2020年【通用版】高考数学(艺术生)考前冲刺专题《椭圆》测试题(含答案)
高三椭圆练习题及答案
高三椭圆练习题及答案1. 技术背景在二维几何中,椭圆是一种重要的图形,具有许多应用。
高三学生需要掌握椭圆的基本概念、性质和相关的计算方法。
为了帮助高三学生巩固椭圆的知识,以下是一些椭圆练习题及答案。
2. 填空题(1) 如果椭圆E的长半轴和短半轴分别为a和b,则椭圆的离心率为________。
(2) 椭圆的焦点和直径的关系是________。
(3) 椭圆的离心率小于1,原点(0,0)在椭圆的________。
(4) 椭圆的离心率等于1,原点(0,0)在椭圆的________。
(5) 椭圆的离心率大于1,原点(0,0)在椭圆的________。
答案:(1) 椭圆的离心率为c/a;(2) 椭圆的焦点和直径的关系是焦点到椭圆周上任意一点的距离之和等于该点到椭圆的两个直径的距离之和;(3) 原点(0,0)在椭圆的右焦点所在的象限;(4) 原点(0,0)在椭圆的焦点所在的象限;(5) 原点(0,0)在椭圆的左焦点所在的象限。
3. 选择题(1) 下列各图中,哪个是椭圆?A. ![图1](image1.png)B. ![图2](image2.png)C. ![图3](image3.png)D. ![图4](image4.png)答案:C. ![图3](image3.png)(2) 椭圆的离心率等于1,这个椭圆的形状是________。
A. 长圆B. 倍圆C. 圆D. 短圆答案:C. 圆4. 计算题已知椭圆的焦点为F1(-3, 0)和F2(3, 0),离心率为2/3,求椭圆的方程。
答案:椭圆的焦距为2ae = 6,离心距为2c = 2/3 * 2a,解得a = 9,所以椭圆的方程为(x^2)/81 + (y^2)/36 = 1。
5. 应用题小明要设计一个椭圆形的游泳池,他希望池子的长半轴为8米,短半轴为6米。
假设池子的边界是一个完整的椭圆,求池子的周长和面积。
答案:椭圆的周长为2π * √((a^2 + b^2)/2) = 2π * √((8^2 + 6^2)/2) ≈ 39.97米。
(完整版)椭圆的测试题及详细答案
椭圆的测试题及答案时间:90分钟 满分:100分 一、选择题(共12小题,每小题5分)1.已知点P 是椭圆2244x y +=上的任意一点,(4,0)A ,若M 为线段PA 中点,则点M 的轨迹方程是 ( )A .22(2)41x y -+=B .22(4)41x y -+=C .22(2)41x y ++=D .22(4)41x y ++= 2(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 3.直线1y kx k =-+与椭圆 ) A .相交 B .相切 C .相离 D .不确定41及以下3个函数:①f(x)=x ;②f(x)=sin x③f(x)=cos x .其中函数图像能等分该椭圆面积的函数个数有( )A .1个B .2个C .3个D .0个5.已知P 是以1F ,2F 为焦点的椭圆上的一点,若21PF PF ⊥,且||2||21PF PF =,则此椭圆的离心率为( )A 6两个焦点分别是12,F F ,点P 是椭圆上任意一点,则12PF PF ⋅u u u r u u u u r的取值范围是( )A .[]1,4B .[]1,3C .[]2,1-D .[]1,1-7 ) A.焦点 B.焦距 C.离心率 D.准线8.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O为坐标原点.若点D 是线段1PF 的中点,则1F OD ∆的周长为( ).A9.已知椭圆)0(12222>>=+b a b y a x 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,120021=∠PF F 则椭圆的离心率e 的取值( )A..1,23⎪⎪⎭⎫⎢⎣⎡B.13,22⎡⎫⎪⎢⎪⎣⎭C.1,12⎡⎫⎪⎢⎣⎭D.23,22⎡⎤⎢⎥⎣⎦10.已知)2,4(是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的方程是( )A .02=-y xB .042=-+y xC .0432=++y xD .082=-+y x11.若直线4=+ny mx 和⊙O ∶422=+y x 相离,则过点),(n m 的直线与椭圆14922=+y x 的交点个数为( ) A. 至多一个 B. 2个 C. 1个 D. 0个12.若椭圆122=+ny mx 与直线01=-+y x 交于B A ,两点,过原点与线段AB 的中点的直线的斜率为22,则mn 的值为( )A .22B .2C .23 D .92二.填空题(共4小题,每小题5分)13.一个顶点是()0,2,且离心率为21的椭圆的标准方程是________________。
【精品】2019-2020年度最新人教版最新高中数学高考总复习椭圆习题及详解及参考答案
教学资料参考范本【精品】2019-2020年度最新人教版最新高中数学高考总复习椭圆习题及详解及参考答案撰写人:__________________部门:__________________时间:__________________一、选择题1.设0≤α<2π,若方程x2sin α-y2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A.∪B.⎣⎢⎡⎭⎪⎫π2,3π4 C.D.⎝ ⎛⎭⎪⎫3π4,3π2[答案] C[解析] 化为+=1, ∴->>0,故选C.2.(文)(2010·瑞安中学)已知双曲线C 的焦点、顶点分别恰好是椭圆+=1的长轴端点、焦点,则双曲线C 的渐近线方程为( )A .4x±3y=0B .3x±4y=0C .4x±5y=0D .5x±4y=0[答案] A[解析] 由题意知双曲线C 的焦点(±5,0),顶点(±3,0),∴a =3,c =5,∴b==4,∴渐近线方程为y =±x ,即4x ±3y =0.(理)(2010·广东中山)若椭圆+=1过抛物线y2=8x 的焦点,且与双曲线x2-y2=1,有相同的焦点,则该椭圆的方程是( )A.+=1B.+y2=1C.+=1D .x2+=1[答案] A[解析] 抛物线y2=8x 的焦点坐标为(2,0),则依题意知椭圆的右顶点的坐标为(2,0),又椭圆与双曲线x2-y2=1有相同的焦点,∴a=2,c =,∵c2=a2-b2,∴b2=2,∴椭圆的方程为+=1.3.分别过椭圆+=1(a>b>0)的左、右焦点F1、F2作两条互相垂直的直线l1、l2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫0,22C.D.⎝⎛⎦⎥⎤0,22 [答案] B[解析] 依题意,结合图形可知以F1F2为直径的圆在椭圆的内部,∴c<b,从而c2<b2=a2-c2,a2>2c2,即e2=<,又∵e>0,∴0<e<,故选B.4.椭圆+=1的焦点为F1、F2,椭圆上的点P 满足∠F1PF2=60°,则△F1PF2的面积是( )A. B. C.D.643[答案] A[解析] 由余弦定理:|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=|F1F2|2.又|PF1|+|PF2|=20,代入化简得|PF1|·|PF2|=,。
高考数学专题《椭圆》习题含答案解析
专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。
2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案
黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。
2020版高考数学(浙江专用)一轮总复习检测:10.1 椭圆及其性质 Word版含解析
,
( ) 12
6 ������2 + 1
点Q
������2
+
,0 3
到直线 l 的距离为
������2 + 3
.
4 3 1 + ������2 ������2 - 6
|AB|=
������2 + 3
,所以 6=2 3 ������2 - 6,解得 t2=9,所以 t=±3.因此直线 l 的方程为 x±3y-6=0.
������2 ������2
3
2.(2018 浙江宁波模拟(5 月),21)如图,椭圆 C:������2+������2=1(a>b>0)的离心率为 2 ,点 M(-2,1)是椭圆内一点,过
点 M 作两条斜率存在且互相垂直的动直线 l1,l2,设 l1 与椭圆 C 相交于点 A,B,l2 与椭圆 C 相交于点 D,E.当 M
[ ] [ ) 2 5
A. , 23
5 B. ,1
3
[ ] 2
C. , 3 - 1 2
D.[ 3-1,1)
答案 A
过专题 【五年高考】 A 组 自主命题·浙江卷题组
考点一 椭圆的定义和标准方程
������2 (2018 浙江,17,4 分)已知点 P(0,1),椭圆 +y2=m(m>1)上两点 A,B 满足������������=2������������,则当 m= 时,点 B
������2 ������2
6
2.(2018 浙江诸暨高三期末,21)已知椭圆 C:������2+������2=1(a>b>0)的离心率为 3 ,且经过点(3,1).
