2013年秋七年级(人教版)集体备课导学案:4.3.3 余角与补角

合集下载

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (38)

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (38)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第四章几何图形初步第1学时4.1.1 几何图形(1)学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.一、自主学习:1.(1)知道这是什么地方吗?你对它了解多少?(可上网查找)(2)你能从中找到我们熟悉的图形吗?找找看.2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形.3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习.二、合作探究:1.观察9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2.立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②图4.1-3,你能由实物想到几何图形及其形状吗?③思考的问题(上),并与你的同学交流.【老师提示】:常见..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5.下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面.你能说出类似于这些物体的几何图形吗?三、知识应用:1.练习题.2.用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.机器人两盏电灯稻草人四、学习小结:教学反思1 、要主动学习、虚心请教,不得偷懒。

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (32)

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (32)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第八课时 3.2 解一元一次方程———合并同类项与移项班级姓名__小组__评价__教学目标1.用一元一次方程解决实际问题;2.知道用一元一次方程解决实际问题的基本过程;3.通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情.重点:会用一元一次方程解决实际问题.难点:将实际问题转化为数学问题,通过列方程解决问题.使用说明:独立完成学案,然后小组交流.一、导学问题:小平的爸爸新买了一部手机,他从电信公司了解到现在有两种移动电话计费方式:他正在为选哪种方式犹豫呢?你能帮助他作个选择吗?(1(2)对于某个通话时间,两种计费方式的收费会一样吗?(列式计算)由此可知,如果一个月内通话_____分钟,那么两种计费方式的收费相同.(3)怎样选择计费方式更省钱呢?如果一个月内累计通话时间不足_____分,那么选择“方式二”收费少;如果一个月内累计通话时间超过_____分,那么选择________收费少.(4)根据以上解题过程,你能为小平的爸爸作选择了吗?二、合作探究1、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售,每吨可获利500元;制成酸奶销售,每吨可获利1200元;制成奶片销售,每吨可获利2000元。

该工厂的生产力量有限,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员的限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案.方案一:尽可能制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售.无论采取哪一种方案,都必须保证4天完成,请问选哪一种方案比较好?为什么?【分析】选哪种方案比较好,就是看哪个方案获利多。

七年级人教版集体备课导学案4.3.3余角与补角36

七年级人教版集体备课导学案4.3.3余角与补角36

第7课时 3.4 实际问题与一元一次方程学习目标:1. 掌握经济作物中的数量关系,并能正确列出方程学会分析问题的方法;2. 体会数学与生活的密切关系,提高学数学、用数学的意识和数学建模能力。

学习重点:经济作物种植问题中,如何找相等关系,布列方程.学习难点:准确把握题意,找出贯穿全题的等量关系。

一、自主学习:通过前几章的学习,我们利用一元一次方程可以解决许多实际问题,请你试一试,你能解决下面的问题吗?1.在购物商场,小王想买一件标价为500元的衣服,一般的商场都是加价100%标价,你能帮小王还价吗?2.某村去年种植油菜籽200亩,亩产量达160千克,若油菜籽含油率40%,则去年的产油量是____________ ,若今年改种新品种,亩产量提高40千克,含油率增加10%,产油量比去年提高20%,则今年油菜籽的种植面积是多少?提示:总产量=亩产量×种植面积;产油量=亩产量×含油率×种植面积。

二、合作探究:3.根据今年比去年产油量提高20%,列出方程为:______________________________ ,解得:x=_________5.两年相比,油菜种植成本、售油收入有什么变化?三.能力提升:1.某家电商场销售A、B两种品牌的冰箱,5月份A品牌冰箱的销售量是80台,B品牌的冰箱的销售量是120台,6月份A品牌的销售量减少了5%,但A、B两种品牌的冰箱总销量增长了16%,问B品牌的冰箱6月份的销量比5月份增长了百分之几?2.某市出租车的计价规则是:行程不超过3千米,收起步价8元,超过部分每千米路程收费1.2元,小刚去办事,坐出租车付了22.4元,则他乘坐了多少路程?四、学习小结:五、课后作业:某同学做数学题,若每小时做5题,就可以在预定时间内完成,当他做完10 题后,每题效率提高了60%,因而不但提前5小时完成,而且还多做了5道题,问这位同学原计划做多少道题?多少小时完成?。

