2-3.1(k阶子式、余子式、代数余子式)--线性代数PPT

合集下载

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

线性代数代数余子式的计算

线性代数代数余子式的计算

线性代数代数余子式的计算线性代数中,代数余子式是一类有用的工具,用于求解线性方程组的解。

它的形式是一个矩阵,可以用来简单的来判断线性方程组的解的性质。

它可以使我们更容易的求解和分析线性方程组的解。

在线性代数中,假设有一组线性方程组:Ax=b,其中A为m×n系数矩阵,x=(x_1,x_2,…,x_m)^T为当前求解变量,b=(b_1,b_2,…,b_n)^T为未知数向量。

当方程组有唯一解时,由Cramer法可知,该方法具有某种特殊性质,也就是说,可以根据所给定的A,来求出该系统的解。

而这种特殊性质是通过代数余子式来实现的。

首先,我们可以把A定义为m×n系数矩阵,其列向量的形式如下:A=[a_1, a_2, ..., a_n],在这里,a_i表示A的第i列向量。

在矩阵A上,可以通过对应对角线元素交换,得到另外一个矩阵B,称为A的代数余子式,形式如下:B=[b_1, b_2, ..., b_n],在这里,b_i表示A的第i列向量的代数余子式,也就是说,元素b_i的每一个分量是A的第i列向量的除第i个元素外的其他元素的交叉积。

定理2.6 证明:A的解x可以用代数余子式的方法求得。

证明:假设Ax=b,令A的解为x=(x_1,x_2,...x_n)^T用代数余子式的方法,可以得到x=(x_1,x_2,...x_n)^T,其中:X_i=b_1 b_2 … b_{i-1} b_{i+1}…b_n det(A)^{-1},(1 ≤i ≤ n)而det(A)是A的行列式,也就是说,它可以通过代数余子式法来求解线性方程组的解。

以上就是关于线性代数中代数余子式的介绍,它可以帮助我们更容易的求解线性方程组的解,使我们可以更好的分析和研究线性系统。

在现实中,线性代数的应用十分广泛,它可以帮助我们从好的方面了解现实形势,从而更好的把握解决实际问题的方法。

一、k 级子式 余子式 代数余子式

一、k 级子式 余子式 代数余子式

中所在的行、 若 k 级子式 M 在 D 中所在的行、列指标分别是
i1 , i2 ,L , ik ; j1 , j2 ,L , jk ,则在 M 的余子式 M ′ 前
( −1)i1 + i2 +L+ ik + j1 + j2 +L+ jk 后称之为 M 的代数 后称之为 加上符号
余子式, 余子式,记为 A = ( −1)
c d −a −b b −a d −c
d −c b −a c −d −a b d c −b −a
a2 +b2 +c2 +d2 0 0 0 0 0 0 a2 +b2 +c2 +d2 = 0 0 a2 +b2 +c2 +d2 0 a2 +b2 +c2 +d2 0 0 0
§2.8 Laplace定理 Laplace定理
§2.8 Laplace定理 Laplace定理
Laplace 定理
设在行列式 D 中任意取 k ( 1 ≤ k ≤ n − 1 )行, 行 元素所组成的一切k级子式与它们的 由这 k 行元素所组成的一切 级子式与它们的 代数余子式的乘积和等于 D.即 . 若 D 中取定 k 行后,由这 k 行得到的 k 级子式 行后, 为 M 1 , M 2 ,L , M t ,它们对应的代数余子式分别为 它们对应的代数余子式分别为
M 3 = 1 4 = −1, 1 3 M 5 = 2 4 = 6, 0 3
它们的代数余子式为
§2.8 Laplace定理 Laplace定理
2 1 = 2, M4 = 0 1 M 6 = 1 4 = −1 1 3
A1 = ( −1)

线性代数总复习PPT 很全!.ppt

线性代数总复习PPT  很全!.ppt
m
x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.

x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3

线性代数第二章矩阵及其运算2-3PPT课件

线性代数第二章矩阵及其运算2-3PPT课件
例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。

线性代数及其应用第二版第一章PPT

线性代数及其应用第二版第一章PPT

解: A14 A24 A34 A44
1 A14 1 A24 1 A34 1 A44 a12 A14 a22 A24 a32 A34 a42 A44 0


1. 行列式按行(列)展开法则是把高阶行列 式的计算化为低阶行列式计算的重要工具.
n
D ,当 i j,
2.
aki Akj
D ai1 Ai1 ai2 Ai2 ain Ain 按 i 行展开
i 1,2,,n
a1 j A1 j a2 j A2 j anj Anj
按 j 列展开
j 1,2,,n
a11 D ai1
an1
a12 ai 2 an2
...
a12
...
...
ain
...
...
ann
证明 a11
an1 an2 ann an1 an2 ann
an1 an2 ann
ai1 Ai1 ai 2 Ai 2 ain Ain i 1,2,, n
按 j 列展开证明类似
3 5 3
例1. 计算行列式 D 0 1 0
7 72
解: 按第一行展开,得
D (3) (1)11 1 0
72
(5) (1)12 0 7
---------Tagore
第一章 行 列 式
第二节 行列式的展开定理
一、余子式与代数余子式
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,留下来的 n 1 阶行列式叫做元素aij 的余子式,记作 M ij .
a a a a 11
12
13
14
D a21 a22 a23 a24
a12
D
a 0... 0 i1

线性代数 幻灯片PPT

线性代数  幻灯片PPT
• 定义8 设有两个n
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社

西北工业大学《线性代数》课件-第三章 矩阵的初等变换

西北工业大学《线性代数》课件-第三章 矩阵的初等变换

1 0 0 0
1 0 0 0
c2
1 4
1
1
0
0
c2 c1
0
1
0 0
3 2 0 0
1 2 0 0
列 最 简 形
定理秩3.为3 r的 矩阵m A,n 经过有限次初等变
换,总可化为如下等价标准形
O(
Er
mr
)r
Or(nr ) O(mr )(nr
)
mn
即有
A
Er O
O O
推论1 设A是n阶方阵,A满秩 A En
24
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③

2

2
x1

1①
2
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
2 x1 x2 3x3 1 ①″
③'
1 8
②'
4 x2 x3 2 ②″
3 8
x3
9 4
③″
x1 x2
则称r为A的秩. 记做rank A r,或者 r(A) r.
规定:零矩阵的秩为0,即 rankO 0 .
➢ 矩阵秩的含义 A的所有r+1阶子式都为0
1 1 2
A
2
2
4
3
6
DAr的2 所?有r+2阶子式也都为0 1 1 2 3
A的所有大于r+2阶的子式也都为0
数r=rankA是矩阵A中子式不为0子式的最高阶数
0 0 1 1 3
A有一个三阶子式