(1)求椭圆的标准方程;
2020高考冲刺数学总复习压轴解答:椭圆相关的综合问题(附答案及解析)
专题三压轴解答题第二关椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1) 问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第( 2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等•这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】方向一中点问题典例 1 . (2020 •山东高三期末)已知椭圆2 _- 1a \ 2的右焦点为F , P是椭圆C上一点, 2PF x轴, PF(1)求椭圆C的标准方程;(2)若直线I与椭圆C交于A、B两点, 线段AB的中点为M , O为坐标原点,且OM2,求AOB 面积的最大值•【举一反三】(2020•河南南阳中学高三月考) 已知椭圆2 _b21(a b 0)的一个焦点与抛物线y243x的焦点重合,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)直线I交椭圆C于A、B两点,线段AB的中点为M (1,t),直线m是线段AB的垂直平分线,求证: 直线m过定点,并求出该定点的坐标.方向二垂直问题(2)如图,过椭圆 C 的右焦点F 作两条相互垂直的直线uuuv 1 uuv uuuv 1 uuvAM —AB ,DN —DE ,求 MNF 面积的最大值.2 2【举一反三】2 2(2020 吉林东北师大附中高三月考)已知椭圆C :务占1( a b 0)的左焦点为F , P 是C 上一a b1点,且PF 与x 轴垂直,A , B 分别为椭圆的右顶点和上顶点,且 AB POP ,且 POB 的面积是-,其2中0是坐标原点• (1) 求椭圆C 的方程•(2) 若过点F 的直线h , 12互相垂直,且分别与椭圆 C 交于点M , N , S , T 四点,求四边形 MSNT 的 面积S 的最小值•方向三面积问题线与椭圆相交于 M , N 两点,点P 为线段MN 的中点,点0为坐标原点•当直线MN 的斜率为1时,直线1 0P 的斜率为2(1)求椭圆C 的标准方程;典例2. (2020 •安徽期末)已知椭圆2x ~2 a2721(b 0)的离心率e 2,且过点(丄2,上3) •2 2 2AB, DE 交椭圆分别于A, B,D, E ,且满足典例3. (2020 •安徽高三月考)已知椭圆 2 2E:十 1 a b 0的左焦点为Fa b1,0,经过点F 的直(1)求椭圆C 的方程;(ii )直线I 与y 轴交于点G ,记△ PFG 的面积为S 1,△ PDM 的面积为S ,求S1S 2的最大值及取得最大2 2(2020 •重庆高三月考)已知椭圆C :^- -y - 1 (aa b0)的离心率e—,且圆x 22y 1经过椭圆C(2)若点A 为椭圆的左顶点,点 B 为椭圆的右顶点,过 F 的动直线交该椭圆于 C , D 两点,记 ACD 的2 2r —C :a b2 ia b 0的离心率e二,且椭圆过点习(1) 求椭圆C 的标准方程;(2)设直线|与C 交于 M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM 1 ON COD ,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由【举一反三】面积为S i ,BCD 的面积为S 2,求S 2 S i 的最大值.典例4. (2020河南高三月考)已知椭圆 (2020 •全国高三专题练习)平面直角坐标系2 2xOy 中,椭圆C :与笃 a b1 a > b >0 的离心率是-11,抛物2 线E : x 2 2y 的焦点F 是C 的一个顶点. (I)求椭圆C 的方程;(I)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线|与C 交与不同的两点 A , B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点 M .(i )求证:点M 在定直线上 值时点P 的坐标.的上、下顶点 (1)求椭圆C 的方程;值(O 为坐标原点)方向四范围与定值问题过椭圆C 的上,下顶点 (1)求椭圆C 的方程.1(2)若直线|的斜率为1,且直线I 交椭圆C 于P 、Q 两点,点P 关于点的对称点为 E ,点A 2,1是椭2圆C 上一点,判断直线 AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.2典例6. (2020全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆 岂 x 2 1的上焦点重合,a 2且过点(2「2,1). (1)求椭圆的标准方程;1(2)若抛物线上不同两点 A , B 作抛物线的切线,两切线的斜率k 1,若记AB 的中点的横坐标为 m ,k 2AB 的弦长g(m),并求g(m)的取值范围【举一反三】2 2(2020全国高三专题练习(理))已知椭圆C :笃占 1 a b 0的长轴长是离心率的两倍,直线l :a 2b 214x 4y 30 交C 于A , B 两点,且AB 的中点横坐标为 一.2(1)求椭圆C 的方程;(2)若直线I 与椭圆C 相切,且与椭圆C 14a 24b 21相交于M , N 两点,证明: VOMN 的面积为定典例5. (2020 内蒙古高三期末)已知椭圆C :b21a b 0的离心率e于,且圆x2 y2平方之积是定值.为互2(1) 求椭圆C 的标准方程;(2) 设不过原点O 的直线I 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列, 求I OMN 面积的取值范围•【压轴选编】2 21. (2020全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C : A 占 1 ( a b 0)的离心a b率e . 2且椭圆C 上的点到点Q 0,2的距离的最大值为 3. (I)求椭圆C 的方程;(I)在椭圆C 上,是否存在点 M m,n ,使得直线I : mx ny 1与圆O : x 2 y 2 1相交于不同的两 点A 、B ,且OAB 的面积最大?若存在,求出点 M 的坐标及对应的 OAB 的面积;若不存在,请说明 理由.?? ??2.【福建省龙岩市 2019届高三第一学期期末教学质量检查】已知椭圆 +歹=1(??> ??> 0)的左、右焦 点分别为??,??,过点??的直线与椭圆?交于??,??两点,??????的周长为8,直线??= ?被椭圆?截得的线段长*4用为〒(1 )求椭圆?的方程;(2)设????是椭圆上两动点,线段???的中点为?????????的斜率分别为??,??(??为坐标原点),且4???? = -3 , 求|???的取值范围(2)若M , N 是椭圆C 上的点,O 为坐标原点,且满足 2OM2ON-,求证:OM , ON 斜率的4(2020 •四川石室中学高三月考(文)2 2)已知椭圆C:%厶 1(aa 2b 2b 0)的长轴长是短轴长的两倍,焦距2(1) 求椭圆方程;(2) 过点P 0,2的直线与椭圆交于 M 、N 两个不同的点,求线段 MN 的垂直平分线在 x 轴截距的范围.?? ??4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点??(^3,0)是椭圆??钩+羽=1(??> ??> 0)的一1个焦点,点??( V 3,2)在椭圆?上. (1) 求椭圆??勺方程;1(2) 若直线?与椭圆?交于不同的????两点,且?????+ ?????= - - ( ?为坐标原点),求直线?斜率的取值范围椭圆??交于不同的两点???? (I )求椭圆??的离心率;(i )当??= 2时,求?????的面积;(I )设直线???与椭圆??的另一个交点为??当?为???中点时,求?的值?? ?? ,36.【宁夏六盘山高级中学 2019届高三上学期期末考试】 已知椭圆???2 + ?? = 1(??> 0,??> 0)的离心率为三,长轴长为4,直线??= ??????与椭圆?交于???两点且/????为直角,?为坐标原点. (I)求椭圆??勺方程; (I)求???长度的最大值.7. ( 2020河南鹤壁高中高三月考)2 2已知椭圆E:笃占1(a b 0)的左右焦点分别为F 1,F 2 , P 是椭圆a b短轴的一个顶点,并且 PF 1F 2是面积为1的等腰直角三角形.(1) 求椭圆E 的方程;3.【2019湖北省重点中学联考】已知椭圆2 2 xy 2,2ab1(a b 0)的离心率e 2,且经过点25.【北京市海淀区 2019届高三上学期期末考试】已知点?? ????(0,-2)和椭圆??二 + y = 1.直线????= ???? 1 与3(2)设直线11 : x my 1与椭圆E相交于M,N两点,过M作与y轴垂直的直线12,已知点H(—,0),问2(2)求VPF 1M 面积的最大值直线NH 与12的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由2x8. ( 2020江西高三)已知椭圆 C : -Tab 21(a b 0)过点( .3, 1),且它的焦距是短轴长的 (1)求椭圆C 的方程.(2)若A , B 是椭圆C 上的两个动点 A , B 两点不关于x 轴对称),O 为坐标原点,OA , OB 的斜率分别为k i , k 2,问是否存在非零常数 ,使当kk时,AOB 的面积S 为定值?若存在,求的值;若不存在,请说明理由x 29.(2020甘肃省岷县第一中学期末) 已知椭圆C :二a0(0,0) , OAB 的面积为1. (1) 求椭圆C 的方程;(2) 设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:| AN | |BM |为 定值•古(a b 0)的离心率为于,A(a,0),B(0,b),2 210. (2020江苏高三期末)已知椭圆 C :务每 1(a b 0)的左右焦点分别为F i,F2,焦距为4,且椭 a b5圆过点(2,—),过点F 2且不平行于坐标轴的直线I 交椭圆与P,Q 两点,点Q 关于x 轴的对称点为R ,直线3PR 交x 轴于点M •(1 )求VPFQ 的周长;直的射线与椭圆 C 分别交于M ,N 两点. (2)若椭圆C 的焦距为2,是否存在定圆与直线 MN 总相切?若存在,求定圆的方程;若不存在,请说明 理由.椭圆上异于A, B 的任意-一点,直线TA,TB 的斜率之积为 (1)求椭圆C 的方程;2 2 _14. (2020河北高三期末)设椭圆 C:% % 1 (a b 0)的一个焦点为 C'2,0),四条直线x a , a by b 所围成的区域面积为(1 )求C 的方程;_ _ 1(2)设过D(0,3)的直线l 与C 交于不同的两点 代B ,设弦AB 的中点为M ,且|OM I ? I AB I ( O 为原11. (2020河南高三期末)已知椭圆x y a 2 b 23b 0过点1,-,过坐标原点O 作两条互相垂(1)证明:当a 2 9b 2取得最小值时,椭圆C 的离心率为2x12. (2020四川高三月考)已知椭圆 C:-rab 0的短轴顶点分别为 AB ,且短轴长为2,T 为2⑵设O 为坐标原点,圆O : x3的切线I 与椭圆 4C 相交于P,Q 两点,求△ POQ 面积的最大值.13. (2020内蒙古高三)已知椭圆b 0的离心率为丄6,以原点O 为圆心,椭圆C 的3长半轴长为半径的圆与直线 2x J2y0相切.(1)求椭圆C 的标准方程;(2)已知点A , B 为动直线y0与椭圆C 的两个交点,问:在 x 轴上是否存在定点 E ,使得 Euu 2 E A A B 为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由点分别为A .(1)求椭圆E 的标准方程;1 )为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB , AC点),求直线I 的方程•15. (2020山东高三期末)已知椭圆1 ( a b 0)的短轴长和焦距相等,左、右焦点分别为F i 、满足:2a •已知直线I 与椭圆C 相交于A , B 两点.