此 之外,不选择此项。 “刚性楼板假定”是由程序自动判断结构的楼板情况,当该房间 布臵楼 板后,且没有对该房间定义为“弹性楼板” ,则程序自动按 “刚性楼板 假定”分析; “强制性刚性楼板”是新规范设计“位移 比”的需要,楼层中的房间可能是“刚性板” 、 “弹性斑” 、 “板厚为0” 等这三种情况,这样在计算楼层平均位移时,只有把楼层中的所有 房间均按“强制刚性楼板”计算,平均位移才能计算准确,则位移 比也能计算合理; “强制刚性楼板”仅用于位移比的计算,构件设计 则不应选择“强制刚性楼板” ,因次需要进行两次计算。 7) 墙元侧向节点信息 “内部节点”只考虑上下边变形协调,是一种简化模拟,精度稍 差,有洞口墙元侧边会有变形不协调,但分析效率高,适合剪力墙 多的工程规模大的高层; “出口节点”四边上节点均考虑,变形协调好,计算精度高,但计 算量大,适合剪力墙少的工程规模小的高层。 8) 结构材料信息、结构体系、风荷载计算、地震计算 按实际情况填写。 9) 恒活荷载计算信息 “不计算竖向力” :它的作用主要用于对水平荷载效应的观察和 对比等。 “一次性加载计算” :主要用于多层结构,而且多层结构最好采 用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影 响很小,所以不要采用模拟施工方法计算。

PKPM2010问题(计算)集锦

PKPM2010问题(计算)集锦

630版中增加了那些解决连梁抗剪超限的方法630版中增加了两种解决连梁抗剪超限的方法,1增加了双连梁的设计功能 2 增加了采用交叉斜筋与对角斜撑的功能630版与前一版本楼层抗剪承载力差异的主要原因型钢的楼层抗剪承载力的计算不再将型钢等效为钢筋进行计算,而是按照《型钢混凝土组合技术规程》中承载力的公式计算其极限弯矩与极限剪力进行控630版与前一版本节点核心区差异的主要原因梁端弯矩取到梁刚域处。

630版与前一版本混凝土柱配筋差异的主要原因顶层柱的判断准则改为按照柱上部是否存在竖向构件进行判断。

中震弹性和中震不屈服下剪力墙轴压比相同剪力墙轴压比是恒活荷载控制的与地震无关。

如果在中震不屈服时采用混凝土强度标准值,则其轴压比与小震相比将会降低,更不合理PMSAP与SATWE地下室土约束位置的差异SATWE中的土约束默认为作用在刚性楼板上,PMSAP作用在节点上,新版的SATWE中允许地下室顶板按弹性板计算,此时SATWE与PMSAP一致。

PMSAP与SATWE调幅的差异SATWE的支座是按照梁端是否有竖向构件进行判断,PMSAP按照恒荷载下梁端是否是负弯矩进行判断。

PMSAP与SATWE的活荷载折减差异SATWE的活荷载折减在PM中进行,即折减荷载,PMSAP中是在设计中实现的,是折减效应。

PMSAP中为什么有的剪力墙没有输出配筋?程序自动判断的转换墙会给出梁式配筋,在“剪力墙面外及转换墙配筋”菜单中查看。

PMSAP中斜墙配筋结果是什么含义?斜墙按照应力配筋,并考虑了边缘构件等构造要求。

H打头的为水平筋,V打头的为竖向筋。

PMSAP中弹性板配筋每点处均有两个值,是什么含义?板边处分别为平行于板边和垂直于板边的配筋,形心处为主弯矩方向的配筋,目前没有输出角度,可在文本文件中查看。

下一版会增加形心处配筋角度的输出。

边缘构件的配筋特别大是什么原因?一般是由于短肢剪力墙考虑全截面配筋率造成的。

抗震等级为4级时为什么会出现约束边缘构件?应在参数中勾选“当边缘构件轴压比小于抗规6.4.5条规定的限值时一律设置构造边缘构件”连梁刚度折减系数程序中是如何考虑的?连梁有两种方式建模:一是按照框架梁建模并指定连梁属性,二是按照剪力墙开洞建模,在分析程序中会自动将洞口上方判断为连梁。