线性代数 第三章

线性代数 第三章

第三章 向量组与矩阵的秩§1 n 维向量在平面几何中,坐标平面上每个点的位置可以用它的坐标来描述,点的坐标是一个有序数对(,)x y .一个n 元方程1122n n a x a x a x b +++=可以用一个1n -元有序数组12(,,,,)n a a a b来表示.1n ⨯矩阵和1n ⨯矩阵也可以看作有序数组.一个企业一年中从1月到12月每月的产值也可用一个有序数组1212(,,,)a a a 来表示.有序数组的应用非常广泛,有必要对它们进行深入的讨论.定义 1 n 个数组成的有序数组12(,,,)n a a a (3.1)或12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3.2)称为一个n 维向量,简称向量.一般,我们用小写的粗黑体字母,如,α,β,γ等来表示向量,(3.1)式称为一个行向量,(3.2)式称为一个列向量.数12,,,n a a a 称为这个向量的分量.i a 称为这个向量的第i 个分量或坐标.分量都是实数的向量称为实向量;分量是复数的向量称为复向量.实际上,n 维行向量可以看成1n ⨯矩阵,n 维列向量也常看成1n ⨯矩阵.下面我们只讨论实向量.设k 和l 为两个任意的常数.α,β和γ为三个任意的n 维向量,其中12(,,,)n a a a =α, 12(,,,)n b b b =β.定义 2 如果α和β对应的分量都相等,即,1,2,,i i a b i n ==就称这两个向量相等,记为α=β.定义 3 向量(a 1+b 1,a 2+b 2,…,a n +b n )称为α与β的和,记为α+β.称向量(ka 1,ka 2,…,ka n )为α与k 的数量乘积,简称数乘,记为k α.定义 4 分量全为零的向量(0, 0, …, 0)称为零向量,记为0.α与-1的数乘(-1)α=(-a 1,-a 2,…,-a n )称为α的负向量,记为-α.向量的减法定义为α-β=α+(-β).向量的加法与数乘具有下列性质: (1) α+β=β+α;(交换律) (2) (α+β)+γ=α+(β+γ);(结合律) (3) α+0=α;(4) α+(-α)=0; (5) k (α+β)=k α+k β; (6) (k +l )α=k α+l α; (7) k (l α)=(kl )α; (8) 1α=α; (9) 0α=0; (10) k 0=0.在数学中,满足(1)-(8)的运算称为线性运算.我们还可以证明:(11) 如果k ≠0且α≠0, 那么k α≠0.显然n 维行向量的相等和加法、减法及数乘运算的定义,与把它们看作1×n 矩阵时的相等和加法、减法及数乘运算的定义是一致的.对应地,我们也可以定义列向量的加法、减法和数乘运算,这些运算与把它们看成矩阵时的加法、减法和数乘运算也是一致的,并且同样具有性质(1)-(11).§2线性相关与线性无关通常把维数相同的一组向量简称为一个向量组,n 维行量组α1,α2,…,αs 可以排列 成一个s ×n 分块矩阵12s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦a a A a ,其中αi 为由A 的第i 行形成的子块,α1,α2,…,αs 称为A的行向量组.n 维列向量组β1,β2,…,βs 可以排成一个n ×s 矩阵B=(β1,β2,…,βs ),其中βj 为B的第j 列形成的子块,β1,β2,…,βs 称为B 的列向量组.很多情况下,对矩阵的讨论都归结于对它们的行向量组或列向量组的讨论.定义 5 向量组α1,α2,…,αs 称为线性相关的,如果有不全为零的数k 1,k 2,…,k s , 使1si ii k =∑a=k 1α1+k 2α2+…+k s αs =0. (3.3)反之,如果只有在k 1= k 2 = … =k s =0时(3.3)才成立,就称α1,α2,…,αs 线性无关. 换言之,当α1,α2,…,αs 是行向量组时,它们线性相关就是指有非零的1×s 矩阵 (k 1,k 2,…,k s )使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .当α1,α2,…,αs 为列向量组时,它们线性相关就是指有非零的s ×1矩阵(k 1,k 2,…,k s )′使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .显然单个零向量构成的向量组是成性的相关的. 例1 判断向量组12(1,0,,0),(0,1,,0),(0,0,,1)n =⎧⎪=⎪⎨⎪⎪=⎩εεε 的线性相关性.解 对任意的常数k 1,k 2,…,k n 都有k 1ε1+k 2ε2+…+k n εn =(k 1,k 2,…,k n ).所以k 1ε1+k 2ε2+…+k n εn =0当且仅当k 1=k 2=…=k n =0.因此ε1,ε2,…,εn 线性无关.ε1,ε2,…,εn 称为基本单位向量. 例2 判断向量组α1=(1,1,1), α2=(0,2,5), α3=(1,3,6)的线性相关性.解 对任意的常数k 1,k 2, k 3都有k 1α1+k 2α2+ k 3α3=(k 1+k 3,k 1+2k 2+3k 3,k 1+5k 2+6k 3).所以k 1α1+k 2α2+ k 3α3=0当且仅当131231230,230,560.k k k k k k k k +=⎧⎪++=⎨⎪++=⎩ 由于k 1=1,k 2=1,k 3=-1满足上述的方程组,因此1α1+1α2+(-1)α3=α1+α2-α3=0.所以α1,α2,α3线性相关.例3 设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1, 试证向量组β1,β2,β3也线性无关.证 对任意的常数都有k 1β1+k 2β2+k 3β3=(k 1+k 3)α1+(k 1+k 2)α2+(k 2+k 3)α3 .设有k 1,k 2,k 3使k 1β1+k 2β2+k 3β3=0.由α1,α2,α3线性无关, 故有1312230,0,0.k k k k k k +=⎧⎪+=⎨⎪+=⎩ 由于满足此方程组的k 1,k 2,k 3的取值只有k 1=k 2=k 3=0,所以β1,β2,β3线性无关.定义 6 向量α称为向量组β1,β2,…,βt 的一个线性组合,或者说α可由向量组β1,β2,…,βt 线性表出(示),如果有常数k 1,k 2,…,k t 使α=k 1β1+k 2β2+…+k t βt . 此时,也记1ti ii k ==∑a β.例4 设α1=(1,1,1,1),α2=(1,1,-1,-1),α3=(1,-1,1,-1),α4=(1,-1,-1,1), β=(1,2,1,1).试问β能否由α1,α2,α3,α4线性表出?若能,写出具体表达式.解 令β=k 1α1+k 2α2+k 3α3+k 4α4于是得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 因为1111111116011111111D ⎡⎤⎢⎥--⎢⎥==-≠⎢⎥--⎢⎥--⎣⎦, 由克莱姆法则求出1234511,,444k k k k ====-所以12345111,4444=+--βαααα即β能由α1,α2,α3,α4线性表出.例5 设α=(2,-3,0),β=(0,-1,2),γ=(0,-7,-4),试问γ能否由α,β线性表出? 解 设 γ=k 1α+k 2β 于是得方程组1122203724k k k k =⎧⎪--=-⎨⎪=-⎩由第一个方程得k 1=0,代入第二个方程得k 2=7,但k 2不满足第三个方程,故方程组无解.所以γ不能由α,β线性表出.定理 1 向量组α1,α2,…,αs (s ≥2) 线性相关的充要条件是其中至少有一个向量能由其他向量线性表出.证 设α1,α2,…,αs 中有一个向量能由其他向量线性表出,不妨设α1=k 2α2+k 3α3+…+k s αs ,那么-α1+k 2α2+…+k s αs =0,所以α1,α2,…,αs 线性相关.反过来,如果α1,α2,…,αs 线性相关,就有不全为零的数k 1,k 2,…,k s , 使k 1α1+k 2α2+…+k s αs =0.不妨设k 1≠0, 那么32123111.ss k k k k k k =----αααα 即α1能由α2,α3,…,αs 线性表出.例如,向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1) 是线性相关的,因为α3=3α1-α2.显然,向量组α1,α2线性相关就表示α1=k α2或者α2=k α1(这两个式子不一定能同时成立).此时,两向量的分量成正比例.在三维的情形,这就表示向量α1与α2共线.三个向量α1,α2,α3线性相关的几何意义就是它们共面.定理 2 设向量组β1,β2,…,βt 线性无关,而向量组β1,β2,…,βt ,α线性相关,则α能由向量组β1,β2,…,βt 线性表出,且表示式是惟一的.证 由于β1,β2,…,βt ,α线性相关,就有不全为零的数k 1,k 2,…,k t ,k 使k 1β1+k 2β2+…+k t βt +k α=0.由β1,β2,…,βt 线性无关可以知道k ≠0. 因此1212tt k k kk kk=----αβββ, 即α可由β1,β2,…,βt 线性表出.设α=l 1β1+l 2β2+…+l t βt =h 1β1+h 2β2+…+h t βt为两个表示式.由α-α=(l 1β1+β2+…+l t βt )-(h 1β1+h 2β2+…+h t βt )=(l 1-h 1)β1+(l 2-h 2)β2+…+(l t -h t )βt =0和β1,β2,…,βt 线性无关可以得到l 1=h 1, l 2=h 2, …, l t =h t .