(1)求椭圆C 的标准方程;ujur (2)若直线I 过点F 2,且AF 2 unn2F 2B ,求直线I 的方程;(3)若直线I 与曲线y In x 相切于点T t,l nt (t 0),且AB 中点的横坐标等于2―,证明:符合题意3的点T 有两个,并任求出其中一个的坐标1(a b 0)过点M (1,1)离心率为求菱形ABCD 面积的最小值•17. (2020福建省福州第一中学高三开学考试)已知2 2O 为坐标原点,椭圆E :卑占 1 a a bb 0的焦距为2.3,直线y x 截圆O : x 2y 22a 与椭圆E 所得的弦长之比为-10,椭圆E 与y 轴正半轴的交2(2)设点 B x 0,y 0 ( y ° 0 且 y °QF i2 2(2)如图,若菱形 ABCD 内接于椭圆 ,分别交x 轴于点M , N •试判断OM ON 是否为定值?若是求出该定值,若不是定值,请说明理由23 1b21(a b 0)过点P1,2,且离心率为2(1)求椭圆C 的方程;3(2)已知点Q 1, 2是椭圆上的点,A,B 是椭圆上位于直线PQ 两侧的动点,当A,B 运动时,满足APQBPQ ,试问直线 AB 的斜率是否为定值?请说明理由 •弦长为2 2 •(1) 求椭圆C 的方程;(2) 已知点M (1,「2),斜率为 2的直线I 与椭圆C 交于不同的两点 A , B ,当△ MAB 的面积最大时,求直线I 的方程•2 2C : X y 与 1(a b 0) , F 为椭圆C 的右焦点, a b(1) 求椭圆C 的标准方程;| PF |(2) 斜率为k 的直线l 过点F 交椭圆C 于M , N 两点,线段MN 的中垂线交x 轴于点P ,试探究是| MN |18. (2020江西高三期末)已知椭圆19. (2020甘肃高三期末)设椭圆0)的离心率是—2,直线x21被椭圆C 截得的D 1,丄6为椭圆220. (2020江西高三期末)已知椭圆否为定值,如果是,请求出该定值;如果不是,请说明理由离为2,(1 )试求椭圆M 的方程;1 3 (2)若斜率为一的直线|与椭圆M 交于C 、D 两点,点P(1, —)为椭圆M 上一点,记直线PC 的斜率为K ,22直线PD 的斜率为k 2,试问:k 1 k 2是否为定值?请证明你的结论22. (2020四川高三期末)在平面直角坐标系中,已知点A( 2,0) , B(2,0),动点P(x,y)满足直线AP 与BP 的斜率之积为3.记点P 的轨迹为曲线C .4(1)求C 的方程,并说明C 是什么曲线;1⑵若M , N 是曲线C 上的动点,且直线 MN 过点D 0,,问在y 轴上是否存在定点 Q ,使得MQO NQO ?若存在,请求出定点 Q 的坐标;若不存在,请说明理由2 22,0 ,F 2 2,0是椭圆 C :a b1a b椭圆C 上一点,当MF 1 F 1F 2时,有MF 2 3MF 1 . (1)求椭圆C 的标准方程;使得 ATF 2 BTF 2恒成立?若存在,求出定点 T 的坐标,若不存在,请说明理由专题三压轴解答题21. (2020青海高三期末)已知椭圆a 2b 21(a b 0)的离心率为短轴的一个端点到右焦点的距23. (2020山西高三期末)已知 F 10的两个焦点,(2 )设过椭圆右焦点 F 2的动直线I 与椭圆交于A,B 两点,试问在x 铀上是否存在与 F 2不重合的定点T ,第二关椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、 导数相交汇,每个题一般设置了两个问, 第(1) 问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第( 2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等•这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知 识的密切联系.【考点方向标】 方向一中点问题面积的最大值【答案】 2(1)x82y1;(2)22.【解析】(1)设椭圆C 的焦距为 2c c 0,由题知,点P c,2,b 2,则有c 2豆22 2c, ~1a3「 22 2 2,又 a b c 2 c , 42a 8 , c 26 ,2a22 2因此,椭圆C 的标准方程为 —1 ;8 2(2)当AB x 轴时,M 位于x 轴上,且OM AB ,典例1. (2020 •山东高三期末)已知椭圆1 a .2的右焦点为F , P 是椭圆C 上一点,PF x 轴, PF(1) 求椭圆 C 的标准方程;(2) 若直线 I 与椭圆C 交于A 、 B 两点, 线段AB 的中点为M ,O 为坐标原点,且OM J 2,求AOBOM 屉可得AB 逅,此时S AOB OM AB 灵;AB不垂直x轴时, 设直线AB 的方程为kx t,与椭圆交于 A x i,y i ,B X2, y2 ,x2 2y2kx 1,得 1 4k2 28ktx 4t 0.X i X28kt2,1 4k2x1x24t28,从而1 4k24 kt4k2'1t4k2已知OM .2,可得t22 1 4k2 21 16k2Q AB k2 2 4x1x2k28kt4k24t284k216 8k2t2 2224k2设O到直线AB的距离为d,则d2t2 1 k2S2AOB 16 8k2t221 4k2 2t2k2.将t22 1 4k216k2 16k2当且仅当P22—代入化简得S2AOB P,则S2AOB3时取等号,综上:AOB的面积最大,【举一反三】192k24k2 116k2 22 2192k 4k 12 21 16k12 p 1 P4-2P4.此时AOB的面积最大,最大值为2.(2020 •河南南阳中学高三月考) 已知椭圆2XC: Ta最大值为2.2& 1(a b 0)的一个焦点与抛物线 4.3x的焦点重合,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)直线|交椭圆C于A、B两点,线段AB的中点为M (1,t),直线m是线段AB的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.3综上所述,直线 m 过定点 ,0 .4方法二:显然点 M(1,t)在椭圆C 内部,故—3 t2当直线l 的斜率存在且不为0时,设A(X 1,yJ , B(X 2,y 2),2 2则有 M y 121,x2 y 21,44两式相减得―一空 (y 1 y 2)( y 1 y 2) 0.42【答案】(1)1 y 241 ;( 2)直线m 过定点3,0,详见解析•4【解析】(1)抛物线y4、,3X 的焦点为c.3,0),则ca%2 ,3.椭圆C 的离心率eCa3,则 a 2,b 2a 22c 21.故椭圆C 的标准方程为 2x 2彳xr y1.(2)方法一:显然点 M (1,t)在椭圆C 内部,故■J 2 t 3,且直线 2I 的斜率不为0.当直线I 的斜率存在且不为 0时,易知t 0,设直线I 的方程为y k(x 1) t ,代入椭圆方程并化简得(12 2 2 2 24k 2 )x 2 (8 kt 8k 2)x 4k 28 kt 4t 20.设 Ag%),B(X 2,y 2),2nt[8kt 8k则 x 1 x 21 4k 22,解得k丄4t因为直线m 是线段AB 的垂直平分线,故直线 m: y t4t(x 1),即 y t(4x 3).3令4x 3 0,此时x ,y40,于是直线m 过定点当直线I 的斜率不存在时,易知t 0,此时直线m:3,故直线m过定点訐.3,且直线l 的斜率不为0 .2由线段AB 的中点为M(1,t),则x , x 22,y y 2 2t ,因为直线m 是线段AB 的垂直平分线,故直线 m: y t3 ,y 0,于是直线m 过定点43,故直线m 过定点 ,0 .4综上所述,直线 m 过定点 ,0 .4方向二垂直问题【答案】(1)且直线AB, DE 斜率均存在且不为0,现设点A x-], y 1 , B x 2, y 2 ,故直线l 的斜率k 生丄x 1 x 24t 4t(x 1),即 y t(4x 3).令4x 30 ,此时x当直线l 的斜率不存在时, 易知 t 0,此时直线m : y2書1(abb 0)的离心率e 辽,且过点2f)-(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线 AB, DE 交椭圆分别于 代B,D, E ,且满足uuuv 1 uuv AM -AB ,2uuu v DN1 uuu/ -DE , 2MNF 面积的最大值.【解析】(1) 根据条件有uuuu 1 uuu (2)根据 AM AB ,2a 21 2a 2uur CN 2b 2 32 4b,解得a 211 uuuCD 可知, 2 22x 2,b1,所以椭圆C :—M ,N 分别为AB,DE 的中点, y 2 1 •典例2. (2020 安徽期末)已知椭圆(1)求椭圆C 的方程;直线AB 的方程为x my 1,不妨设m 0 ,联立椭圆C 有m 2 2 2my 1 0,根据韦达定理得:y 1 y 22m齐,为x 2 m…2 m m 2 2,m 2 2MF竺m 一1,同理可得NF2所以 MNF 面积SMNF!|MF 2NF1 m -m, 1 ' m - m一,现令2那么 SMNF t 4F4t 1 ~~2 t 所以当t 2, m1时, MNF 的面积取得最大值 【举一反三】 (2020 •吉林东北师大附中高三月考)已知椭圆 C : 2 x _2 a点,且PF 与x 轴垂直, A ,B 分别为椭圆的右顶点和上顶点,且中0是坐标原点• (1)求椭圆C 的方程. (2)若过点F 的直线l 1, 12互相垂直,且分别与椭圆 C 交于点M面积S 的最小值. 2 I 答案】(1) f y2 1; (2)垃 9 b 2【解析】(1)依题意画出下图可设 P( c, —) , A(a,0) , B(0,b),a211 m 22AB POP 的左焦点为F ,P 是C 上一一1,且 POB 的面积是丄,其2T 四点,求四边形MSNT 的k ABb 2 ac则有: SPOBb 2c 2 1bc22abaa 、2,解得 b 1c 1 2 i 椭圆c 的标准方程为x 2 y 2 1; (2) i 当 11 x , J//X 时, S MSNT 2g2ag2^ 2b2 2; i 当11 ,I 2斜率存在时,设l i : x ky I 2: x 1y 1,分别联立椭圆方程 k y 2 1,联立 x 2 x2ky 1 得k 21 2 y 2 2ky i y 1y 2 2k 2,y 』21 ~2~ k2 21 MN ■■ k2 1 \ y 1 2y 24 y 1 y 22k k 2 24 k 2 22 2 k 2 k 2同理ST 2-2 丄 1 ___ k 2 丄 7 2.2 1 k 1 2k 2i S 1MNgST 2 28 k 21 2 1 2g k 2 2 2k 2 1 224 k 21 k2 2 2k 2 1212 2k 2 2k1)224 k 22 2 24(k 1) 9 k 2 1 2当且仅当k 2 2 2k 2 1 即 k 21 即 k 1时等号成立,故四边形MSNT 的面积S 的最小值S min16 912方向三面积问题2典例3. (2020 •安徽高三月考)已知椭圆 E :仔aa b 0的左焦点为F 1,0,经过点F 的直线与椭圆相交于 M , N 两点,点p 为线段MN 的中点, 点0为坐标原点.当直线MN 的斜率为1时,直线1OP 的斜率为2(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点 B 为椭圆的右顶点,过F 的动直线交该椭圆于 C ,D 两点,记 ACD 的面积为3 , BCD 的面积为S 2,求S 23的最大值.2 所以椭圆E 的标准方程为—22【答案】(1)- 2y 21 (2)2【解析】(1 )设M x,y i , NX 2,y 2,则点PX , X 2 2宁,由条件知直线MN 的斜率为y i y 2 , 1,XX直线OP 的斜率为y , y 2X X 22X而a2 22X Lb 2y b 2,两式作差得,2 Xi2a2 X22 y 2b 2b 2所以二a 2X L 2 Xi2 y2 2 X2y 1 y 2 X-i X 2 又左焦点为1,0, 所以c 2y 1 y 2 X i-,即22b 2,b 2 2 22b b b 2(2)设直线CD 的方程为xmy 1 ,记C , D 过标为 X 1,y 1 , X 2,y 2 ,则 S , L |AF2y 1 y 2 y 1 y 2,y 1 y 2y i y 2,所以S 2 Sy 1 y 2.2 2【答案】(1) — — 1 ; ( 2)是定值,其定值为•' 6 •42ca22c c 0,由题意可得2 a2 a22 1 -2 1 ,解得 a 24,b 2 2,b b 2c 22 2因此,椭圆C 的标准方程为— 1 ;42(2)当直线|的斜率不存在时,直线 MN 的方程为x 1或x 1.