建筑结构毕业设计使用PKPM软件应注意的关键问题

建筑结构毕业设计使用PKPM软件应注意的关键问题

建筑结构毕业设计使用PKPM软件应注意的关键问题王晓飞【摘要】在分析目前普通本科高校土木工程专业毕业设计现状的基础上介绍了利用PKPM软件进行建筑结构毕业设计的意义.针对学生利用PKPM软件进行毕业设计时存在的问题,以结构设计理论为基础,以规范准则为依据,介绍了利用PKPM软件在建筑结构毕业设计时需要注意的关键问题.【期刊名称】《南阳师范学院学报》【年(卷),期】2019(018)003【总页数】5页(P39-43)【关键词】PKPM软件;土木工程专业;建筑结构;毕业设计;问题【作者】王晓飞【作者单位】南阳师范学院土木建筑工程学院,河南南阳473061【正文语种】中文【中图分类】G642.00 引言毕业设计是土木工程专业本科教育阶段最后一个综合性实践教学环节[1-2].目前,大部分土木工程专业师生在选择毕业设计题目时,往往倾向于建筑结构设计类.对于此类毕业设计,一小部分学生会选择手算手绘施工图的模式,而大部分学生则选择利用PKPM软件进行辅助设计.如果利用手算手绘施工图的模式进行结构毕业设计,虽然可以最大程度地训练学生的专业基本功,但其中计算与手绘施工图属于低效劳动,在设计市场早已被淘汰.而目前,PKPM软件在国内设计行业中占有绝对优势,拥有用户上万家,市场占有率高达90%以上,现已成为国内应用最为普遍的CAD系统[3].利用PKPM软件进行毕业设计的辅助设计既能很好地考察学生的结构设计理论知识,又可实现与实际设计市场接轨的目的.许多学生在建筑结构毕业设计中只是机械性地学会了PKPM软件操作,还存在结构设计概念不清晰、软件中参数的选取不明确、结构设计所涉及的规范条文不理解、结构设计结果出现问题不知怎样处理等问题.基于此,针对土木工程专业学生的特点,以结构设计理论为基础,以规范准则为依据,介绍了PKPM软件在建筑结构毕业设计中需要注意的关键问题.1 柱、梁截面尺寸估算问题学生在进行柱、梁建模时一般会忽略截面的估算,直接根据经验或某些书上的例题确定柱、梁截面尺寸.这些学生中大部分是因为不清楚柱、梁尺寸的估算原理和步骤.柱截面尺寸的估算步骤为:1)确定建筑物所在地区的抗震设防烈度及设计地震分组;2)确定建筑物的抗震等级;3)进一步确定框架柱的截面形状与尺寸.框架柱截面尺寸可初步按下式估算:≤[μN],(1)N=βSgn,(2)式中,N为地震作用组合下柱的轴向压力设计值;fc为混凝土轴心抗压强度设计值;Ac为柱截面尺寸;[μN]为柱轴压比值;β为考虑地震作用组合后柱的轴向压力增大系数,角柱、边柱均取1.3,中柱等跨度取1.2,中柱不等跨度取1.25;S按简支状态计算柱的负荷面积;g为单位建筑面积上的重力荷载代表值,可近似取12~15 kN/m2;n为楼层层数.《建筑抗震设计规范》(GB 50011—2010)[4](下文中简称《抗规》)6.3.5条规定,抗震等级为三级且超过2层的建筑中框架柱的截面宽度和高度不宜小于400 mm且长边与短边之比不宜超过3.2 楼梯布置问题相比较2001版的《抗规》,2010版《抗规》增加了第6.1.15条,用以考虑楼梯的斜撑作用对结构刚度、承载力以及规则性的影响.学生在布置楼梯时经常会出现楼梯布置不上或参数设置不合理等情况.解决上述问题的唯一办法是正确理解“平行两跑楼梯—智能设计对话框”中各参数的含义及建筑施工图中结构层高、楼梯的设计参数等.“平行两跑楼梯—智能设计对话框”如图1所示.图1 平行两跑楼梯—智能设计对话框首先,需要注意的是底层楼梯布置需设置“起始高度”,即底层楼梯从室内±0.000标高开始,底层结构高度从基础顶面开始,两者之间的差值绝对值即为“起始高度”.其余层的楼梯“起始高度”为0.其次,注意“起始节点号”的选择,有时程序默认的“起始节点号”与实际建筑中楼梯的起始位置不一致,此时需要按照建筑图中楼梯的实际工程情况选择“起始节点号”以及确定是否勾选“是否是顺时针”.图1中“各梯段宽”是指梯井边缘至梁边的距离,“各梯段宽”=梯井边缘至墙边缘的距离-梁边缘到墙边缘的距离.“各标准跑详细设计数据”中第1跑的“起始位置”与第2跑的“结束位置”相等,第1跑的“结束位置”与第2跑的“起始位置”数值相等,而且“平台宽度”=第1跑“结束位置”.最后,注意图1中的其他参数需要根据建筑施工图中楼梯的实际工程情况进行填写.3 SATWE模块中参数理解问题在SATWE模块中进行各参数补充定义时,部分学生存在参数理解不清楚、参数选值不确定等问题.3.1 “分析与设计参数补充定义(必须执行)”选项中需要注意的参数3.1.1 对所有楼板强制采用刚性楼板假定:根据实际工程情况选择是否勾选.《高层建筑混凝土结构技术规程》(JGJ 3—2010)[5](下文简称《高规》)5.1.5条规定,进行高层建筑内力与位移计算时,可假定楼板在其自身平面内无限刚性.一般建筑结构仅在计算位移比时建议选择,在进行结构内力分析和配筋计算时可不选择.3.1.2 X、Y向结构基本周期:此项用于X向和Y向风荷载的计算.SATWE计算完成后,得到了准确的结构自振周期,再回到此处将新的周期值填入,然后重新计算,以得到更为准确的风荷载.