因此表示式是惟一的.定义 7 如果向量组α1,α2,…,αs 中每个向量都可由β1,β2,…,βt 线性表出,就称向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出,如果两个向量组互相可以线性表出,就称它们等价.显然,每一个向量组都可以经它自身线性表出.同时,如果向量组α1,α2,…,αt 可以经向量组β1,β2,…,βs 线性表出,向量组β1,β2,…,βs 可以经向量组12,,,p γγγ线性表出,那么向量组α1,α2,…,αt 可以经向量组12,,,p γγγ线性表出.事实上,如果1,1,2,,,si ij j j k i t ===∑αβ1,1,2,,,pj jmm m lj s ===∑βγ那么111111pppsss i ij jm m ij jm m ij jm m j m j m m j k l k l k l ======⎡⎤===⎢⎥⎣⎦∑∑∑∑∑∑αγγγ.这就是说,向量组α1,α2,…,αt 中每一个向量都可以经向量组12,,,p γγγ线性表出.因而,向量组α1,α2,…,αs 可以经向量组12,,,p γγγ线性表出.由上述结论,得到向量组的等价具有下述性质:(1) 反身性:向量组α1,α2,…,αs 与它自己等价.(2) 对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么β1,β2,…,βt 也与α1,α2,…,αs 等价.(3) 传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,而向量组β1,β2,…,βt 又与12,,,p γγγ等价,那么α1,α2,…,αs 与12,,,p γγγ等价.§ 3线性相关性的判别定理利用定义判断向量组的线性相关性往往比较复杂,我们有时可以直接利用向量组的特点来判断它的线性相关性,通常称一个向量组中的一部分向量组为原向量组的部分组.定理 3 有一个部分组线性相关的向量组线性相关. 证 设向量组α1,α2,…,αs 有一个部分组线性相关.不妨设这个部分组为α1,α2,…,αr .则有不全为零的数k 1,k 2,…,k r 使1110,s r si ii iji i j r k k ===+=+=∑∑∑0ααα因此α1,α2,…,αs 也线性相关.推论 含有零向量的向量组必线性相关. 定理 4 设p 1,p 2,…,p n 为1, 2, …,n 的一个排列,α1,α2,…,αs 和β1,β2,…,βs 为两向量组,其中1212n ip i ip i i i in ip ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααααα=,βαα, 即β1,β2,…,βs 是对α1,α2,…,αs 各分量的顺序进行重排后得到的向量组,则这两个向量组有相同的线性相关性.证 对任意的常数k 1,k 2,…,k s 注意到列向量111221*********1122s s ss s i i i n n s sn k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎣⎦∑αααααααααα和1112221122112211122n n n p p s sp sp p s sp i i i p p s sp k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦∑ααααααβααα 只是各分量的排列顺序不同,因此k 1β1+k 2β2+…+k s βs =0当且仅当k 1α1+k 2α2+…+k s αs =0.所以α1,α2,…,αs 和β1,β2,…,βs 有相同的线性相关性.定理4 是对列向量叙述的.对行向量也有相同的结论.类似这样的情形,今后不再说明.定理 5 在r 维向量组α1,α2,…,αs 的各向量添上n -r 个分量变成n 维向量组β1,β2,…,βt .(1)如果β1,β2,…,βs t 线性相关,那么α1,α2,…,αs 也线性相关. (2) 如果α1,α2,…,αs 线性无关,那么β1,β2,…,βs 也线性无关. 证 我们对列向量来证明定理,设(α1,α2,…,αs )=A1,(β1,β2,…,βs )=12⎡⎤⎢⎥⎣⎦A A ,如果β1,β2,…,βs 线性相关,就有一个非零的s ×1矩阵X使(β1,β2,…,βs )X=12⎡⎤⎢⎥⎣⎦A A X=12⎡⎤⎢⎥⎣⎦X X A A =0. 从而(α1,α2,…,αs )X =A1X=0.因此α1,α2,…,αs 也线性相关,即(1)成立.利用(1),用反证法容易证明(2)也成立.引理 1 如果n 阶方阵A 的行列式等于零,那么A 的行(列)向量组线性相关.证 因|A |=0,由上章内容,用初等行变换把A 化成上三角矩阵D ,主对角线上至少有一个元素为零,即11121222000n n nn d d d dd d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦D中至少有一个d ij =0.如果d nn =0,那么D 最后一行元素全为零,可见A 中有一行可由其余行线性表出,因此,A 的行向量组线性相关.如果d nn ≠0,设D 的主对角线上元素d 11,d 22,…,d nn 中从后起第一个等于零的数为d jj .易见,对D 再施行几次初等行变换后,可得到第j 行全为零的矩阵.同样得出A 中有一行可由其余行线性表出.因此,A 的行向量组线性相关.当|A|=0时,|A′|=0,A 的列向量组可看成A ′的行向量组,得A 的列向量组也线性相关.定理 6 n 维向量组α1,α2,…,αn 线性无关的充要条件是矩阵11112122122212n n n n n nn a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A ααα 的行列式不为零(A 可逆).此时,矩阵A 的n 个列向量也线性无关.证 如果|A|≠0,(k 1,k 2,…,k n )A =0,两边同时右乘A-1得(k 1,k 2,…,k n )=0,所以α1,α2,…,αn 线性无关.反过来,如果α1,α2,…,αn 线性无关.反设|A|=0,由引理1,A 的行向量组α1,α2,…,αn 线性相关,矛盾.由上面证明可以看出,当|A|≠0时,|A′|≠0,可见A 的n 个列向量也线性无关.例6 试证明n 维列向量组α1,α2,…,αn 线性无关的充分必要条件是行列式1112121222120n n nn nn '''⎡⎤⎢⎥'''⎢⎥=≠⎢⎥⎢⎥'''⎣⎦D αααααααααααααααααα证 令矩阵A ={α1,α2,…,αn }则向量组α1,α2,…,αn 线性无关⇔行列式|A |≠0.由于[]1111212212221212n n n nnn nn ''''⎡⎤⎡⎤⎢⎥⎢⎥''''⎢⎥⎢⎥'==⎢⎥⎢⎥⎢⎥⎢⎥''''⎣⎦⎣⎦A ααααααααααααααA αααααααααα在上式两端取行列式,得|A |2=|A ′||A |=D故|A |≠0⇔D ≠0,所以α1,α2,…,αn 线性无关⇔D ≠0.定理 7 n +1个n 维向量α1,α2,…,αn +1必线性相关.证 对每个αs 添加等于零的第n +1个分量,得到n +1维向量β1,β2,…,βn +1.易见,由β1,β2,…,βn +1构成的方阵的行列式等于零,因而β1,β2,…,βn +1线性相关,由αi 与βi 的关系,易知α1,α2,…,αn +1也线性相关.推论 当m >n 时,m 个n 维向量线性相关. 讨论下列矩阵的行向量组的线性相关性:123132221;021.343201-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B C由于|B|=2≠0,因此B的行(列)向量组线性无关; 由于|C|=0,所以C 的行(列)向量组线性相关.定理 8 如果向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出且s >t ,那么α1,α2,…,αs 线性相关.证 我们不妨假定讨论的是列向量,如果α1,α2,…,αs 可由β1,β2,…,βt 线 性表出,那么()()121212i i i n n i it p p p ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦αββββββγ.令A=(γ1,γ2,…,γs ),有(α1,α2,…,αs )=(β1,β2,…,βt )A,这里γ1,γ2,…,γs 为由s 个向量组成的t 维向量组.注意到s >t ,根据推论,它们必线性相关.因此有非零s ×1矩阵(k 1,k 2,…,k s )′使112212(,,,)s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0A γγγ.从而()11221212(,,,)s s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0αααβββA .即有α1,α2,…,αs 线性相关.推论 1 如果向量组α1,α2,…,αs ,可由向量组β1,β2,…,βt 线性表出,且α1,α2,…,αs 线性无关,那么s ≤t .推论 2 两个线性无关的等价的向量组必含有相同个数的向量.§ 4向量组的秩与矩阵的秩定义 8 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中向这部分组任意添一个向量(如果还有的话),所得的部分组都线性相关.