联立方程,x 2 2y 22,消去x ,得 m 2 所以 y iy 2y iy 28 m 2 12所以 S 2 S 1典例 (1) (2) my2m m 2 28t t 1 2y 1 y 2y”24y i y 22 y 22my 1 0,1 m2 2 8 m 2122、、2,即 S4. (2020河南高三月考)已知椭圆求椭圆C 的标准方程;设直线I 与C 交于M 、N 两点,,令t2,当且仅当t2x c r a点D 在椭圆 C 上, 形OMDN 的面积是否为定值?若为定值,求出该定值; 1,则t i ,且1时等号成立,b 0的离心率O 是坐标原点,若 如果不是, 请说明理由e 2,且椭圆过点2,12uuu vOMONV ODV ,判定四边【解析】(1)设椭圆C 的焦距为12x 1x 1若直线I的方程为x1,联立x2y2,可得V6,一—1y4 22此时,MN晶,四边形OMDN的面积为丄苗2恵,2同理,当直线I 的方程为x 1时,可求得四边形 OMDN 的面积也为,6 ;当直线 I 的斜率存在时,设直线I 方程是y kx m , 代人到 2k 2 x 2 4kmx 2m 2 4 X i X 24 km 2, 1 2k x 1x 2 2m 2 4 1 2k 2 ' 2 8 4k 2 2y i y 2 k x i x 2 加半, 1 k 2 MN .i k 2 X i X 2 、i k 2 、 x i2x 24x 1x 22、〔2 一 4k 2 2 m 21 2k 2'点O 到直线MN 的距离d .1 k 2 ' 丄 uuun umr由 OM 0C OD ,得 XD X i X 2 4 km2k 2 1 y D y i y 22 ?2k Q 点D 在椭圆 C 上,所以有 4 km 1 2k 2 4 2m 1 2k 2,整理得2k 2c 22m ,由题意知,四边形 OMDN 为平行四边形, 平行四边形OMDN的面积为 S OMDN 2S OMN 2丄|MN2d 、i k 22.2 4k 2 2 m 2i 2k 2,i k 22 2 2 8k 4 2m 2 2k 2 1 8k 2 4 2k 21i 2k 2 2k 2 i 2k 2 1 -2 6 . 2k 1故四边形OMDN 的面积是定值,其定值为 【举一反三】 (2020 •全国高三专题练习)平面直角坐标系xOy 中,椭圆C :£ i a > b >。
高三数学椭圆试题答案及解析
高三数学椭圆试题答案及解析1.椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)求椭圆C的方程;(2)当的面积为时,求直线的方程.【答案】(1);(2)直线方程为:或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于椭圆过点A,将A点坐标代入得到a和b的关系式,再利用椭圆的离心率得到a与c的关系式,从而求出a和b,得到椭圆的标准方程;第二问,过的直线有特殊情况,即当直线的倾斜角为时,先讨论,再讨论斜率不不为的情况,将直线方程与椭圆方程联立,利用韦达定理得到和,代入到三角形面积公式中,解出k的值,从而得到直线方程.试题解析:(1)因为椭圆过点,所以①,又因为离心率为,所以,所以②,解①②得.所以椭圆的方程为:(4分)(2)①当直线的倾斜角为时,,,不适合题意。
(6分)②当直线的倾斜角不为时,设直线方程,代入得:(7分)设,则,,,所以直线方程为:或(12分)【考点】椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式.2.如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足.(1) 求该椭圆的离心率;(2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.【答案】(1);(2).【解析】本题主要考查椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出F点坐标,数形结合,根据椭圆的性质,得到代入已知中,得到,计算出椭圆的离心率;第二问,根据题意,设出椭圆方程和直线方程,两方程联立,消参,利用韦达定理,得到和,利用三角形相似得到所求的比例值,最后求范围.试题解析:(1) 设,则根据椭圆性质得而,所以有,即,,因此椭圆的离心率为. (4分)(2) 由(1)可知,,椭圆的方程为.根据条件直线的斜率一定存在且不为零,设直线的方程为,并设则由消去并整理得从而有,(6分)所以.因为,所以,.由与相似,所以. (10分)令,则,从而,即的取值范围是. (12分)【考点】椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题.3.椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.【答案】(1);(2)证明详见解析,.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P 的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到和,由于AB为直径的圆过椭圆右顶点A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.试题解析:(1)由题:①左焦点 (-c,0) 到点 P(2,1) 的距离为:② 2分由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3. 3分∴所求椭圆 C 的方程为. 4分(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.∴,, 6分且y1 = kx1+ m,y2= kx2+ m.∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以. 7分所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2= (x1-2) (x2-2) + (kx1+ m) (kx2+ m)= (k 2 + 1) x1x2+ (km-2) (x1+ x2) + m 2 + 4= (k 2 + 1)·-(km-2)·+ m 2 + 4 =" 0" . 10分整理得 7m 2 + 16km + 4k 2 = 0.∴或 m = -2k 都满足△ > 0. 12分若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分若时,直线 l 为,恒过定点. 14分【考点】椭圆的标准方程及其几何性质、直线与椭圆相交问题.4.已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.(1)求动点C的轨迹E的方程;(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.【答案】(1)+=1(x≠±4)(2)16【解析】(1)由题意知|CA|+|CB|=12-4=8>|AB|,所以C的轨迹E为椭圆的一部分.由a=4,c=2,可得b2=12.故曲线E的方程为+=1(x≠±4).(2)设两直线的方程为y=kx与y=-kx(k>0).记y=kx与曲线E在第一象限内的交点为(x0,y),由,可得x2=.结合图形的对称性可知:四交点对应的四边形为矩形,且其面积S=2x0·2y=4kx2=.因为k>0,所以S=≤=16 (当且仅当k=时取等号).故四边形面积的最大值为16.5.椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.(1)求椭圆C的标准方程;(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.【答案】(1)+y2=1 (2)见解析【解析】(1)设椭圆的标准方程为+=1(a>b>0),因为|F1F2|=2,所以c=,由S△PF1F2=1,得|PF1||PF2|=2,又由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=12,即(|PF1|+|PF2|)2-2|PF1||PF2|=12,即4a2-4=12,a2=4,b2=a2-3=1,所以椭圆C的标准方程为+y2=1.(2)由方程组,得(1+4k2)x2+8kmx+4m2-4=0,Δ=(8km)2-4(1+4k2)(4m2-4)>0,整理得4k2-m2+1>0.设M(x1,y1),N(x2,y2),则x1+x2=-,x1x2=.由AM⊥AN且椭圆的右顶点为A(2,0),得(x1-2)(x2-2)+y1y2=0,因为y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,所以(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0,即(1+k2)·+(km-2)·+m2+4=0,整理得:5m2+16mk+12k2=0,解得m=-2k或m=-,均满足4k2-m2+1>0.当m=-2k时,直线的l方程为y=kx-2k,过定点(2,0),与题意矛盾,舍去;当m=-时,直线l的方程为y=k(x-),过定点(,0),符合题意.故直线l过定点,且定点的坐标为(,0).6.已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.(1)求出轨迹C的方程,并讨论曲线C的形状;(2)当m=时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.【答案】(1)当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为;(2)定点,定值为6.【解析】(1)利用线段的垂直平分线交直线于点,当时,根据椭圆的定义,即可求出轨迹的方程;当时,根据双曲线的定义,即可求出轨迹的方程;(2)当时,轨迹必为椭圆方程,设,分别过E取两垂直与坐标轴的两条弦CD,,根据求出E若存在必为定值为6.再进行证明.存在性问题,先猜后证是关键.再设设过点E的直线方程,代入椭圆方程,消去,设,,利用一元二次方程的根与系数的关系,求得为定值6.(1)由题意,,所以,所以轨迹是以、为焦点,以为长轴的椭圆,当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为(4分)(2)由(1)当时,曲线C为,设,分别过E取两垂直于坐标轴的两条弦CD,,则,即解得,∴E若存在必为定值为6.(6分)下证满足题意.设过点E的直线方程为,代入C中得:,设、,则,,(8分).同理可得E也满足题意.综上得定点为E,定值为(13分)【考点】直线和圆的方程的应用,圆锥曲线的定义、性质与方程,轨迹方程的问题.7.已知椭圆的焦点为,点是椭圆上的一点,与轴的交点恰为的中点, .(1)求椭圆的方程;(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.【答案】(1)(2)【解析】(1)根据已知分析可得点横坐标为1,纵坐标为,,即点。
2020版高考数学新设计一轮复习浙江专版讲义:第八章第六节椭圆含答案