对于比较规则的结构,可采用近似方法计算基本周期.框架结构T=(0.08~0.1)N;框剪结构、框筒结构T=(0.06~0.08)N;剪力墙结构、筒中筒结构T=(0.05~0.06)N,其中N为结构层数.结构基本周期主要是计算风荷载中的风振系数用的,设计人员可以先按照程序给定的缺省值对结构进行计算.计算完成后再将程序输出的第一平动周期值填入即可.如果不想考虑风振系数的影响,则可在此处输入一个小于0.25的值.3.1.3 柱配筋计算原则:根据实际工程情况确定.若按单偏压计算,程序按单偏压计算公式分别计算柱两个方向的配筋;若按双偏压计算,程序按双偏压计算公式计算柱两个方向的配筋.《高规》6.2.4条规定:抗震设计时,框架角柱应按双向偏心受力构件进行正截面承载力设计.一般情况下,SATWE设计信息中选择“按单偏压计算”,然后在柱施工图归并选筋后,再进行双偏压验算.3.2 “结构内力,配筋计算”选项中需要注意的参数3.2.1 层刚度比计算:《抗规》3.4.2和3.4.3条建议的计算方法是地震剪力与地震层间位移比.对于多层(砌体、砖混底框),宜采用剪切刚度;对于带斜撑的钢结构,宜采用弯剪刚度;多数结构宜采用地震剪力与地震层间位移比(所有结构均可采用该方法进行层刚度比计算).3.2.2 地震作用分析方法:“侧刚分析方法”是指按侧刚模型进行结构振动分析,“总刚分析方法”是指按总刚度模型进行结构的振动分析.当考虑楼板的弹性变形(某层局部或整体有弹性楼板单元)或有较多的错层构件(如错层结构、空旷的工业厂房、体育馆所等)时,建议采用“总刚分析法”.4 计算结果分析问题利用SATWE模块对所建结构模型进行内力与配筋计算后,大部分学生不会根据SATWE模块输出的结果图形与文本显示进行分析,即使发现问题也不知怎样对模型或参数进行调整.要想解决上述问题,需要结合规范准则、结构设计理论知识及结构设计经验最终确定修改方案.4.1 文本文件输出“文本文件输出”选项中需要重点检查“结构设计信息”“周期、振型、地震力”“结构位移”选项.4.1.1 “结构设计信息”选项中一般从以下三个方面对计算结果进行检查4.1.1.1 进一步校对、复核SATWE中“分析与设计参数补充定义”的参数有无错误,包括总信息、风荷载信息、地震信息、活荷载信息、调整信息、配筋信息、设计信息、荷载组合信息等输入信息.4.1.1.2 查看“各层的质量、质心坐标信息”“各层构件数量、构件材料和层高”“风荷载信息”“各楼层偶然偏心信息”“各层楼等效尺寸”等信息.核对“各楼层单位面积质量”,各层楼的单位面积质量=结构总重量/建筑面积.一般情况下,框架结构的单位面积质量大约为11~14 kN/m2,框剪结构大约为13~15 kN/m2,剪力墙结构大约在15 kN/m2左右.4.1.1.3 查看“计算信息”.“计算信息”中重点检查以下4项:(1)“各层刚心、偏心率、相邻层侧移刚度比等计算信息”中“刚度比”需要重点检查,通过检查“刚度比”判断结构竖向有无薄弱层.(2)“结构整体抗倾覆验算结果”中的“零应力区”需要检查,一般情况下“零应力区”数值不允许大于15.根据《抗规》4.2.4条规定,高宽比大于4的高层建筑,在地震作用下基础底面不宜出现零应力区;其他建筑,基础底面与地基土之间的零应力面积不应超过基础底面积的15%.(3)“结构整体稳定验算结果”中的“刚重比”需要检查.刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆.当结构刚重比大于10时,能够通过《高规》5.4.4条的稳定验算;当结构刚重比大于20时,可以不考虑重力二阶效应.(4)“楼层抗剪承载力及承载力比值”中的“最小楼层抗剪承载力之比”需要检查. 《高规》3.5.3条规定,A级高度高层建筑的楼层抗侧力结构的层间受剪承载力不宜小于其相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%;B级高度高层建筑的楼层抗侧力结构的层间受剪承载力不应小于其相邻上一层受剪承载力的75%.4.1.2 “周期、振型、地震力”选项中一般对以下3个计算结果进行检查4.1.2.1 检查“考虑扭转联耦时的振动周期(秒)、X,Y方向的平动系数、扭转系数”计算结果,主要核算结构的“周期比”是否满足规范要求以及检查“地震作用最大的方向”值的大小.周期比主要用来控制结构扭转效应,减小扭转对结构产生的不利影响.《高规》第3.4.5条规定:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9.如果出现不能满足要求的情况,一般通过调整平面布置来改善.总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱或梁的刚度.当地震作用最大方向的计算结果大于15度时,需要将夹角计算结果输入到“水平力与整体坐标夹角”中重新计算.4.1.2.2 检查“各层X、Y方向的作用力”计算结果.主要检查结构“X向、Y向各层剪重比”以及“X向、Y向的有效质量系数”是否满足规范要求.剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,具体要求参见《抗规》表5.2.5及《高规》表4.3.12.