例7 在向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1)中,α1,α2为它的一个极大线性无关组.首先,由α1与α2的分量不成比例,所以α1,α2线性无关,再添入α3以后,由α3=3α1-α2可知所得部分组线性相关,不难验证α2,α3也为一个极大线性无关组.我们容易证明定义8与下列定义8′等价.定义 8′ 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且这向量组中任意向量都可由这部分组线性表出.向量组的极大线性无关组具有以下性质:性质 1 一向量组的极大线性无关组与向量组本身等价. 性质 2 一向量组的任意两个极大线性无关组都等价.性质 3 一向量组的极大线性无关组都含有相同个数的向量.性质3表明向量组的极大线性无关组所含向量的个数与极大线性无关组的选择无关,它反映了向量组本身的特征.定义 9 向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 例如,例7中向量组α1,α2,α3的秩为2. 线性无关向量组本身就是它的极大线性无关组,所以我们有:一向量组线性无关的充要条件为它的秩与它所含向量的个数相同.我们知道每个向量组都与它的极大线性无关组等价,由等价的传递性可知任意两个等价的向量组的极大线性无关组也等价,根据定理8的推论1就有等价的向量组必有相同的秩.如果向量组α1,α2,…,αs 能由向量组β1,β2,…,βt 线性表出,那么α1,α2,…,αs的极大线性无关组可由β1,β2,…,βt 的极大线性无关组线性表出.因此α1,α2,…,αs 的秩不超过β1,β2,…,βt 的秩.定理 9 向量组的任意线性无关的部分组都可扩充为一个极大线性无关组.证 设,i i i 12καα,,α是向量组α1,α2,…,αs 中的一个线性无关的部分组,如果α1,α2,…,αs 中每个向量都可由这个部分组线性表出,那么这个部分组就是一个极大线性无关组,如果还有某向量αik +1不能被这个部分组线性表出,那么由121121i i k i l l l κ+++++ααα=0就有l k +1=0.再由原部分组线性无关就可得l 1=l 2=…=l k =l k +1=0.这样,我们就得到了一个含k +1个向量的线性无关的部分组121,i i i κ+αα,,α.重复这个过程,最后必可得到α1,α2,…,αs 的一个线性无关的部分组使向量组中每个向量都可由这个部分组线性表出,这个部分组就是一个极大线性无关组.推论 秩为r 的向量组中任意含r 个向量的线性无关的部分组都是极大线性无关组. 例8 求向量组α1=(1,-1,0,3),α2=(0,1,-1,2),α3=(1,0,-1,5),α4=(0,0,0,2)的一个极大线性无关组及秩.解 α1是α1,α2,α3,α4的一个线性无关的部分组,显然α2不能由α1线性表示,所以α1可以扩充为一个线性无关的部分组α1,α2,容易证明α3=α1+α2,但α4不能由α1,α2线性表出,所以α1,α2又可扩充为一个线性无关的部分组α1,α2,α4,从而α1,α2,α3,α4的秩为3,α1,α2,α4是它的一个极大线性无关组. 定义 10 矩阵的行秩是指它的行向量组的秩,矩阵的列秩是指它的列向量组的秩.为了证明一个矩阵的行秩等于列秩,我们引入矩阵的子式的概念.定义 11 在一个s ×n 矩阵A 中任意选定k 行和k 列,位于这些选定的行和列的交点上的k 2个元素按原来的次序所组成的k ×k 级矩阵的行列式,称为A 的一个k 级子式.在定义中,当然有k ≤m in (s ,n )(s ,n 中较小的一个). 例9 在矩阵11361012400005301102⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A 中,选第1,第3行和第3,第4列,它们交点上的元素所组成的二级行列式361505⎡⎤=⎢⎥⎣⎦就是一个2级子式,易见,A 共有2级子式的个数为2245C C 60=.引理 2 设r ≤n .n 维向量组α1,α2,…,αr 线性无关的充要条件是:矩阵111212122212n n r r rn r a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααA α 中存在一个不为零的r 级子式.证 充分性 当A 中存在一个不为零的r 级子式时,由定理6,定理5易知,A 的r 个行向量α1,α2,…,αr 线性无关.必要性 对向量的个数r 用数学归纳法证明.当r =1时,因α1线性无关,故α1≠0,A 中有一个不为零的1级子式. 假设当r =k 时,结论成立.当r =k +1≤n 时,因α1,α2,…,αk +1线性无关,其部分组也线性无关.由归纳假设,矩阵111212122212n n k k k kn a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααB α 中存在不为零的k 级子式,不妨设1112121222120k k k k kk a a a aa a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦, 令γi =(a i 1,a i 2,…,a ik ),k 12⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦γγγC 是一个k 阶可逆矩阵,i =1,2,…,k+1.显然,γi 是由αi 的前k 个分量构成,设()11,,,k κc c c -2+1=γC ,易见()1,,,k c c c 2是一组确定的数,且()()111,,,,,,κk k k c c c c c c 2+122⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦γγγγC ,即()11,,,κk k c c c +122-=0γγγγ.(3.4) 令()()111,,,κk k n c c c b b b +1222=-+++=βαααα,即有b j =a k +1,j -(c 1a 1j +c 2a 2j +…+c k a kj ), j =1,2,…,n .由于γ1,γ2,…,γk ,γk +1分别由α1,α2,…,αk ,αk +1的前k 个分量构成,根据(3.4)式,β的前k 个分量应为零,即b 1=b 2=…=b k =0.又因为α1,α2,…,αk ,αk +1线性无关,所以β≠0. 因此,必有某b j ≠0(k <j ≤n ).于是有k +1级子式11121111121121222221222212121,11,21,1,0000k j kj k j k j j k k kk kj k k kk kj k k k kk j j a a a a a a a a a a a a a a a a b a a a a a a a a a a a a b ++++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==≠⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦C . 由定理6及引理2,可以看出,如果A 有一个k 级子式不为零,那么这个k 级子式所在的行向量组线性无关,所在的列向量组也线性无关.定理 10 矩阵的行秩等于列秩.证 设矩阵A 的行秩为r 1,A 的列秩为r 2,那么,A 中有r 1个行向量线性无关,由引理2,A 中有一个r 1级子式D 不为零,那么A 中子式D 所在的r 1个列向量也线性无关;因而,r 1≤r 2.这说明,任意矩阵的列秩大于或等于行秩,由此,A ′的列秩(A 的行秩r 1)≥A ′的行秩(A 的列秩r 2),即有r 1≥r 2.因此r 1=r 2.下面统称矩阵的行秩和列秩为矩阵的秩.矩阵A 的秩一般记为R (A).规定零矩阵的秩为0,由引理2,可得定理 11 矩阵A 的秩为r 的充要条件是它有一个不为零的r 阶子式,而所有r +1阶子式全为零,这时,这个非零的r 级子式所在的行和列就分别为A 的行向量组和列向量组的极大线性无关组.例10 已知矩阵111111111111αa a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的秩为3,求a 的值. 解 R (A )=3,即A 中非零子式的最高阶数为3,故有1111111111111(3)111111111111αa a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A 11110100(3)00100001a a a a ⎡⎤⎢⎥-⎢⎥=+⎢⎥-⎢⎥-⎣⎦=(a +3)(a -1)2=0 由此得a =-3或a =1.当a =1时,显然有R (A )=1;而当a =-3时,A 的左上角的3阶子式为311131160113-⎡⎤⎢⎥-=-≠⎢⎥⎢⎥-⎣⎦即A 中存在非零的3阶子式,且不存在更高阶的非零子式,故当且仅当a =-3时,R (A )=3.§5 矩阵的初等变换由上节介绍的方法求阶数较高的矩阵的秩的计算量很大,本节来介绍一种简单有效的求矩阵的秩的方法,即利用矩阵的初等变换求出矩阵的等价标准型,矩阵的秩就等于它的等价标准型的秩.下面我们回顾一下矩阵的初等行变换.定义 12 下面的三种变换称为矩阵的初等行变换:(1) 对换矩阵两行的位置(对换第i 行和第j 行的位置记为r (i ,j )).(2)矩阵的某行所有元素同乘以一个非零常数(第i 行乘以k 记为r (i (k ))).(3) 把矩阵一行所有元素的k 倍加到另一行对应的元素上去[第i 行的k 倍加到第j 行上去记为r (j +i (k ))].