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (39)

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (39)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第 2学时4.1.1 几何图形(2)学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:(准备长方体形状的包装盒至少一个)教学反思1 、要主动学习、虚心请教,不得偷懒。

4.3.3 余角与补角导学案

4.3.3 余角与补角导学案

班级 小组 姓名课题 4.3.3 余角和补角第1课时【学习目标】:1、理解余角与补角的定义,认识一个角的余角与补角。

2、能熟练求出一个角的余角和补角。

【学习过程】: 一、知识链接1、在一副三角板中同一块三角板的两个锐角和等于 度。

2、若∠1=65°,∠2=25°,则∠1+∠2= 。

3、如图,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

4、若∠1=115°,∠2=65°,则∠1+∠2=5、如图,已知点A 、O 、B 在一直线上 ,∠AOC=150°,那么∠BOC= . 二、探究新知 归纳: 1、余角的定义如果 个角的和等于 ,就说这 个角 余角,简称 。

其中一个角是另一个角的 。

即 如果∠α+∠β= ,那么∠α和∠β互为 。

反之:如果∠α与∠β互为 角,那么∠α+∠β= . 2、补角的定义如果 个角的和等于 ,就说这 个角 补角,简称 。

其中一个角是另一个角的 。

即 如果∠α+∠β= ,那么∠α和∠β互为 。

反之:如果∠α与∠β互为 角,那么∠α+∠β= .90° DCO AB12BOAC3、图中给出的各角,那些互为余角?4、图中给出的各角,那些互为补角?5、 完成下表: 想一想:同一个角的补角与它的余角之间有怎样的数量关系?10o30o60o80o50o40o10o30o60o80o100o120o150o170o6、若一个角的补角等于它的余角的4 倍,求这个角的度数。

三、巩固测评1、52°24′的余角是,补角是.2、若一个角的余角等于它本身,则这个角的度数为;3、一个角的补角是0130,则这个角的余角是度.4、一个角的补角比这个角的3倍大20°,求这个角的度数。

四、总结反思谈谈你在本节课中的收获与体会。

五、加油站1、如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =100°,求∠BOD 的度数。

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (37)

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (37)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第8课时 3.4 实际问题与一元一次方程学习目标:1. 结合球赛积分表,掌握从图表中获取信息的方法,培养观察与推理能力;2.增强运用数学知识解决实际问题的意识,激发学生学习数学的热情;3.认识到由实际问题得到的方程的解要符合实际意义。

学习重点:从表格中获取有关数据信息,利用方程进行计算、推理、判断。

学习难点:从图表中获取有关信息,寻找数量之间的隐蔽关系,正确建立方程。

一、自主学习:1.篮球比赛积分中,胜一场积几分?负一场积几分?这与足球比赛的积分制是否相同?2.足球赛规定:胜一场得3分,平一场得1分,负一场得0分。

“猛虎”队赛了9场,共得17分,已知这个队只输2场,问这个队胜几场?又平几场?二、合作探究:(1)要解决探究中的问题,必须先求出胜一场积几分,负一场积几分。

你能从积分表中选出其中哪一行最能说明负一场积几分吗?能否求出胜一场得几分?又如何检验结论的正确性呢?①观察积分榜,从________行的数据可以发现负一场积______ 分;②设胜一场积x分,则从表中任何一行都可以列出方程,求出x的值。

若选第三行数据,则列方程为:_________________________ ,由此得x=________ ,若选第5行呢?再试一试,又会怎样?③用表中其他行可以验证,得出此次比赛的积分规则:负一场积_____ 分,胜一场积______分。

(2)如何计算积分?你能否列一个式子来表示积分与胜负场数之间的关系?①要弄清两个关系:★总积分=_______积分+_______积分;★总场数=__________ +___________。