有效质量系数:《抗规》5.2.2条文说明及《高规》第5.1.13条第1款要求,有效质量系数不应小于90%.4.1.3 “结构位移”选项中主要检查X、Y向在各工况下的“最大层间位移角”以及“最大位移比”是否满足规范要求.《抗规》表5.5.1中规定了各种结构类型的弹性层间位移角的限值,其中钢筋混凝土框架结构的层间位移角限值为1/550.《抗规》3.4.3条规定:在规定水平力作用下,楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍,则结构属于扭转不规则.如果结构的“最大层间位移角”“最大层间位移与平均层间位移的比值”以及“最大位移与层平均位移的比值”出现不满足规范要求的情况,可以通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距.4.2 图形文件输出“图形文件输出”选项中需要重点检查“混凝土构件配筋及钢构件验算简图”选项.其中梁配筋信息中有红色字体出现,则代表梁超筋;柱配筋信息中出现红色字体,则代表柱超筋或轴压比超限.造成梁超筋的原因主要有两种:第一种是梁抗剪承载力不足,第二种是梁抗弯承载力不足.具体是哪种原因造成的超筋需要单击“构件信息”中的“梁信息”,如图2所示,然后鼠标左键红色的梁,则会弹出记事本,如图3所示.图3中框内信息即是超筋的原因:抗剪承载力不足.图2 构件信息图3 超筋信息不同原因造成的超筋问题的解决方案不同:(1)针对抗剪承载力不足引起的超筋问题的解决方案抗剪差的原因主要是和梁垂直搭接次梁传来的力太大,超过本根梁能超过的范围.有两种解决办法,主要减小传来梁的剪力:一是在PKPM-SATWE特殊构件定义中将传来梁的定义为铰接,这是解决此类问题的很好的办法;二是提高本梁的刚度,主要方法是加大梁的截面和提高混凝土等级等.(2)针对抗弯承载力不足引起的超筋问题的解决方案如果是抗弯承载力不足引起的超筋,造成梁抗弯承载力不足的原因有很多,例如输入的荷载错误,有可能是荷载输入过大;梁截面过小;混凝土的强度等级过低等.针对以上原因,解决办法是根据实际工程情况减小荷载、加大梁的截面尺寸或者适当提高混凝土强度.除了上述介绍的造成梁超筋的常见原因外,还有很多其他原因,需要设计人员根据实际工程情况进行判断并提出解决方案.针对轴压比超限的常见解决方法有:①加大柱子截面面积;②采用高强度混凝土.引起柱超筋的原因很多,需要针对不同原因提出相对应的解决方法.(1)如果是框架结构整体刚度不足,在地震力的作用下倾覆力矩太大而超筋,这时结构的位移角基本上也不会满足规范要求,可以通过查看“结构位移”确定.这种情况下可以增大柱截面或是增加柱数量,也可以尝试增加斜撑或者阻尼支撑,甚至可以增加一些剪力墙.(2)如果是与柱相连的梁线刚度太小(尤其是大跨度结构),梁受弯时会传递很大的弯矩给柱端,弯矩将造成柱端出现很大的偏心,从而导致柱超筋.这种情况在竖向力较小时(比如顶层)比较常见,此时增大梁高或者减小柱距就能有效解决问题.(3)如果是结构平面局部薄弱,平面刚度突变而出现柱超筋,这主要是由水平力作用下的应力集中引起的.这种情况下可以增大薄弱部位处的刚度(增大柱截面或者增加柱根数),或者直接在平面薄弱部位处设置抗震缝,将结构断开成两个单体. (4)如果是结构平面扭转较大,局部(尤其是边角)形成很大的剪力而造成超筋,这时首先考虑对整体结构进行调整,平衡刚度,使结构刚度中心与质量中心尽量重合以减少扭矩.如果上述措施还不能解决柱超筋问题,可以再考虑增大柱截面.(5)如果结构竖向存在薄弱层,软件在计算时会将该薄弱层乘以放大系数,这种情况也容易引起超筋.薄弱层一般是因为上层的刚度太大,所以除了增大本层刚度外,还可以尝试降低上层刚度.5 结语利用PKPM软件进行建筑结构毕业设计不仅仅是软件的简单操作,其中涉及大量结构设计理论知识、规范条文、参数含义等,并要求学生具备分析计算结果并解决问题的能力.本文针对PKPM软件设计过程中学生比较容易出现问题的地方进行了详细分析与解释,可以在一定程度上提高土木工程专业学生的结构设计能力及毕业设计质量. 参考文献【相关文献】[1]曹云,孟云梅. 土木工程专业毕业设计教学改革与实践[J]. 中国电力教育,2012(28):117-118.[2]孙文彬. 土木工程专业毕业设计教学改革与实践[J]. 长沙大学学报,2006,20(5):101-104.[3]陈占锋,向娟. 结构设计软件应用:PKPM[M]. 2版.武汉:武汉大学出版社,2017.[4]中华人民共和国住房和城乡建设部.建筑抗震设计规范GB 50011—2010 [S]. 北京:中国建筑工业出版社, 2010.[5]中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程JGJ 3—2010[S]. 北京:中国建筑工业出版社, 2010.[6]刘于,王龙海,罗德海. 浅谈PKPM软件在建筑结构课程教学中的应用[J]. 绿色环保建材,2018(5):270.[7]代发能. PKPM框架结构设计分析[J]. 建材与装饰,2018(30):113-114.。