显然,矩阵的初等行变换都是可逆的,且其逆变换也是同类的初等行变换.r (i ,j )的逆变换仍为r (i ,j );r (i (k ))的逆变换为r (i (1/k ));r (j +i (k ))的逆变换为r (j +i (-k )).定理 12 如果矩阵A经过有限次初等行变换变为B ,则A 的行向量组与B 的行向量组等价,而A 的任意k 个列向量与B中对应的k 个列向量有相同的线性关系.证 当A 经过一次初等行变换变为B 时,B 的行向量组显然可由A 的行向量组线性表出,对A 的任意k 个列向量α1,α2,…,αk ,设它们所对应的B 的列向量依次为12k'''a ,a ,,a ,如果α1,α2,…,αk 线性相关,就有不全为零的常数12,,,k l l l 使1122k k l l l +++a a a =0.由12k'''a ,a ,,a 各分量与α1,α2,…,αk 各分量的关系容易得出 1122k kl l l '''+++a a a =0, 因此12k'''a ,a ,,a 也线性相关.由初等行变换的逆变换也是初等行变换可以知道A的行向量组也可由B的行向量组线性表出,并且由12k'''a ,a ,,a 线性相关也可以导出α1,α2,…,αk 线性相关,此时命题成立.当A要经若干个初等变换变为B时,用数学归纳法容易证明命题也成立.例11 求下列向量组α1=(1,-2,2,3), α2=(-2,4,-1,3), α3=(-1,2,0,3), α4=(0,6,2,3),α5=(2,-6,3,4) 的一个极大线性无关组与秩.解 作12102242662102333334--⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥⎣⎦A , 对A作初等行变换得(21(2))(31(2))(2,3)(41(3))(3,4)121212102000620322103021096320933200062r r r r r ++-+-----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦A (32(3))12102032210003100062r +---⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥-⎣⎦(43(2))12102032210003100000r +--⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎣⎦. (3.5) 上面最后一个矩阵(3.5)满足:从每一行的第一个元素到第一个非零元素下面全为零,这些零的排列像一个阶梯,每个阶梯都只有一行,它称为一个行阶梯矩阵.易见,行阶梯矩阵(3.5)中有一个3级子式不为零,而所有4级子式全为零,故矩阵(3.5)的秩为3,它的第1、2、4列线性无关,所以R (A)=3,且R (α1,α2,α3,α4,α5)=3,α1,α2,α4为该向量组的一个极大线性无关组.对(3.5)继续进行初等行变换还可化为更简单的形式:1(2())31(3())312102221013331000130000r r ---⎡⎤⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦矩阵(3.5) (12(2))2(23())311610039210103910001300000r r ++-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦.(3.6) (3.6)仍是一个行阶梯形矩阵,但它的每一非零行的第一个非零元素为1,且这些元素所在的列的其他元素都为0,这个矩阵称为矩阵A的行最简形.例12 求向量组α1=(1,4,1,0,2),α2=(2,5,-1,-3,2),α3=(0,2,2,-1,0), α4=(-1,2,5,6,2)的一个极大无关组,并把不属于极大无关组的向量用该极大无关组线性表出.解 把向量组按列排成矩阵A ,利用初等行变换把A 化为行最简形矩阵B .1201120145220326112503260316031622020204⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A1201100301020102001000100000000000000000-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦B 易见B 的第1,2,3列线性无关,由于A 的列向量组与B 的对应的列向量组有相同的线性组合关系,故与其对应的矩阵A 的第1,2,3列线性无关,即α1,α2,α3是该向量组成的一个极大无关组.由矩阵B 易得α4=3α1-2α2.求向量组的极大无关组时,不管所给的是行向量组还是列向量组,都要按列排成矩阵再进行初等行变换.对应于矩阵的初等行变换,我们还可以定义矩阵的初等列变换.对矩阵的初等列变换c (i ,j ),c (i (k ))和c (j +i (k ))也有类似于矩阵的初等行变换的结论.所以,我们同样可以通过求矩阵的列阶梯形矩阵和列最简形来求矩阵的秩以及行向量组的极大线性无关组.矩阵的初等行变换和初等列变换统称为初等变换.事实上,我们在求矩阵的秩时,经常对矩阵既进行初等行变换也进行初等列变换,使计算过程得到简化.定义 13 如果矩阵A 经有限次初等变换化成B ,就称矩阵A 与B 等价. 我们容易证明,矩阵的等价关系具有下列性质: (1) 反身性: A 与A 等价.(2) 对称性: 如果A 与B 等价,那么B 与A 等价.(3) 传递性: 如果A 与B 等价,B 与C 等价,那么A 与C 等价. 定理 13 如果矩阵A 与B 等价,那么R (A )=R (B). 对矩阵(3.6)再进行初等列变换可得1(31())316(51())92(32())31(52())(3,4)91(54())31000010000010000100000010001000000000000r r r r c r +-+-+-++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵(3.6). (3.7)矩阵(3.7)的左上角为一个单位矩阵E 3,它的阶数就是A 的秩,其他各分块矩阵都是零矩阵, 矩阵(3.7)就称为A 的等价标准型.事实上,我们有如下定理定理 14 每个矩阵都有等价标准型,矩阵A 与B 等价,当且仅当它们有相同的等价标准型.推论 两个同型矩阵等价的充分必要条件是它们的秩相等.当A 为n 阶可逆方阵时,R (A)=n ,所以A 的等价标准型为n 阶单位矩阵.由于可逆方阵的秩等于阶数,所以可逆方阵又称为满秩方阵,而奇异方阵就称为降秩方阵.§ 6初等矩阵与求矩阵的逆这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在此基础上给出用初等变换求逆矩阵的方法.定义 14由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.显然,初等矩阵都是方阵.互换E 的第i 行与第j 行(或者互换E的第i 列和第j 列)的位置,得11011(,)11011i i j j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E ; 用常数k 乘E 的第i 行(或第i 列)得11(())11i k i k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行E ; 把E的第j 行的k 倍加到第i 行(或把第i 列的k 倍加到第j 列)得11(())11i k i j k j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E . 这三类矩阵就是全部的初等矩阵,显然111()(),(())(())i j i j i k i k--==,,E E E E ,1(())(())i j k i j k -+=+-E E .定理15 对一个s ×n 矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s ×s 初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n ×n 初等矩阵.证 我们只看行变换的情形,列变换的情形可同样证明.令B=(b ij )s ×s 为任意一个s ×s 矩阵,A1,A2,…,As 为A 的行向量组,由矩阵的分块乘法,得111122121122221122s s s s s s ss s b b b b b b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A +A ++A A +A ++A BA A +A ++A ,令B=E (i ,j ),得1()j i s i j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,A A E A A A ,这相当于把A 的i 行与j 行互换;令B=E (i (k )),得1(())i s i k k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦A E A A A ,这相当于用k 乘A 的第i 行;令B=E (i +j (k )),得1(())i j j s k i j k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A A +A E A A A ,这相当于把A 的第j 行的k 倍加到第i 行.推论1 矩阵A 与B 等价的充分必要条件是:有初等方阵P1,P2,…,Ps ,Q1,…,Qt使A=P1P2…Ps BQ1Q2…Qt.