人教版数学七年级上册4.3.3余角、补角的概念和性质教案

人教版数学七年级上册4.3.3余角、补角的概念和性质教案
人教版数学七年级上册4.3.3余角、补角的概念和性质教案
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的定义:两个角的和等于90°时,这两个角互为余角。
2.补角的定义:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为Байду номын сангаас角的两个角中,一个角的度数等于90°减去另一个角的度数。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角与补角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对余角与补角的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点三:理解余角和补角在几何图形中的应用。学生需要能够将余角和补角的概念应用到更复杂的几何图形中,如多边形或图形的相交部分。
举例:
-对于难点一,可以通过制作角度转盘或使用动态几何软件,让学生动态观察角度变化,加深对互为余角、补角数量关系的理解。
-对于难点二,可以设计不同类型的实际问题,如角度计算、图形分割等,引导学生发现问题的解决关键在于应用余角和补角的知识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角与补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版数学七年级上册导学案:4.3.3余角和补角

人教版数学七年级上册导学案:4.3.3余角和补角

§4.3.3余角和补角第一课时学案一、课标对本课时的具体要求:理解余角、补角的概念,探索并掌握同角(等角)的余角相等,同角(等角)的补角相等的性质。

二、本课时的知识网络三、本课时的重点、难点【重点】认识角的互余、互补关系及其性质,【难点】通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

四、学习目标1、在具体的现实情境中,认识一个角的余角和补角,2、掌握余角和补角的性质。

五、学习过程(一)多媒体出示活动指导,在明确的活动要求和问题引领下引导学生积极参与探讨和自主学习。

(5分钟)(学生根据要求,自读课本,完成学案所给的问题,在明确的引领下引导学生积极参与探讨和学习)(二)展示交流 探究新知(10分钟) 探究活动1:如图,是一个放在直线上的直角三角板,它的两个锐角∠CAB 与∠CBA 之间有什么关系? ∠ABC 与∠CBD 有什么关系?答:两个锐角∠CAB 与∠CBA 的和等于 ,∠ABC 与∠CBD 的和等于 . 2.互为余角的定义:就说这两个角互为余角。

如图,若∠1=230,∠2=670,∠1与∠2互为 ;若∠AOB=900,∠3与∠4互为 。

3.互为补角的定义:如果两个角的和是180°(平角),那么这两个角叫做 ,其中一个角是另一个角的。

如图,若∠5=230,∠6=1570,∠5与∠6互为 ;若∠AOB=1800,∠7与∠8互为 。

练习:填下列表:【设计意图】根据学生的情况,我主要采取自主探究、小组交流的方式学习余角和补角的概念,引导学生通过直观计算,总结规律,从而化抽象的概念12 34A O B2143为简明的关系,帮助学生正确理解并掌握。

(三)探讨释疑,突破难点(10分钟)探究活动3:如图:已知∠AOC,利用三角板分别画它的余角和补角.(只要满足条件的角都可以) 问:从中发现了什么?结论: 。

结论: 。

再问:如果两个角相等,那么它们的余角和补角有什么关系?如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?结论: 。

七年级(人教版)集体备课教案:4.3.3 余角和补角

七年级(人教版)集体备课教案:4.3.3 余角和补角

4 .3.3 余角和补角。

教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。

2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?12(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1、如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2、认识方位角.提出问题:课本例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3、知识拓展提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm 表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2、了解方位角,学会确定物体运动的方向五、作业布置。

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。

本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。

教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。

二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。

但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。

此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。

三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。

同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。

四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。

难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。

五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。

通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。

六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。

此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。

例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (35)

七年级(人教版)集体备课导学案:4.3.3 余角与补角 (35)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第 6课时 3.4 实际问题与一元一次方程学习目的:1. 会分析亏盈问题中的数量关系,并能正确列出方程;2.体念数学与生活的密切关系,提高学数学的意识和数学建模能力。