多层框架房屋STAWE结构整体计算时设计参数合理选取的几点思考

多层框架房屋STAWE结构整体计算时设计参数合理选取的几点思考

多层框架房屋STAWE结构整体计算时设计参数合理选取的几点思考摘要:多层框架房屋结构设计中如何确保工程项目的安全性和经济性,在结构整体计算中的参数选取对其有着极为重要的作用。

本文主要从以下几点,针对多层框架房屋结构整体计算进行了简单思考。

关键词:多层框架房屋结构设计;安全性;合理性;经济性随着我国经济的发展和城市化进程的加快,结构设计计算软件的成熟,结构工程师们越来越依赖结构软件的计算,虽然我国设计行业已经实行注册制度,但现阶段设计人员业务素质良莠不济,有的设计人员只知道按软件默认的参数设置进行计算,各类参数与实际情况不符合,对计算结果不能做出合理的判断,这在很大程度上为建筑工程埋下了安全隐患,而且还造成了经济浪费。

在设计中,要以规范为标准,按工程实际情况,合理取舍计算参数,对所有计算结果的分析和判断,保证其数据的正确性、合理性以及科学性,待所有的数据都合理取舍后,再进行结构设计。

在目前结构计算普遍采用pkpm结构计算软件的情况下,为了保证结构计算的合理性和有效性,准确地分析和选择计算信息中各项参数显得尤为重要。

多层框架房屋结构设计中如何确保工程项目的安全性和经济性,在结构整体计算中的参数选取对其有着极为重要的作用。

本文主要从以下几点,针对多层框架房屋结构整体计算设计参数进行梳理分析。

1、水平力的夹角参数实际上是指水平力与整体坐标之间的夹角参数,建筑物的整体坐标建立以后,认为风荷载和地震力总是沿着坐标轴方向作用,将建筑物沿顺时针方向旋转一个角度,使结构在设定的坐标系下,风荷载和地震力作用下,处于最不利的受力状态下。

计算结果表明,在水平力夹角不是零的情况下,结果在结构整体计算中应该选择总刚度分析方法,则结构本身的周期、振型等固有特性不会改变,也就是结构的周期值、各周期振型的平动系数、扭转系数不变,但是平动系数的两个方向的分量有所改变;如果在结构整体计算中选择侧刚分析方法,结构模型的侧向刚度将随之改变,结构的周期和振型也会发生变化,因此建议在结构整体结构计算时,在各种情况下均采用总刚分析方法,不应采用侧刚分析方法。

PKPM结果输出文件说明精选文档

PKPM结果输出文件说明精选文档

P K P M结果输出文件说明精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-结构设计信息输出文件(WMASS ·OUT)运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。

WMASS ·OUT 文件包括六部分内容,其输出格式如下:第一部分为结构总信息这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。

第二部分为各层质量质心信息,其格式如下:Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中:Floor —— 层号Tower —— 塔号⎭⎬⎫--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t)Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2)接后输出Total Mass of Dead Load Wd ——恒载产生的质量Total Mass of Live Load Wl ——活荷产生的质量Total Mass of the Structure Wt ——结构的总质量第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower Beams Columns Walls Height Total-Height 其中:Floor ——层号Tower ——塔号Beams(Icb)——该层该塔的梁数,括号内的数字为梁砼标号Columns(Icc)——该层该塔的柱数,括号内的数字为柱砼标号Walls(Icw)——该层该塔墙元数,括号内的数字为墙砼标号Height ——该层该塔的层高(单位m),Total-Height ——到该层为止的累计高度。

PKPM说明

PKPM说明

砼梁和劲性梁其中:As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asv表示梁在Sb范围内的箍筋面积(cm2),取抗剪箍筋Asv与剪扭箍筋Astv的大值;Ast表示梁受扭所需要的纵筋面积(cm2);Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。

G,TV分别为箍筋和剪扭配筋标志。

梁配筋计算说明:1.对于配筋率大于1%的截面,程序自动按双排筋计算;此时,保护层取60mm;2.当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋;3.各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

钢梁其中:R1表示钢梁正应力与强度设计值的比值F1/f;R2表示钢梁整体稳定应力与强度设计值的比值F2/f;R3表示钢梁剪应力与强度设计值的比值F3/fv。

其中 F1,F2,F3 的具体含义:F1 = M/(Gb Wnb)F2 = M/(Fb Wb)F3(跨中)= V S/(I tw), F3(支座)= V/Awn矩形混凝土柱或劲性混凝土柱在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注:Asy、引出线标注:As_corner其中:As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值控制(cm2)。

Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2)。

Asv表示柱在Sc范围内的箍筋,它是取柱斜截面抗剪箍筋和节点抗剪箍筋的大值(cm2)。

楼板刚度假定在结构分析中的选用方法及其原理

楼板刚度假定在结构分析中的选用方法及其原理

楼板刚度假定在结构分析中的选用方法及其原理
摘要:正确理解楼板刚度的规范依据和力学原理,选取适当的楼板刚度假定模式,可起到正确模拟结构的实际受力、提高程序的分析精度、保证软件计算结果可靠的作用。

关键词:刚性楼板,侧刚分析法,总刚分析法
1前言
当今的结构体系日趋复杂,出现了各种形式的结构类型,如多塔、错层、带转换层、板柱、楼板局部开大洞等结构。

在普遍采用设计软件进行结构设计的今天,软件对结构楼板的刚度提供了多种假定供设计人员选择。

但在许多结构设计的审查中,楼板刚度的选用存在着诸多不适当的案例:刚、弹性楼板的假定选取较为混乱,选用的分析法也经常与之不对应。

所以,正确理解楼板刚度的规范依据和力学原理,选取合理的刚度假定,对提高程序的分析效率,保证分析结构的精度和可靠性是非常重要的。

2楼板刚度的各种假定
(1)问题的提出。

楼板是结构中量大面广的水平构件,它一方面承受着竖向荷载的作用,将其上及自身荷载传递给柱、墙等竖向构件,另一方面承受水平荷载(风、地震等)作用,且也将水平作用传递给竖向构件柱或墙。

所以,楼板既是重要的受力构件又是重要的传力构件。

由于楼板同时存在着平面内刚度和平面外刚度,在结构分析中,它的刚度假定对结构的整体刚度、对其他构件的内力都会产生较大的影响,即楼。

PKPM-设计参数--钢结构新型结构-

PKPM-设计参数--钢结构新型结构-

PKPM 设计参数PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。

2.结构主材(钢筋混凝土,砌体,钢和混凝土)。

4.底框层数,地下室层数按实际选用。

6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。

b.材料信息1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。

2.钢材容重取 78。

3.梁柱主筋类别,按设计需要选取。

优先采用三级钢,可以节约钢材。

SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。

(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取 26-27,钢材容重取 78。

3.裙房层数,转换层所在层号,地下室层数,均按实际取用。

(如果有转换层必须指定其层号)。

4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。

5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。

6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。

若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。

这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。

混凝土框架结构PKPM设置参数说明

混凝土框架结构PKPM设置参数说明

混凝土框架结构PKPM设计参数说明V2.2 20150909版目录第一节结构模型输入及参数设置 (7)一、总信息 (7)1.结构体系 (7)2.结构主材 (7)3.结构重要性系数 (7)4.底框层数,地下室层数 (7)5.与基础相连构件的最大底标高(m) (7)6.梁柱钢筋的混凝土保护层厚度 (7)7.框架梁端负弯矩调幅系数 (7)8.考虑结构使用年限的活荷载调整系数 (7)二、材料信息 (8)1.混凝土容重取26-27,全剪力墙取27,取25时需输入粉刷层荷载。

(8)2.钢材容重取78。

(8)3.梁柱箍筋 (8)三、地震信息 (8)1.设计地震分组为第x组,抗震设防烈度为x度,设计基本地震加速度值为xg82.场地类别 (8)3.框架抗震等级 (8)4.抗震构造措施的抗震等级 (8)5.计算阵型个数 (9)6.周期折减系数:建议有填充墙框架结构取0.7。

(9)四、风荷载信息 (10)1.修正后的基本风压 (10)2.地面粗糙度类别 (10)3.沿高度体型分段数及体型系数 (10)五、钢筋信息 (11)1.按照混凝土规范表4.2.3-1、4.2.3-2取用。

(11)六、选择后续操作 (11)1.楼梯自动转化为梁 (11)第二节楼板设计 (12)一、配筋计算参数中 (12)1.直径间距:最小直径8,钢筋最大间距200。

(12)2.双向板计算方法:选用弹性算法。

(12)3.边缘梁、剪力墙算法 (12)4.有错层楼板算法:按简支计算 (12)5.裂缝计算:根据裂缝挠度自动选筋 (12)6.使用矩形连续板跨中弯矩算法:勾选。

(12)7.钢筋级别:通常选取HRB400级。

(12)二、钢筋级配表 (13)三、连板及挠度参数 (13)四、绘图参数 (14)第三节分析和设计参数补充定义 (16)一、总信息 (16)1.水平力与整体坐标夹角(度):通常采用默认值。

(16)2.混凝土容重取26~27,钢材容重取78。

高层结构设计需要控制的七个比值及调整方法(根据2010新高规,抗规).