推论2 n×n矩阵A 可逆的充分必要条件是:它能表成一些初等矩阵的乘积. 推论3 两个s×n矩阵A 、B 等价的充分必要条件是:存在可逆的s×s矩阵P 与可逆的n ×n 矩阵Q 使A=PBQ.推论4 可逆矩阵总可以经过一系列初等行变换化成单位矩阵.证 如果A 是可逆方阵,由推论2知道它可以写成一些初等矩阵的乘积:A=Q1Q2…Qm.因此11121m---=Q Q Q A E .由于初等矩阵的逆矩阵仍为初等矩阵,而A 左乘初等矩阵就相当于对A 施行初等行变换,所以A 可以经初等行变换化为单位矩阵.值得注意的是,如果有初等矩阵P1,…,Pm使Pm…P1A=E,那么A-1=Pm…P1=Pm…P1E,这说明,如果用一系列初等行变换可把可逆矩阵A 化为单位矩阵,那么同样地用这一系列初等行变换去化单位矩阵,就得到A -1.如果我们把A ,E 这两个矩阵凑在一起作成一个n ×2n 矩阵.(A┊E),按矩阵的分块乘法可得Pm…P1(A┊E)=(Pm…P1A┊Pm…P1E )=(E ┊A-1).这就给我们提供了一个具体的求可逆矩阵A 的逆矩阵的方法:作n×2n 矩阵(A ┊E ),用初等行变换把它的左边一半化成E ,这时,右边的一半就是A -1.例13 设012114210⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A ,求A-1.解 对(A┊E)作初等行变换012100()114010210001⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A E(1,2)114010012100210001r ⎡⎤⎢⎥−−−→⎢⎥⎢⎥-⎣⎦ (31(2))114010012100038021r +-⎡⎤⎢⎥−−−−→⎢⎥⎢⎥---⎣⎦ (32(3))114010012100002321r +⎡⎤⎢⎥−−−−→⎢⎥⎢⎥--⎣⎦(23(1))(13(2))(12(1))100211010421002321r r r +++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())210021101042131001122r -⎡⎤⎢⎥-⎢⎥−−−−→-⎢⎥⎢⎥--⎢⎥⎣⎦.于是121142131122-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎣⎦A .当然,同样可以证明,可逆矩阵也能用初等列变换化成单位矩阵,这就给出了用初等列变换求逆矩阵的方法.§7 向量空间定义15 设V 为n 维向量组成的集合.如果V 非空,且对于向量加法及数乘运算封闭,即对任意的α,β∈V 和常数k 都有α+β∈V,kα∈V,就称集合V 为一个向量空间.例14 n 维向量的全体R n构成一个向量空间.特别地,三维向量可以用有向线段来表示,所以R 3也可以看作以坐标原点为起点的有向线段的全体.例15 n 维零向量所形成的集合{0}构成一个向量空间.例16 集合V ={(0,x2,x3,…,xn)}|x2,x3,…,xn∈R }构成一个向量空间.例17 集合V ={(x1,x2,…,xn)|x1+x2+…+xn=1}不构成向量空间. 例18 设α1,α2,…,αm为一个n 维向量组,它们的线性组合V={k1α1+k2α2+…+k m αm |k 1,k 2,…,k m ∈R }构成一个向量空间.这个向量空间称为由α1,α2,…,αm所生成的向量空间,记为L (α1,α2,…,αm).例19 证明由等价的向量组生成的向量空间必相等.证 设α1,α2,…,αm和β1,β2,…,βs 是两个等价的向量组.任意的α∈L(α1,α2,…,αm)都可经α1,α2,…,αm线性表出.由向量组α1,α2,…,αm又可经β1,β2,…,βs 线性表出可以知道α也能经β1,β2,…,βs 线性表出,即有α∈L(β1,β2,…,βs ).由α的任意性得L (α1,α2,…,αm)⊆L (β1,β2,…,βs ).同理可证L (β1,β2,…,βs )⊆L ().于是L (α1,α2,…,αm)=L (β1,β2,…,βs ).定义16 如果V 1和V2都是向量空间且V 1⊆V2,就称V1是V2的子空间.任何由n 维向量所组成的向量空间都是R n的子空间.R n和{0}称为R n的平凡子空间,其他子空间称为R n的非平凡子空间.定义17 设V 为一个向量空间.如果V 中的向量组α1,α2,…,αr 满足(1)α1,α2,…,αr 线性无关;(2) V 中任意向量都可经α1,α2,…,αr 线性表出,那么,向量组α1,α2,…,αr 就称为V 的一个基,r 称为V 的维数,并称V 为一个r 维向量空间.如果向量空间V 没有基,就说V 的维数为0,0维向量空间只含一个零向量.如果把向量空间V 看作向量组,那么V 的基就是它的极大线性无关组,V 的维数就是它的秩.当V 由n 维向量组成时,它的维数不会超过n .例20 设 ()123221212122-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A a ,a ,a , ()12140342⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦B ,ββ, 验证α1,α2,α3是R 3的一个基并将β1,β2用这个基线性表出.解 由|A|≠0可以知道α1,α2,α3线性无关,因此α1,α2,α3是R 3的一个基.设β1=x11α1+x21α2+x31α3,β2=x12α1+x22α2+x32α3,即(β1,β2)=(α1,α2,α3)111221223132x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 那么 ()1112112122123132x x x x x x --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,=AB ββ.如果P 1,P2,…,Pl为初等矩阵,使P1P2…PlA=E,则 A-1=P1P2…Pl且11122122123132l x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P P P B .因此只需对矩阵(A┊B)作初等行变换,当把A 变为E 时,B 就变成了A-1B.(A┊B)=221142*********-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦(1,3)122422*********r --⎡⎤⎢⎥−−−→-⎢⎥⎢⎥-⎣⎦(21(2))(31(2))122420368706378r r ++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥-⎣⎦(1(1))(32(2))122420368700996r r -+----⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())9(23(6))(13(2))21202303023200113r r r -+-+⎡⎤--⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥-⎢⎥⎣⎦1(2())3(12(2))2410033201013200113r r +⎡⎤⎢⎥⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以 112321232242,3333--++=a a a =a a a ββ. 习 题 三1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.3. 判断下列命题是否正确:(1) 若向量组α1,α2,…,αm线性相关,那么其中每个向量可经其他向量线性表示.(2) 如果向量β1,β2,…,βs 可经向量组α1,α2,…,αm线性表示且α1,α2,…,αm 线性相关,那么β1,β2,…,βs 也线性相关.(3) 如果向量β可经向量组α1,α2,…,αm线性表示且表示式是惟一的,那么α1,α2,…,αm线性无关.(4) 如果当且仅当λ1=λ2=…=λm=0时才有λ1α1+λ2α2+…+λm αm +λ1β1+λ2β2+…+λmβm=0,那么α1,α2,…,αm线性无关且β1,β2,…,βm 也线性无关.(5) α1,α2,…,αm线性相关,β1,β2,…,βm 也线性相关,就有不全为0的数λ1, λ2,…,λm使λ1α1+λ2α2+…+λm αm =λ1β1+λ2β2+…+λmβm.(6) 如果R (A )=r,则A 的r-1阶子式全为0.(7) 如果R (A )=r,则A 的r阶子式不为0.(8) 如果由矩阵A 划去一行得到B ,则R (A )>R (B ).(9) 如果P 为一个可逆s×s方阵,Q 为一个可逆n×n方阵,A 为一个s×n阵,那么R (A )=R (PAQ).4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).5. β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组β1,β2,β3,β4线性相关.6. 设向量组α1,α2,…,αr 线性无关,证明向量组β1,β2,…,βr 也线性无关,这里βi=α1+α2+…+αi.7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.8. αi=(αi1,αi2,…,αin),i =1,2,…,n.证明:如果|aij|≠0,那么α1,α2,…,αn 线性无关.。