第六节椭__圆1.椭圆的定义平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.两定点F 1,F 2叫做椭圆的焦点.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数. (1)当2a >|F 1F 2|时,P 点的轨迹是椭圆; (2)当2a =|F 1F 2|时,P 点的轨迹是线段; (3)当2a <|F 1F 2|时,P 点不存在. 2.椭圆的标准方程和几何性质1.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13 B.12C.22D.223解析:选C ∵a 2=4+22=8, ∴a =22,∴e =c a =222=22.2.已知椭圆的方程为x 216+y 2m 2=1(m >0),若该椭圆的焦点在x 轴上,则实数m 的取值范围是________.解析:由题可得,m 2<16,因为m >0,所以0<m <4.故实数m 的取值范围为(0,4). 答案:(0,4)3.(教材习题改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1, 所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1, 把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, ∴点P 坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1. 答案:⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-11.椭圆的定义中易忽视2a >|F 1F 2|这一条件,当2a =|F 1F 2|其轨迹为线段F 1F 2,当2a <|F 1F 2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b 2=1(a >b >0).3.注意椭圆的范围,在设椭圆x 2a 2+y 2b 2=1(a >b >0)上点的坐标为P (x ,y )时,|x |≤a ,|y |≤b ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[小题纠偏]1.椭圆x 2m +y 24=1的焦距为2,则m 的值为( )A .5B .3C .5或3D .8解析:选C 当m >4时,m -4=1, ∴m =5;当0<m <4时,4-m =1, ∴m =3,故m 的值为5或3.2.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( )A.32 B.332C.94D.154解析:选B 由椭圆方程知c =4-3=1, 所以F 1(-1,0),F 2(1,0).因为椭圆C 上点A 满足AF 2⊥F 1F 2, 则可设A (1,y 0),代入椭圆方程可得y 20=94, 所以y 0=±32.设P (x 1,y 1),则F 1P ―→=(x 1+1,y 1),F 2A ―→=(0,y 0), 所以F 1P ―→·F 2A ―→=y 1y 0.因为点P 是椭圆C 上的动点,所以-3≤y 1≤3, 故F 1P ―→·F 2A ―→的最大值为332.考点一 椭圆的标准方程(基础送分型考点——自主练透)[题组练透]1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时, b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.2.(易错题)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为________________.解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|, 即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.答案:x 28+y 26=1[谨记通法]求椭圆标准方程的 2种常用方法[典例引领]1.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12解析:选C 如图所示,因为两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10,易知|PM |+|PN |=(|PM |+|MF 1|)+(|PN |+|NF 2|)-2,则其最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12.2.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B.74C.72D.752解析:选C 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8. ∴|AF 1|=72.∴△AF 1F 2的面积 S =12×72×22×22=72.[由题悟法]椭圆定义的应用技巧1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1解析:选A 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,选A.2.(2018·永康适应性测试)已知F 1(-1,0),F 2(1,0),且△PF 1F 2的周长为6,则动点P 的轨迹C 的方程为________.解析:由F 1(-1,0),F 2(1,0),△PF 1F 2的周长为6,得|PF 1|+|PF 2|=4>|F 1F 2|,∴点P 的轨迹是F 1,F 2为焦点的椭圆(不包括左右顶点).∵2a =4,c =1,∴a =2,b =3,∴轨迹C 的方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)考点三 椭圆的几何性质(题点多变型考点——多角探明) [锁定考向]椭圆的几何性质是高考的热点,高考中多以小题出现,常见的命题角度有:(1)求离心率的值或范围;(2)根据椭圆的性质求参数的值或范围.[题点全练]角度一:求离心率的值或范围1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3 C.3-12D.3-1解析:选D 在Rt △PF 1F 2中,∠PF 2F 1=60°, 不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2, 则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1, 所以离心率e =c a =21+3=3-1.角度二:根据椭圆的性质求参数的值或范围2.椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,则m 的最大值为________.解析:记椭圆的两个焦点分别为F 1,F 2, 则|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=25, 当且仅当|PF 1|=|PF 2|=5时等号成立,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25. 答案:25[通法在握]1.应用椭圆几何性质的2个技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系.2.求椭圆离心率的方法(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.[演练冲关]1.(2018·瑞安期末)已知椭圆x 2a 2+y 212=1(a >0)的一个焦点与抛物线y 2=8x 的焦点重合,则该椭圆的离心率为( )A.14B.12C.32D.34解析:选B 由题可得,抛物线的焦点坐标为(2,0),所以a 2=12+4=16,所以a =4,所以离心率e =c a =24=12.2.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为椭圆的右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13解析:选B 由题意,可设P ⎝⎛⎭⎫-c ,b 2a . 因为在Rt △PF 1F 2中,|PF 1|=b 2a ,|F 1F 2|=2c ,∠F 1PF 2=60°, 所以2acb 2= 3.又因为b 2=a 2-c 2, 所以3c 2+2ac -3a 2=0, 即3e 2+2e -3=0, 解得e =33或e =-3, 又因为e ∈(0,1),所以e =33. 3.(2018·温州十校联考)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1―→·PF 2―→=c 2,则此椭圆离心率的取值范围是________.解析:设P (x ,y ),则PF 1―→·PF 2―→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,① 将y 2=b 2-b 2a2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎡⎦⎤33,22. 答案:⎣⎡⎦⎤33,22考点四 直线与椭圆的位置关系(重点保分型考点——师生共研)[典例引领](2018·浙江名校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为 F 1,F 2,离心率为12,直线y =1与C 的两个交点间的距离为463. (1)求椭圆C 的方程;(2)分别过F 1,F 2作l 1,l 2满足l 1∥l 2,设l 1,l 2与C 的上半部分分别交于A ,B 两点,求四边形ABF 2F 1面积的最大值.解:(1)易知椭圆过点⎝⎛⎭⎫263,1,所以83a 2+1b 2=1,①又c a =12,②a 2=b 2+c 2,③由①②③得a 2=4,b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),F 2(1,0),设直线l 1:x =my -1,它与椭圆C 的另一个交点为D . 与椭圆C 的方程联立,消去x ,得(3m 2+4)y 2-6my -9=0, 则Δ=144(m 2+1)>0, |AD |=1+m 2·121+m 23m 2+4,又F 2到l 1的距离为d =21+m 2, 所以S △ADF 2=12×|AD |×d =121+m 23m 2+4.令t =1+m 2≥1,则S △ADF 2=123t +1t ,因为y =3t +1t 在[1,+∞)上单调递增, 所以当t =1时,S △ADF 2取得最大值3.又S 四边形ABF 2F 1=12()|BF 2|+|AF 1|·d=12(|AF 1|+|DF 1|)·d =12|AB |·d =S △ADF 2, 所以四边形ABF 2F 1面积的最大值为3.[由题悟法]1.直线与椭圆的位置关系的解题策略(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).2.直线与椭圆相交时的常见问题的处理方法涉及问题 处理方法弦长 根与系数的关系、弦长公式 (直线与椭圆有两交点) 中点弦或弦的中点点差法(结果要检验)(2017·浙江新高考联盟)椭圆C 1 :x 2a 2+y 2b2=1(a >b >0)的右焦点与抛物线C 2 :y 2=2px (p >0)的焦点重合, 曲线C 1与C 2相交于点⎝⎛⎭⎫23,263.(1)求椭圆C 1的方程;(2)过右焦点F 2的直线l (与x 轴不重合)与椭圆C 1交于A ,C 两点,线段AC 的中点为G ,连接OG 并延长交椭圆C 1于B 点(O 为坐标原点),求四边形OABC 的面积S 的最小值.解:(1)∵点⎝⎛⎭⎫23,263在y 2=2px 上,∴249=2×p ×23,解得p =2, ∴椭圆C 1的右焦点为(1,0),∴⎩⎨⎧a 2-b 2=1,49a 2+249b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,∴椭圆C 1的方程为x 24+y 23=1.(2)设直线AC 的方程为x =my +1,A (x 1,y 1),C (x 2,y 2),G (x 0,y 0),联立⎩⎪⎨⎪⎧x 24+y 23=1,x =my +1消去x ,整理得(4+3m 2)y 2+6my -9=0, 则y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2. 由弦长公式可得|AC |=1+m 2·|y 1-y 2| =1+m 2⎝ ⎛⎭⎪⎫-6m 4+3m 22+4×94+3m 2=1+m 2·12·1+m 24+3m 2=12(1+m 2)4+3m 2.由中点坐标公式可知,y 0=-3m4+3m 2,x 0=my 0+1=44+3m 2∴G ⎝⎛⎭⎫44+3m 2,-3m 4+3m 2.∴直线OG 的方程为y =-3m 4x ,代入x 24+y 23=1,整理得x 2=164+3m 2,∴B ⎝ ⎛⎭⎪⎫44+3m 2,-3m 4+3m 2,故B 到直线AC 的距离d 1=⎪⎪⎪⎪⎪⎪44+3m 2+3m 24+3m 2-11+m 2=4+3m 2-11+m 2,O 到直线AC 的距离d 2=11+m 2, ∴S =12·|AC |·(d 1+d 2)=12·12(1+m 2)4+3m 2·4+3m 21+m 2=6×1+m 24+3m 2=613-13(4+3m 2)≥3,当且仅当m =0时取得最小值.