高层结构设计需要控制的七个比值及调整方法(根据2010新高规,抗规).

筑龙网 W W W .Z H U L O N G .C O M史上最精华的结构设计中的七个比值(根据2010新高规,抗规)高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:柱(墙)轴压比N/(fcA) 指柱(墙)轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比。

它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比。

规范对墙肢和柱均有相应限值要求,见10版高规 6.4.2和7.2.13。

筑龙网 W W W .Z H U L O N G .C O M轴压比不满足简便的调整方法:1)程序调整:S A T W E 程序不能实现。

2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

电算结果的判别与调整具体要点:(1).抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的限制也越严格。

对于框支柱、一字形剪力墙等情况而言,则要求更严格。

抗震等级低或非抗震时可适当放松,但任何情况下不得小于1.05。

(2).限制墙柱的轴压比,通常取底截面(最大轴力处)进行验算,若截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。

S A T W E 验算结果详 ,当计算结果与规范不符时,轴压比数值会自动以红色字符显示。

(3).需要说明的是,对于墙肢轴压比的计算时,规范取用重力荷载代表值作用下产生的轴压力设计值(即恒载分项系数取1.2,活载分项系数取1.4)来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,避免受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。

(4).试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规范针对情况的不同,对柱的轴压比限值作了适当的调整。

PKPM_设计参数

PKPM_设计参数

PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。

2.结构主材(钢筋混凝土,砌体,钢和混凝土)。

3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。

4.底框层数,地下室层数按实际选用。

5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。

6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。

7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。

b.材料信息1.混凝土容重取26-27,全剪力墙取27,取25时需输入粉刷层荷载。

2.钢材容重取78。

3.梁柱主筋类别,按设计需要选取。

优先采用三级钢,可以节约钢材。

SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。

(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取26-27,钢材容重取78。

3.裙房层数,转换层所在层号,地下室层数,均按实际取用。

(如果有转换层必须指定其层号)。

4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。

5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。

6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。

结构振型数的确定

结构振型数的确定

结构振型数的确定采用振型分解反应谱法进行结构地震反应分析时应确定合理的振型数。

要确保不丧失高振型的影响,程序要输入较多的计算振型数;但是输入的振型数过多超过了结构的自由度数,就会引起计算结果的不可靠.如何确定合适的振型数?1.《抗规》5.2.2不进行扭转联合计算的结构,水平地震作用标准值的效应,可取前2-3个振型,当基本自振周期大于1.5S或房屋高宽比大于5时,振兴个数应适当增加。

《高规》5.1.13-2抗震计算应考虑扭转联合,振兴数不应小于15,对于多塔结构,不应小于塔数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

上述规范给出的是计算振型数的下限!2.结构自由度的确定振型分析提供了两种结构计算方法:侧刚模型和总刚模型侧刚模型假定楼板为刚性楼板,对于无塔结构每层为一刚性楼板,有塔的结构一塔一层为一刚性楼板,每块刚性楼板有3个自由度,两个平动,一个转动。

侧向刚度就是建立在这些结构自由度上的。

例某n层无塔结构,侧刚模型结构的自由度为3*n。

有塔的结构如某30层3塔结构,第一塔1-30,第二塔6-25,第三塔3-28,则独立的刚性楼板数m=30+(25-6+1)+(28-3+1)=76,则结构自由度为3*76=228总刚模型是一种真实的模型,不再有刚性楼板的假定。

每个独立于刚性楼板的节点有两个水平方向的自由度。

对某n层无刚性楼板的结构,每层节点数为m 个,所以结构的自由度为2*n*m。

对于n层有刚性楼板的结构每层独立的节点为m个,有k个刚性楼板,则结构自由度为n*(2*m+3*k)。

上述结构的自由度为振型数的上限!3.选取足够的振型数,对于一个大型结构计算所有的振型数,所花费的计算机资源相当大!故没有必要就算所有的振型数,因为最后的那些高振型对结构的地震作用贡献很小。

所以足够就可以了。

规范规定足够的振型数要保证有效质量系数超过90%,否则振型数不够!振型数不够也是造成剪重比不满足要求的一个原因。

PKPM中斜梁的计算

PKPM中斜梁的计算

PKPM中斜梁的计算本文写作主要参考三本教材和自己摸索建模计算。

教材:(1)《PKPM结构软件若干常见问题剖析》中国建筑科学研究院建筑工程软件研究所著。

中国建筑工业出版社(2)《PKPM软件从入门到精通》杨星著,中国建筑工业出版社(3)《PKPM2010版SATWE说明书》PKPM2010版软件自带说明一、坡屋面建模特点输入方式:方式一:修改本楼层的上节点高。