线性代数完整版ppt课件

线性代数完整版ppt课件
a11x1 a12x2 b1 a21x1 a22x2 b2
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !

线性代数矩阵的秩ppt课件

线性代数矩阵的秩ppt课件
设 A 经过初等列变换变为 B,则 AT 经过初等行变换变为
BT ,从而 R(AT) = R(BT) . 1. 又 R(A) = R(AT) ,R(B) = R(BT),因此 R(A) = R(B) .
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
显然,m×n 矩阵 A 的 k 阶子式共有
C
k m
C
k n
个.
概念辨析: k 阶子式、矩阵的子块、余子式、代数余子式
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
a11 a12 a13 a 21 a 22 a 23 a 31 a 32 a 33
3 2 0 5 0
例:求矩阵
A
3
2
3
2 0 1
6 5
1
3
的秩,并求 A 的一个
1
6
4 1
4
最高阶非零子式.
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
解:第一步先用初等行变换把矩阵化成行阶梯形矩阵.
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
一、矩阵的秩的概念
定义:在 m×n 矩阵 A 中,任取 k 行 k 列( k ≤ m,k≤n), 位于这些行列交叉处的 k2 个元素,不改变它们在 A中所处 的位置次序而得的 k 阶行列式,称为矩阵 A 的 k 阶子式.

高代--行列式代数余子式展开.ppt

高代--行列式代数余子式展开.ppt

a11

a1j

a1n
an1 an j ann
j – 1次
其中
a11 a1j a1n



0 aij 0



an1 an j ann
aij Aij
aij
(1)ij 2
a1j
an j
00 a11 a1n Mij an1 ann
a11 a12 a14 M 23 a31 a32 a34
a41 a42 a44
(2, 3) 元的代数余子式 A23
A23 (1)23 M23
• 在 n 阶行列式中, 划去第 i 行, 第 j 列, 余下的元素按原次序排成的 n - 1 阶 行列式称为 ( i , j ) 元的余子式, 记为 M i j .
行列式值不变.
作业:
§2.3 1 (2) (3), 2 (2), 3 (2), 4 (2) §2.4 1 (2) (4), 2, 4, 6, 9
补充题: 求 M12 3M22 2M32
1842 3425 A 2462 0706
Matlab 求简化阶梯矩阵
>> B = [ 2,4,1,5; 3,2,6,9; 3,7,1,8 ] B=


| A | ai1 ai2 ain


an1 an2 ann
a11 a12 a1n


a11 a12 a1n


ai1 0 0 0 ai2 ain




an1 an2 ann an1 an2 ann
证明:
a11 a12 a1n

一k级子式余子式代数余子式

一k级子式余子式代数余子式

一k级子式余子式代数余子式余子式二、拉普拉斯(Laplace)定理拉普拉斯(Laplace)定理三、行列式乘法法则级子式与余子式、一、k级子式与余子式、代数余子式定义在一个n级行列式D中任意选定k行k列k2个元素(k≤n),位于这些行和列的交叉点上的位于这些行和列的交叉点上的按照原来次序组成一个k级行列式M,称为行列按照原来次序组成一个,称为行列级子式;式D的一个k级子式;在D中划去这k行k列后余下的元素按照原来的次序组成的nk级行列余子式;式M′,称为k级子式M的余子式;§2.8Laplace定理Laplace定理中所在的行、若k级子式M在D中所在的行、列指标分别是i1,i2,L,ik;j1,j2,L,jk,则在M的余子式M′前(1)i1+i2+L+ik+j1+j2+L+jk后称之为M的代数后称之为加上符号余子式,余子式,记为A=(1)i1+i2+L+ik+j1+j2+L+jkM′.注:①k级子式不是唯一的级子式不是唯一的.kk级子式).(任一n级行列式有CnCn个k级子式).②k=1时,D中每个元素都是一个级子式;中每个元素都是一个1级子式中每个元素都是一个级子式;k=n时,D本身为一个级子式.本身为一个n级子式本身为一个级子式.§2.8Laplace定理Laplace定理二、拉普拉斯(Laplace)定理拉普拉斯定理引理行列式D的任一子式M与它的代数余子式A的乘积中的每一项都是行列式D的展开式中的乘积中的每一项都是行列式的一项,而且符号也一致.的一项,而且符号也一致.§2.8Laplace定理Laplace定理Laplace定理设在行列式D中任意取k(1≤k≤n1)行,行元素所组成的一切k级子式与它们的由这k行元素所组成的一切级子式与它们的代数余子式的乘积和等于D.即.若D中取定k行后,由这k行得到的k级子式行后,为M1,M2,L,Mt,它们对应的代数余子式分别为它们对应的代数余子式分别为A1,A2,L,At,则D=M1A1+M2A2+L+MtAt..§2.8Laplace定理Laplace定理注:①k=1时,D=M1A1+M2A2+L+MtAt按某行展开;即为行列式D按某行展开;a11La1k0L0LLLLLLaL11ak1Lakk0L0=LL②D=b11Lb1raLk1某LLLbr1Lbrra1kLakkb11Lbr1LLLb1rLbrr行运用Laplace定理结果.定理结果.为行列式D取定前k行运用§2.8Laplace定理Laplace定理10例1:计算行列式D=1:0M1=12=2,解:10214121013131M2=11=0,11M3=14=1,13M5=24=6,03它们的代数余子式为§2.8Laplace定理Laplace定理21=2,M4=01M6=14=113A1=(1)1+3+1+201=0A=(1)1+3+2+411=2,,2110112=5A=(1)1+3+1+201=0,4,130102=0,A=(1)1+3+1+201=0.60301A3=(1)A5=(1)1+3+2+34+1+1+3∴D=(2)1+0(2)+(1)5+20+60+(1)0=7§2.8Laplace定理Laplace定理三、行列式乘法法则设有两个n设有两个级行列式a11a12La1nb11b12a21a22La2nb21b22D1=,D2=MMMMMMan1an2Lannbn1bn2LLMLb1nb2nMbnnc11c12Lc1nc21c22Lc2n则D1D2=MMMMcn1cn2Lcnnn其中cij=ai1b1j+ai2b2j+L+ainbnj=∑aikbkj,i,j=1,2,L,n§2.8Laplace定理Laplace定理k=1证:作一个级的行列式作一个2n级的行列式a11La1n0LLLLan1Lann0D=b111OL1bn1由拉普拉斯定理LLLLLL0L0b1nLbnna11La1nb11Lb1nD=LLLLLL=aijbijan1Lannbn1Lbnn§2.8Laplace定理Laplace定理又对D作初等行变换:又对作初等行变换:作初等行变换ri=ai1rn+1+ai2rn+2+L+ainr2n,i=1,2,L,n.可得0L0c11LLLL0L0cn1D=b111OL1bn1LLLLLLc1nLcnnb1nLbnn这里cij=ai1b1j+ai2b2j+L+ainbnj,i,j=1,2,L,n.§2.8Laplace定理Laplace定理∴D=(1)1+2+L+n+(n+1)+L+2ncij(1)n=cij从而aijbij=cij,cij=ai1b1j+ai2b2j+L+ainbnj,i,j=1,2,L,n.§2.8Laplace定理Laplace定理例2:证明齐次性方程组:a某1+b某2+c某3+d某4b某1a某2+d某3c某4c某d某a某+b某d某1+c某2b某3a某42341=0=0=0=0只有零解.不全为0.只有零解.其中a,b,c,d不全为.§2.8Laplace定理Laplace定理证:系数行列式a2′=bD=DDcdaD=bcdbadccdabbadcdcbaabcdcdabbadcdcbacdabdcbaa2+b2+c2+d2000000a2+b2+c2+d2=00a2+b2+c2+d20a2+b2+c2+d2000§2 .8Laplace定理Laplace定理=(a+b+c+d)22224a,b,c,d不全为,有(a2+b2+c2+d2)4≠0不全为0,由故方程组只有零解.即D≠0,故方程组只有零解.§2.8Laplace定理Laplace定理。