综上所述,四边形OABC 的面积S 的最小值是3.一抓基础,多练小题做到眼疾手快1.“2<m <6”是“方程x 2m -2+y 26-m =1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若方程x 2m -2+y26-m =1表示椭圆.则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.2.(2019·湖州一中月考)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为( )A.x 220+y 24=1 B.x 225+y 24=1C.y 220+x 24=1 D.x 24+y 225=1解析:选C 法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),故c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =25, 由c 2=a 2-b 2,得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1,故选C.法二:设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得525-k +39-k =1,解得k =5或k =21(舍),所以所求椭圆的标准方程为y 220+x 24=1,故选C.3.(2019·丽水质检)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 2且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 1内切圆的半径为( )A.43 B .1 C.45D.34解析:选D 法一:不妨设点A 在点B 上方,由题意知F 2(1,0),将F 2的横坐标代入方程x 24+y 23=1中,可得A 点纵坐标为32,故|AB |=3,所以内切圆半径r =2S C =68=34(其中S 为△ABF 1的面积,C 为△ABF 1的周长).故选D.法二:由椭圆的通径公式得|AB |=2b 2a =3,则S △ABF 1=12×2×3=3,而△ABF 1的周长C周=4a =8,由S △ABF 1=12C 周·r 得r =34,故选D.4.(2018·长兴中学适应测试)已知椭圆C :y 216+x 29=1,则该椭圆的长轴长为________;焦点坐标为________.解析:长轴长为2a =8,c 2=16-9=7,所以c =7,所以焦点坐标为(0,-7)和(0,7). 答案:8 (0,-7)和(0,7)5.(2018·宁波五校联考)已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =________;离心率为________.解析:因为椭圆的左焦点为F 1(-4,0),所以25-m 2=42,解得m =3.所以离心率为e =c a =45.答案:345二保高考,全练题型做到高考达标1.(2018·丽水高三质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线x =b 在第一象限交于点P ,若直线OP 的倾斜角为30°,则椭圆C 的离心率为( )A.13B.33C.63D.23解析:选B 由题意可得P ⎝⎛⎭⎫b ,bca ,因为直线OP 的倾斜角为30°,所以bc ab =c a =tan 30°,所以e =33.故选B. 2.(2018·东阳调研)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则b a 的值为( )A.32B.233C.932D.2327解析:选B 设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,ax 22+by 22=1, 两式相减得ax 21-ax 22=-(by 21-by 22),即b (y 1-y 2)(y 1+y 2)a (x 1-x 2)(x 1+x 2)=-1,∴b a ×(-1)×32=-1,∴b a =233,故选B.3.(2019·德阳模拟)设点P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,如果|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6解析:选C ∵点P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14, ∴|PF 1|=6,|PF 2|=8. 又∵|F 1F 2|=2c =10, ∴△PF 1F 2是直角三角形, S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为G , ∴S △PF 1F 2=3S △GPF 1, ∴△GPF 1的面积为8,故选C.4.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即3m ≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).5.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1C.x 230+y 210=1 D.x 245+y 225=1解析:选B 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.6.(2018·达州模拟)以圆x 2+y 2=4与x 轴的交点为焦点,以抛物线y 2=10x 的焦点为一个顶点且中心在原点的椭圆的离心率是( )A.15B.25C.45D.110解析:选C 根据题意,圆x 2+y 2=4与x 轴的交点为(±2,0),抛物线y 2=10x 的焦点为⎝⎛⎭⎫52,0,即椭圆的焦点为(±2,0),椭圆的一个顶点为⎝⎛⎭⎫52,0,则椭圆中c =2,a =52,则椭圆的离心率e =c a =252=45. 7.(2019·温州模拟)设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为________________.解析:由题意知|AF 2|=|BF 2|=|AB |=|AF 1|+|BF 1|, ①又由椭圆的定义知|AF 2|+|AF 1|=|BF 2|+|BF 1|=2a , ②联立①②,解得|AF 2|=|BF 2|=|AB |=43a ,|AF 1|=|BF 1|=23a ,所以S △F 2AB =12|AB |·|AF 2|sin 60°=43,所以a =3,|F 1F 2|=32|AB |=23,所以c =3,所以b 2=a 2-c 2=6,所以椭圆C 的方程为x 29+y 26=1.答案:x 29+y 26=18.已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B =________.解析:由椭圆x 225+y 216=1知长轴长为10,短轴长为8,焦距为6,则顶点A ,B 为椭圆的两个焦点.在△ABC 中,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则c =|AB |=6,a +b =|BC |+|AC |=10,由正弦定理可得5sin C sin A +sin B =5ca +b =5×610=3.答案:39.(2018·新乡一模)已知直线l :y =2x -2与椭圆Ω:x 24m 2+y 2m 2=1(m ≠0)交于A ,B 两点.(1)求Ω的离心率;(2)若以线段AB 为直径的圆C 经过坐标原点,求Ω的方程及圆C 的标准方程.解:(1)e =1-b 2a2= 1-m 24m 2= 1-14=32. (2)由⎩⎪⎨⎪⎧y =2x -2,x 24m 2+y 2m 2=1,得17x 2-32x +16-4m 2=0, 设A (x 1,y 1),B (x 2,y 2),则Δ=322-68(16-4m 2)>0, x 1+x 2=3217,x 1x 2=16-4m 217.由已知得OA ·OB =x 1x 2+y 1y 2=x 1x 2+4(x 1-1)(x 2-1)=5x 1x 2-4(x 1+x 2)+4=0, 即5×16-4m 217-4×3217+4=0,解得m 2=1,且满足Δ=322-68(16-4m 2)>0, 故Ω的方程为x 24+y 2=1.设圆C 的圆心坐标为(x 0,y 0), 则x 0=x 1+x 22=1617,y 0=2(x 0-1)=-217.由x 1x 2=16-4m 217=1217,得|AB |=1+22·(x 1+x 2)2-4x 1x 2=46517. 故圆C 的标准方程为(x -x 0)2+(y -y 0)2=⎝⎛⎭⎫|AB |22, 即⎝⎛⎭⎫x -16172+⎝⎛⎭⎫y +2172=260289. 10.(2018·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B ,已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程.(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BP Q 面积的2倍,求k 的值.解:(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .又|AB |=a 2+b 2=13,从而a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意知,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1). 因为△BPM 的面积是△BP Q 面积的2倍,所以|PM |=2|P Q |,所以x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4 . 由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0, 解得k =-89或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以k 的值为-12.三上台阶,自主选做志在冲刺名校1.(2018·绍兴一中质检)已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是( )A.⎝⎛⎭⎫0,55 B.⎝⎛⎦⎤0,255 C.⎝⎛⎦⎤0,355 D.⎝⎛⎦⎤0,455解析:选B 依题意,知b =2,kc =2. 设圆心到直线l 的距离为d ,则L =24-d 2≥455, 解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45, 解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45, 解得0<e ≤255. 2.(2018·杭州模拟)已知中心在原点,焦点在x 轴上,离心率为32的椭圆过点⎝⎛⎭⎫2,22.(1)求椭圆的方程;(2)设不过原点O 的直线l ,与该椭圆交于P ,Q 两点,直线OP ,P Q ,O Q 的斜率依次为k 1,k (k ≠0),k 2,满足k 1,2k ,k 2依次成等差数列,求△OP Q 面积的取值范围.解:(1)由题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧c a =32,2a 2+12b 2=1,解得⎩⎪⎨⎪⎧a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为 y =kx +m (m ≠0),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2-4=0消去y , 得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0, 且x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2.因为k 1,2k ,k 2依次成等差数列, 所以k 1+k 2=4k ,即y 1x 1+y 2x 2=4k ,所以m (x 1+x 2)x 1x 2=2k ,即m ×⎝ ⎛⎭⎪⎫-8km 1+4k 24(m 2-1)1+4k2=2k ,解得m 2=12. 所以|P Q |=1+k 2|x 1-x 2|=1+k 2·⎝ ⎛⎭⎪⎫-8km 1+4k 22-4×4(m 2-1)1+4k 2=1+k 2·216k 2+21+4k 2,O 到直线P Q 的距离d =12+2k 2, 所以S △OP Q =12·d ·|P Q |=8k 2+14k 2+1.令8k 2+1=t ,t >1, 则S △OP Q =t t 2-12+1=2t +1t ,因为t >1时,t +1t >2, 所以0<2t +1t<1,所以△OP Q面积的取值范围为(0,1).。