方式二:输入梁两端的高差。

不宜将坡屋面较低处设为层高,然后对其他节点用上节点高输入正值,因为层高过小将引很很多有挂层性能指标计算不正确。

应该讲最高点屋脊设置为层高,其他节点用上节点高,输入负值。

知识点一,斜梁会打断属相构件,如柱、墙知识点二,斜梁、斜撑的区别:斜梁软件不会自动按压弯构件验算和配筋,但是斜撑软件会自动按压弯构件配筋。

知识点三,一根柱子最多只能被分成四段,(柱间只有三个节点)知识点四,在SATWE计算模型中,梁端与墙相连的一端被强制限制在楼层标高处,梁端与柱相连的一端会将柱向上延升并保持与梁端相连,梁端与其他主梁相连的且高出主梁截面高度的一端变成悬空端。

知识点五,此两不知在主梁上时,次梁梁顶标高低于主梁梁顶标高时,程序默认与主梁搭接。

二、坡屋面计算特点Satwe中只能计算斜梁,不能计算斜板。

PMsap、Spas-satwe中既可计算斜梁也可以计算斜板。

地震分析时,应该选用“总刚分析方法”而不是“侧刚分析方法”。

四、坡屋面、体育馆看台建模时注意事项坡屋面封口梁与下一层梁重复时,应该特别注意!!!!!!!楼梯参与建模,参与计算时,需要把楼梯转化成宽扁梁。

同时生产LT文件夹,改变计算目录,指定到LT中,重新计算。

PKPM中斜柱的计算(斜杆功能)一、应用范围第一、斜柱第二、柱间支撑第三、屋面水平支撑第四、转换层结构中桁架的斜杆第五、雨棚上的拉杆二、建模时的注意事项(1)当斜杆的中间部位与其他杆件相交时,程序不会处理这些杆件的连接关系,斜杆只在两个端点与相交杆件连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧刚分析方法”与“总刚分析方法”的不同之处在于是否有弹性楼板及是否有不与楼板相连的构件,另外总刚可以准确反映结构的各项数据,但比侧刚计算时间长。

若有弹性楼板或有不与楼板相连的构件,则采用总刚分析较合理;若平面没有定义弹性楼板以及没有不与楼板相连的构件时,采用总刚与侧刚结果是一致的。

侧刚模型:
采用刚性楼板假定的简化的刚度矩阵模型,把房屋理想化为空间梁,柱和墙组合成的集合体,并与平面内无限刚度的楼板相互连接在一起.不管用户在建模中有无弹性楼板,刚性楼板或越层大空间,对于无塔结构的侧刚模型假定每层为一块刚性楼板,而多塔结构则假定为一塔一层为一块刚性楼板.侧刚模型进行振型分析时结构动力自由度相对较少,计算耗时少,分析效率高,但应用范围有限制.
总刚模型:
这是一种真实的结构模型转化成的刚度矩阵模型,结构总刚模型假定每层非刚性楼板上的每个节点的动力自由度有两个独立水平平动自由度.可以受弹性楼板的约束,也可以完全独立不与任何楼板相连,而在刚性楼板上的所有节点的动力自由度只有两个独立水平平动自由度和一个独立的转动自由度.它能真实的模拟具有弹性楼板,大开洞的错层,连体,空旷的工业厂房,体育馆等结构.但自由度数相对比较多,计算耗时多且存储开销大.
形象点说吧:
侧刚模型,楼板无限刚,每层质量集中,象糖葫芦串;
总刚模型,质量集中于个节点,各节点间弹性连接,这时又有楼板是否无限刚的约束限制,都是种立体空间网格。

当考虑楼板的弹性变形(某层局部或整体有弹性楼板单元)、或有较多的错层构件时,建议采用总刚分析;
其他情况均可采用侧刚分析
地震力计算两种方法的区别
在tat以及satwe的“振型分解法”中,软件提供了两种计算方法,分别为“算法1”和“算法2”。

“算法1”为“侧刚计算方法”,这是一种简化计算方法,只适用于采用楼板平面内无限刚假定的普通建筑和采用楼板分块平面内无限刚假定的多塔建筑。

对于这类建筑,每层的每块刚性楼板只有两个独立的平动自由的和一个独立的转动自由度,“侧刚”就是依据这些独立的平动和转动自由度而形成的浓缩刚度阵。

“侧刚计算方法”的优点是分析效率高,由于浓缩以后的侧刚自由度很少,所以计算速度很快。

但“侧刚计算方法”的应用范围是有限的,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆所等),“侧刚计算方法”是近似的,会有一定的误差,若弹性楼板范围不大或不与楼板相连的构件不多,其误差不会很大,精度能够满足工程要求;若定义有较大范围的弹性楼板或有较多不与楼板相连的构件,“侧刚计算方法”不适用,而应该采用下面介绍的“总刚计算方法”。

“算法2”为“总刚计算方法”,就是直接采用结构的总刚和与之相应的质量阵进行地震反应分析。

这种方法精度高,适用范围广,可以准确分析出结构每层每根构件的空间反应,通过分析计算结果,可发现结构的刚度突变部位,连接薄弱的构件以及数据输入有误的部位等。

其不足之处是计算量大,比“侧刚计算方法”计算量大数倍。

对于没有定义弹性楼板且没有不与楼板相连构件的工程,“侧刚计算方法”和“总刚计算方法”的结果是一致的。

相关文档
最新文档