学习重点:如何找相等关系,并列出方程解应用题,如亏盈、增长率等问题。

学习难点:设未知数找量等关系.一、自主学习:1.商品经济中的盈利与亏损.(1) 利润=________ - _________;(2) 当_______>________时,盈利,当________<________时,亏本;(3) 商品利润率=__________/__________×100%;2.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?提示:每件商品的利润是商品售价与商品成本价的差,如果设每件商品的成本价为x 元,那么每件服装的标价是__________ 元,每件服装的实际售价为_____________元,每件服装的利润可表示为______________________ ,则列方程:_____________________________ .解这个方程, 得 x =_____ . 因此,这种服装每件的成本价是______元。

3.牛刀小试:(1)一件羊毛衫的进价为150元,销售价为180元,则该商品的销售利润为________元,利润率是_______。

(2)某人以八折的优惠价买一套服装省了25元,则这套服装实际用了( )元。

(A ) 31.25 (B) 60 (C) 125 (D) 100二、合作探究:设盈利的那件衣服的进价为x 元,则它的利润是________元,根据售价、进价、利润三者的关系,列方程为:___________________________ ,解之得: x =_____ .类似地,可设另一件衣服的进价为y 元,则它的商品利润是___________元,列出方程是:_____________________________ ,解得:y =_______ .两件衣服的进价是x +y =_______ 元,而两件衣服的总售价是________ 元,于是,进价______售价(填<、>、=),由此可知,卖出这两件衣服总的盈亏情况是__________ . 注意:解这类问题也可用下面的关系式:(1) 进价×(1+盈利率)=售价 ; (2)进价×(1-亏损率)=售价.(3) 进价×(1+利润率)=标价×10n . (其中n 为打折数) 2.做一做:(1)一件衣服标价是132元,若以九折降价出售,仍可获利10%,这件衣服的进价是多少元?(2)某商店有两个进价不同的篮球都买84元,其中一个盈利20%,另一个亏本20%,在这次买卖中,这家商店盈亏如何?(3)某种风扇因季节原因准备打折出售,如果按标价的七五折出售将赔30元,如果按标价的九折出售,将赚24元,问这种风扇的标价是多少元?3.填一填:(1)一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可得利润_______元。

人教版数学七年级上册4.3.3《余角和补角》教案

人教版数学七年级上册4.3.3《余角和补角》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角和补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和为90度,而补角是指两个角的和为180度。它们在几何学和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个直角三角形,其中的一个角是30度,那么另一个锐角就是60度,它们互为余角。这个案例展示了余角在实际中的应用,以及它如何帮助我们解决问题。
-应用余角和补角解决实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力,通过余角和补角的性质推导,使学生理解并掌握角度之间的关系;
2.提高学生的空间想象力和几何直观能力,通过绘制图形和实际操作,加深对余角和补角概念的理解;
3.培养学生的数据分析能力,使学生能够运用余角和补角进行角度计算,解决实际问题;
此外,在小组讨论环节,学生们表现出了很高的热情。他们围绕余角和补角在实际生活中的应用,提出了很多有趣的观点。但在引导讨论的过程中,我也发现有些学生的思考不够深入,容易停留在表面。为了提高他们的思考能力,我计划在以后的课堂中,多设置一些开放性和挑战性的问题,激发学生的思维。
实践活动方面,学生们通过分组讨论和实验操作,对余角和补角的性质有了更直观的认识。但在操作过程中,我也观察到有些学生动手能力较弱,对量角器等工具的使用不够熟练。因此,我打算在课后找时间,针对这部分学生进行单独辅导,提高他们的实际操作能力。