高中椭圆测试题及答案
高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。
7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。
8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。
【高考复习】2020年高考数学(文数) 椭圆 小题练(含答案解析)
【高考复习】2020年高考数学(文数)椭圆 小题练一、选择题1.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .2232.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1 C .x 24+y 23=1 D .x 24+y 2=13.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=14.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B .x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D .x 216+y 225=1或x 225+y 216=15.已知动点M(x ,y)满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段6.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N(2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线7.已知点A(-1,0)和B(1,0),动点P(x ,y)在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55B .105C .255D .21058.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( )A .12B .2C .4D .149.已知椭圆x 2a 2+y2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P.若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.1210.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13 B .33 C.34 D .22311.设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B .513 C.49 D .5912.已知椭圆x 2a 2+y2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F.以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A.35 B .12 C.23 D .34二、填空题13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.14.设e 是椭圆x 24+y 2k =1的离心率,且e=23,则实数k 的值是________.15.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.16.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.17.设F1,F2是椭圆x249+y224=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2的面积为________.18.设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为 .答案解析1.答案为:C ;解析:根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C .2.答案为:C ;解析:依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y23=1,故选C .3.答案为:B ;4.答案为:B.解析:因为a=4,e=34,所以c=3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y216=1.5.答案为:D ;解析:设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|, 故动点M 的轨迹是线段F 1F 2.故选D .6.答案为:B ;解析:点P 在线段AN 的垂直平分线上,故|PA|=|PN|,又AM 是圆的半径,所以|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|,由椭圆定义知,动点P 的轨迹是椭圆.故选B .7.答案为:A ;解析:A(-1,0)关于直线l :y =x +3的对称点为A′(-3,2),连接A′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A′B|=25,所以椭圆C 的离心率的最大值为15=55.故选A .8.答案为:D ;解析:由x 2+y21m=1及题意知,21m =2×2×1,m =14,故选D .9.答案为:D ;∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA||AB|=|AO||AF|=23,即a a +c =23,∴e=c a =12.10.答案为:D.解析:不妨令椭圆方程为x 2a 2+y2b2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,所以2b=2a 3,即a=3b ,则c=a 2-b 2=22b ,则该椭圆的离心率e=c a =223.故选D.11.答案为:B.解析:由题意知a=3,b=5,c=2.设线段PF 1的中点为M ,则有OM∥PF 2,因为OM⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a=6,所以|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.12.答案为:A.解析:因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC=bc a , 因为四边形FAMN 是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a , 代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0, 又0<e <1,所以e=35.故选A.13.答案为:⎝⎛⎭⎫0,12;解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.14.答案为:209或365; 解析:当k >4 时,有e=1-4k =23,解得k=365;当0<k <4时,有e=1-k 4=23,解得k=209.故实数k 的值为209或365.15.答案为:x 216+y24=1;解析:由题意可知e=c a =32,2b=4,得b=2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎪⎨⎪⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.16.答案为:63; 解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F(c ,0), ∴BF →=c +32a ,-b 2,CF →=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0,所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.17.答案为:24;解析:因为|PF 1|+|PF 2|=14,又|PF 1|∶|PF 2|=4∶3,所以|PF 1|=8,|PF 2|=6.因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.18.答案为:.。
2020届高考数学理一轮(新课标通用)考点测试:椭圆
a= 2, b2= a2- c2= 3,因此其方程是
x2 y2 + =1,
43
故选 C.
2.到点 A( - 4, 0) 与点 B(4 ,0) 的距离之和为 10 的点的轨迹方程为 (
)
x2 y2
x2 y2
A. + =1 B . - = 1
25 16
25 16
x2 y2
x2 y2
C. 25+ 9 = 1 D . 25- 9 = 1
3+ m
x2 y2 11.(2018 ·全国卷Ⅱ ) 已知 F1, F2 是椭圆 C: a2+b2 =1( a>b>0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A
3
且斜率为 的直线上,△ PF1F2 为等腰三角形,∠ F1F2P=120°,则 C的离心率为 (
)
6
2
1
1
1
A. 3 B .2 C . 3 D . 4
解析 在△ F1PF2 中,∠ F1 PF2=90°,∠ PF2F1=60°,
设| PF2| = m,则 2c= | F1 F2| = 2m, | PF1| = 3m,
又由椭圆定义可知 2a= | PF1| + | PF2| = ( 3+ 1) m,
c 2c 则离心率 e= a= 2a=
2m = 3- 1.故选 D.
= 8. 二、高考小题
2 / 12
x2 y2
9.(2018 ·全国卷Ⅰ ) 已知椭圆 C: a2+ 4 = 1 的一个焦点为 (2 , 0) ,则 C的离心率为 (
)
1
1
2
22
A. 3 B .2 C . 2 D . 3
答案 C
解析
根据题意,可知
2020新课标高考艺术生数学复习:椭圆含解析
∴(|PF1|+|PF2|)2-2|PF1||PF2|=4c2,
∴2|PF1||PF2|=4a2-4c2=4b2.
∴|PF1||PF2|=2b2.
∵S△PF1F2= |PF1||PF2|
= ×2b2=b2=9,∴b=3.
答案:3
1.求椭圆的标准方程有以下五种方法:
信息提取
信息解读
直观想象、数学运算
设F1,F2分别是椭圆C: + =1(a>b>0)的左、右焦点,点P在椭圆C上,若线段PF1的中点M在y轴上,且∠PF1F2=30°
OM为△PF1F2的中位线,所以∠PF2F1=∠MOF1=90°,且∠PF1F2=30°,所以用|PF2|将a和c表示出来
直观想象:数形结合,用|PF2|将a和c表示出来.
由勾股定理得|F1F2|=
= |PF2|,
由椭圆定义得2a=|PF1|+|PF2|=3|PF2|⇒a= ,2c=|F1F2|= |PF2|⇒c= ,
则e= = · = .故选A.]
[子题1]本例条件变为“若∠PF1F2=α,∠PF2F1=β,且cosα= ,sin(α+β)= ”,则椭圆的离心率为________.
解析:设P(x,y),由题意知c2=a2-b2=5-4=1,
所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y=±1代入 + =1,得x=± ,又x>0,所以x= ,
∴P点坐标为 或 .