线性代数第一章第四节

线性代数第一章第四节

n 阶行列式
D
a 21 a n1
a n 2 a nn
等于它的任意一行 (列) 的各元素与其对
应的代数余子式乘积之和,即
D a i 1 Ai 1 a i 2 Ai 2 a in Ain (i 1,2,, n)

D a1 j A1 j a 2 j A2 j a nj Anj ( j 1,2,, n)
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
定义6 在 n 阶行列式中,把元素 a ij 所在的第 i 行和第 j
这个定理叫做行列式按行(列)展开法则,利用 这一法则并结合行列式的 性质,可简化行列式的 计算。
推论 n 阶行列式 D det(aij ) 某一行(列)的
元素与另一行(列)对应元素的代数余子式乘积
之和等于零,即
ai 1 Aj1 ai 2 Aj 2 ain Ajn 0 (i j)
n x2 2
1 x3

1 xn
n n x3 2 xn 2
n-1阶范德蒙德行列式
Dn ( x 2 x1 )( x 3 x1 )( x n x1 )
n i j 2
( xi x j )
n i j 1
( xi x j ).
例9 计算行列式
a ij与其代数余子式的乘积,即 Bij aij Aij
证 先看i , j 1的情形,

线性代数第一章第一节PPT课件

线性代数第一章第一节PPT课件

01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。

《线性代数》基础阶段课件(完整)

《线性代数》基础阶段课件(完整)

T
D 的转置行列式.
7、行列式的性质
表明行与列是 对等的,行具 有的性质,列 性质1 行列式转置后,其值不变。 也具有. 性质2 互换行列式的两行(列),行列式变号。
性质3 若行列式中某行(列)的所有元素有公因子,则公因 子可以提到行列式外面。 推论1 若行列式中某行(列)的元素全为零,则此行列式的 值为零. 性质4 若行列式中有两行(列)的对应元素相同,则此行列 式的值为零. 推论2 若行列式中有两行(列)的对应元素成比例,则此行 列式的值为零. 推论3 若行列式中某行(列)的所有元素都乘以同一数K,等 于用数K乘以此行列式.
对角线法则
a11 a21 a31
a12 a22 a32
a13 a23 a33
例 利用对角线法则求下列行列式
5 3
1
4 2
2 1
2 0
5 2 2 1 (1)(2) 4 3 0
4 2 (2) 1 3 2 5 (1) 0 32
练习 求下列行列式
3 1 9 7 1 0 1 5 (2)已知行列式 ,求A11 , A21 , A33 . 2 3 3 1 0 0 1 2
1 3 2 (3)已知行列式 7 0 6 ,求A21 , A22 , A23 . 11 9 4
5、特殊形式的行列式
下三角行列式
a11 a21 an1 0 0 0 a22
0 7 9
0 0 16
3 1 1 2 5 1 3 4 (2)解: 2 0 1 1 1 5 3 3
c1 c2

1 3 1 2 r (1) r2 1 5 3 4 1 0 2 1 1 r1 5 r4 5 1 3 3
1 3 1 2 0 8 4 2 0 2 1 1 0 16 2 7

一、k级子式余子式代数余子式

一、k级子式余子式代数余子式
一、k 级子式 余子式 代数余子式 二、拉普拉斯(Laplace)定理 三、行列式乘法法则
一、k 级子式与余子式、代数余子式
定义 在一个 n 级行列式 D 中任意选定 k 行 k 列
(k n),位于这些行和列的交叉点上的 k 2个元素 按照原来次序组成一个 k 级行列式 M,称为行列 式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后 余下的元素按照原来的次序组成的 n k 级 行列 式 M,称为 k 级子式 M 的余子式;
an1 L ann bn1 L bnn
§2.8 Laplace定理
又对D作初等行变换:
ri ai1rn1 ai2rn2 L ainr2n , i 1, 2,L , n.
可得
0 L 0 c11 L c1n LLL LLL
D
0 b11 L b1n
b1r L brr
br1 L brr
为行列式 D 取定前 k 行运用Laplace 定理结果.
§2.8 Laplace定理
1 2 14
例1:计算行列式
D
0 1
1 0
2 1
1 3
0 1 31
解:
M1

1 1
2 0
2,
M2

1 1
1 1

0,
M3

1 1
4 3
1,
M4

2 0
1 1
2,
0
,
A5

(1)4113
0 0
2 3

0
,
A6
(1)1312
0 0
1 1

0
.
∴ D (2)g1 0g(2) (1)g5 2g0 6g0 (1)g0 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S的余子式:
在A中划去S所在的k行、k列,余下的元按原来的 相对位置组成的n-k阶行列式M, 称为S的余子式.
S的代数余子式: 设S的各行位于A中第i1,…,ik, S的各列位于A中第 j1,…, jk列,称
A (1)(i1 ik )( j1 M jk )
为S的代数余子式.
§2.3 拉普拉斯展开定理
[结]
20 1 02 1 0 1 0 1
01 S1 1 1
A 0 1 1 2 1 0 2 2 1 2 0 1 1 1 1
101 M1 0 1 2
011
012 S2 1 1 1
2 2 2
A1 1 1 3 2 3 M1 M1 ,
10 M2 0 1
第二章 行列式
§2.3 拉普拉斯展开定理
一. k阶子式、余子式、代数余子式 二. 拉普拉斯定理
电子科技大学 黄廷祝
§2.3 拉普拉斯展开定理
一. k阶子式、余子式、代数余子式
k阶子式: 矩阵A中任取k行、k列,位于这k行、k列交点上的k2 个元按原来的相对位置组成的k阶行列式S, 称为A的 一个k阶子式.
A2 1 1 34 2 35 M 2 M 2 .
§2.3 拉普拉斯展开定理
例如,5阶行列式detA中,取子式
S a22 a52
a24 a54
则其代数余子式为
a11 a13 a15
(1)(25)(24) a31 a33 a35
a41 a43 a45
§2.3 拉普拉斯展开定理
相关文档
最新文档