2013年秋七年级(人教版)集体备课导学案:4.3.3 余角与补角

2013年秋七年级(人教版)集体备课导学案:4.3.3 余角与补角

4.3.3 余角与补角(1)学习目标:1.在具体情境中了解余角、补角的概念.2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.3.学习进行简单的推理,学习有条理的表达.学习重点:等角的余角与补角的性质.学习难点:推导“等角的余角与补角的性质”的过程.一、自主学习:1.①如果∠1=35°,∠2=55°,那么∠1+∠2=_______.如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.②三角尺中,有一个角是直角(90°),那么另两个角的和是________度.③度量图4.3-13的两个角,∠3=____,∠4=____,计算:∠3+∠4=_____.一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一个角的余角.2.(1)在上面的这些角中,哪两个角是互为余角的?(2)已知∠A=72°,那么∠A的余角是______度.(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.3.度量图4.3-14的两个角,∠1=____,∠2=____,计算:∠1+∠2=_____.一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个角的补角.(1)上面的∠1与∠2互为补角吗?(2)试举出两个互为补角的例子.(3)①已知∠A=72°,则∠A的补角=______度.②如果∠α=62°23′,则∠α的余角=______,则∠α的补角=______.③已知∠A的补角是∠A的两倍,你还能求出∠A的度数吗?④已知一个角的补角是这个角的余角的3倍,求这个角的度数.二、当堂检测:练习第1、2、3题.三、合作探究:1.如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?2.如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?为什么?3.如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?4.如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?5.余角的性质:补角的性质:四、学习小结:缉私艇可疑船AB 4.3.3 余角与补角(2)学习目标:1.了解用于表现方向的角——方位角的意义.,.2.初步掌握方位角的判别,体会方位角在生活中的应用.学习重点:方位角的判别与应用.学习难点:方位角的判别与应用.一、自主学习:1.海上缉私艇发现离它50海里处停着一艘可疑船只(如图),缉私艇要立即赶往检查.(1)试画出缉私艇的航线. (2)如果是真在海面上,你能确定船的航向吗?2.在航行、测绘等日常生活中,我们经常会碰到上述类似的问题,即如何描述一个物体的方位.描述一个物体的方位,通常要用到表示方位的角——方位角.方位角的表示习惯上以正北、正南方向为基准来描述物体的方向.即用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示方向.如图,(1)射线OA 的方向是南偏西40°,或者说点A 在点O 的南偏西40°方向.(2)射线OB 的方向是北偏东45°,或者说点B 在点O 的________方向. 注:北偏东45°的方向又称为“东北方向”.所以,我们也可以称点B 在点O 的________方向.(3)在图中画出北偏西50°方向射线OC .3.在第1个问题中,我们规定“上北下南,左西右东”,试确定缉私艇的航向.二、合作探究:1.已知点O 在点A 的南偏东65°方向,那么点A 应在点O 的______________方向.2.某同学参观展览馆A 后,想去景点B ,但他不知道如何走,你能借助右图,告诉他去景点B 应朝什么方向,大约走多远吗?(图中1厘米代表1千米) 3.如图,A 、B 、C 三点分别代表邮局、商店和学校. 邮局和商店分别在学校的北偏西方向,邮局又在商店的北偏东方向.那么,图中A 点应该是 ,B 点应该是 ,C 点应该是______.4.考察队从P 地出发,沿北偏东60°前进5千米到达A 地,再沿东南方向前进到达C 地,C 恰好在P 地的正东方.(1)用1㎝代表2千米,画出考察队的行进路线图.西北B 北A(2)量得∠PAC=________,∠ACP=_______.(精确到1°)5.灯塔A在灯塔B的南偏西60°,距离20海里,轮船C在灯塔B的西北方向,距离40海里.用1㎝表示10海里画出示意图,试确定货船C在灯塔A的什么方向,距A多远?三、学习小结:四、作业:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.3 余角与补角(1)
学习目标:1.在具体情境中了解余角、补角的概念.
2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.
3.学习进行简单的推理,学习有条理的表达.
学习重点:等角的余角与补角的性质.
学习难点:推导“等角的余角与补角的性质”的过程.
一、自主学习:
1.①如果∠1=35°,∠2=55°,那么∠1+∠2=_______.
如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.
②三角尺中,有一个角是直角(90°),那么另两个角的和是________度.
③度量图4.3-13的两个角,∠3=____,∠4=____,计算:∠3+∠4=_____.
一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一个角的余角.
2.(1)在上面的这些角中,哪两个角是互为余角的?
(2)已知∠A=72°,那么∠A的余角是______度.
(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.
3.度量图4.3-14的两个角,∠1=____,∠2=____,计算:∠1+∠2=_____.
一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个角的补角.
(1)上面的∠1与∠2互为补角吗?
实用文档 1。

相关文档
最新文档