答案: 或
考点一 椭圆的定义及标ຫໍສະໝຸດ 方程(自主练透)[题组集训]
1.(20xx·全国Ⅰ卷)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
椭圆测试题(含答案解析)[1]
椭圆测试题(含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(椭圆测试题(含答案解析)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为椭圆测试题(含答案解析)(word版可编辑修改)的全部内容。
椭圆的定义及几何性质测试题考试时间:100分钟满分:120分一、选择题(满分50分,每题5分,共10小题)1、已知的顶点在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是( )A。
B。
C. D.2、设定点、,动点满足条件,则点的轨迹是( )A.椭圆B.线段 C。
不存在 D. 椭圆或线段3、椭圆上点到右焦点的()A.最大值为5,最小值为4 B。
最大值为10,最小值为8C。
最大值为10,最小值为6 D。
最大值为9,最小值为14、椭圆的长轴长、短轴长、离心率依次是( )A。
5,3,0。
8 B.10,6,0。
8 C.5,3,0.6 D.10,6,0.65、若椭圆过点则其焦距为()A。
B. C。
D。
6、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A。
B。
C. D。
7、已知两椭圆与的焦距相等,则的值( )A.或 B。
或 C。
或 D.或8、椭圆的右焦点到直线的距离是( )A。
B. C。
D。
9、设是椭圆的离心率,且,则实数的取值范围是( )A。
B. C. D.10、如图所示,一圆形纸片的圆心为,是圆内一定点,是圆周上一动点,把纸片折叠使与重合,然后抹平纸片,折痕为,设与交于点,则点的轨迹是( )A。
椭圆 B.双曲线 C。
抛物线 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题12椭圆测试题【高频考点】本知识涉及椭圆的定义,标准方程以及简单的几何性质的应用,直线与椭圆的位置关系。
【考情分析】本阶段是高考考查重点内容之一,涉及客观题和解答题,客观题主要考查椭圆方程的求解,椭圆的几何性质等,难度中等,在解答题中多以椭圆为载体,考查直线与椭圆的位置关系,定值定点,以及最值问题,常常以探索性问题形式出现,难度较大。
【重点推荐】基础卷第11题,数学文化题,第22题考察与不等式的交汇,考察综合解决问题的能力。
一.选择题1.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1] C.(0,1)D.(﹣1,0)二.【答案】C三.【解析】:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.四. 2. 设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()五.A.2 B.2 C.2 D.4六.【答案】:C七.【解析】椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.八.故选:C.九. 3. 设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,|PF1|+|PF2|=10,则椭圆的短轴长为()十.A.6 B.8 C.9 D.10十一.【答案】:A十二.【解析】设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,可得c=4,十三.|PF1|+|PF2|=10,可得a=5,则椭圆的短轴长为:2b=2=6.故选:A.十四.十五. 4. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()十六.A.2 B.C.4 D.十七.【答案】:C十八.【解析】如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.十九.二十.二十一.5若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为()二十二.A.1 B.2 C.D.4二十三.【答案】:A二十四.6. (2018•齐齐哈尔二模)已知椭圆+=1(a>b>0)的离心率为,短轴长大于2,则该椭圆的长轴长的取值范围是()二十五.A.(2,+∞)B.(4,+∞)C.(2,4)D.(4,8)二十六.【答案】:B二十七.【解析】根据题意,椭圆+=1(a>b>0)的离心率为,即e==,则c=a,又由椭圆短轴长大于2,即2b>2,则b>1,则有a2﹣c2=b2>1,即>1,解可得a>2,则该椭圆的长轴长2a>4,即该椭圆的长轴长的范围为(4,+∞);故选:B.二十八.7. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C 交于A,B两点,则△AFB周长的取值范围是()二十九.A.(2,4)B.C.(6,8)D.(8,12)三十.【答案】:C三十一.【解析】∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx (k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2),则△AFB周长的取值范围是(6,8).故选:C.三十二.15. 设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ 的垂直平分线与CQ的连线交于点M,则M的轨迹方程为.三十三.三十四.【答案】:三十五.【解析】由圆的方程可知,圆心C(﹣1,0),半径等于5,设点M的坐标为(x,y ),三十六.∵AQ的垂直平分线交CQ于M,∴|MA|=|MQ|.又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.三十七.依据椭圆的定义可得,点M的轨迹是以 A、C 为焦点的椭圆,且2a=5,c=1,∴b=,三十八.故椭圆方程为+=1,即+=1.故答案为:三十九.16(2018•西宁二模)已知椭圆C:=1,F1,F2是该椭圆的左右焦点,点A(4,1),P是椭圆上的一个动点,当△APF1的周长取最大值时,△APF1的面积为.四十.【答案】:四十一.【解析】:如图所示,由椭圆C=1可得a=5,右焦点F2(4,0).|F1F2|=8四十二.∵|PF1|+|PF2|=2a=10,∴|PF1|+|PA|=10﹣|PF2|+|PA|≤10+|AF2|.四十三.△APF1的周长取最大值时,三点P、A、F2共线,且点P在第四象限,四十四.此时F1F2⊥AP,|PF2|==,△APF1的面积S=|F1F2|×|PA|=.四十五.故答案为:.四十六.四十七.四十八.三.解答题四十九.17. 已知椭圆的离心率为22,其中左焦点F(-2,0).五十.(1)求椭圆C的方程;五十一.(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m 的值.五十二. 【解析】:(1) 由题意,得五十三. 解得22,2.a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=.…………5分五十四.(2) 设点A 、B 的坐标分别为(x1,y1),(x2,y2),线段AB 的中点为M(x0,y0),五十五. 由消y 得,3x2+4mx+2m2-8=0,五十六.Δ=96-8m2>0,∴-23<m <23.…………8分五十七. .五十八.∵点M(x0,y0)在圆x2+y2=1上,五十九.,355m ∴=±.……10分六十. 18. (2018•广陵区校级四模)已知椭圆C :(a >b >0)的左焦点为F ,上顶点为A ,直线AF 与直线x+y ﹣3垂直,垂足为B ,且点A 是线段BF 的中点.六十一. (1)求椭圆C 的方程;六十二.(2)若M ,N 分别为椭圆C 的左,右顶点,P 是椭圆C 上位于第一象限的一点,直线MP 与直线x=4交于点Q ,且=9,求点P 的坐标.六十三.六十四.【分析】(1)由直线AF 与直线x+y ﹣3垂直,可得:=1,则直线AF 的方程为:y=x+c .与椭圆方程联立可得B(,),于是﹣c=0,解得c,即可得出椭圆方程.六十五.(2)设P(x0,y0),则直线MP的方程为y=(x+2),可得Q.9==2(x0+2)+,由点P在椭圆上可得:=2﹣,代入解出即可得出.六十六.六十七.(2)设P(x0,y0),则直线MP的方程为y=(x+2),∴Q.六十八.∴9==2(x0+2)+,………7分六十九.由点P在椭圆上可得:=2﹣,代入可得:9=2(x0+2)+,七十.化为:+x0﹣2=0,解得x0=1或﹣2.(舍),七十一.∴P.…………12分七十二.19. (2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.七十三.(1)求椭圆C的标准方程;七十四.(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.七十五.【分析】(1)根据题意,将两点的坐标代入椭圆的方程有,解可得、的值,即可得椭圆的方程;七十六.(2)设直线l1:y=k1x﹣1,与直线y=x联立方程有,可得E的坐标,设直线l2:,同理可得F的坐标,又由OE=OF,所以,解可得k的值,即可得答案.七十七.【解析】:(1)根据题意,椭圆C:(a>b>0)经过点,,七十八.则有,解得,…………3分七十九.所以椭圆C的标准方程为;…………5分八十.(2)由题意知A(0,﹣1),直线l1,l2的斜率存在且不为零,八十一.设直线l1:y=k1x﹣1,与直线y=x联立方程有,得,八十二.设直线l2:,同理,…………7分八十三.因为OE=OF,所以,八十四.①,无实数解;八十五.②,,,解得,八十六.综上可得,直线l1的斜率为.……12分八十七.20 (2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.八十八.(1)求椭圆C的方程;八十九.(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.九十.【分析】(1)根据椭圆的定义及椭圆的性质,即可求得a和b的值,即可求得椭圆方程;九十一.(2)设直线AB的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得k2=,即可求得|OA|2+|OB|2=5为定值.九十二.【解析】:(1)由题意,F1(﹣,0),F2(,0),根据椭圆定义|PF1|+|PF2|=2a,九十三.所以2a=+=4,九十四.所以a2=4,b2=a2﹣c2=1九十五.椭圆C的方程;…………5分九十六.(2)设直线AB:y=kx+m,(km≠0),A(x1,y1),B(x2,y2),九十七.由,消去y得(1+4k2)x2+8kmx+4m2﹣4=0,九十八.△=(8km)2﹣4(1+4k2)(4m2﹣4)>0,x1+x2=﹣,x1x2=,九十九.因为k1k2=k2,所以•=k2,百.即km(x1+x2)+m2=0(m≠0),解得k2=,…………8分百一.|OA|2+|OB|2=x12+x22+y12+y22=[(x1+x2)2﹣2x1x2]+2=5,百二.所以|OA|2+|OB|2=5为定值.…………12分百三.21. (2018•南充模拟)已知椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百四.(1)求椭圆C的方程;百五.(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.百六.【分析】(1)由椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.百七.(2)设l的方程为y=x+m,再与椭圆方程联立,将∠AOB 为钝角,转化为<0,且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围.百八.【解析】:(1)∵椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百九.∴,解得a=2,b=,c=,…………3分百十.∴椭圆C 的方程为=1.………………5分百十一.(2)由直线l平行于OM,得直线l的斜率k=kOM=,百十二.又l在y轴上的截距为m,∴l的方程为y=12x m.百十三.由,得x2+2mx+2m2﹣4=0.…………8分百十四.又直线l与椭圆交于A、B两个不同点,△=(2m)2﹣4(2m2﹣4)>0,于是﹣2<m<2.百十五.∠AOB为钝角等价于<0,且m≠0,百十六.设A(x1,y1),B(x2,y2),百十七.则=x1x2+y1y2==,百十八.由韦达定理x1+x2=﹣2m,x1x2=2m2﹣4,代入上式,百十九.化简整理得m2<2,即,故所求范围是(﹣)∪(0,). (12)分百二十.22. (2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.百二十一.(Ⅰ)求椭圆C的方程;百二十二.(Ⅱ)证明:直线MN过定点.百二十三.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得c、b的值,由椭圆的几何性质计算可得a的值,即可得椭圆的标准方程;百二十四.(Ⅱ)设直线MN的方程为y=kx+m,与椭圆的方程联立,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),由根与系数的关系分析直线AM、AN的斜率,进而分析可得k1+k2==0,解可得m的值,由直线的斜截式方程即可得答案.百二十五.百二十六.(Ⅱ)证明:设直线MN的方程为y=kx+m.百二十七.由,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.百二十八.设M(x1,y1),N(x2,y2),则,.百二十九.直线AM的斜率=;百三十.直线AN的斜率=.百三十一.k1+k2===.…………8分百三十二.由∠MAN的平分线在y轴上,得k1+k2=0.百三十三.即=0,百三十四.又因为|AM|≠|AN|,所以k≠0,百三十五.所以m=1.百三十六.因此,直线MN过定点(0,1).……12分。