量子力学的发展和应用 PPT课件
量子力学(全套) ppt课件
1 n2
人们自然会提出如下三个问题:
1. 原子线状光谱产生的机制是什么? 2. 光谱线的频率为什么有这样简单的规律?
nm
3. 光谱线公式中能用整数作参数来表示这一事实启发我们 思考: 怎样的发光机制才能认为原子P的PT课状件态可以用包含整数值的量来描写12 。
从前,希腊人有一种思想认为:
•2.电子的能量只是与光的频率有关,与光强无关,光
强只决定电子数目的多少。光电效应的这些规律是经典
理论无法解释的。按照光的电磁理论,光的能量只决定
于光的强度而与频率无关。
PPT课件
24
(3) 光子的动量
光子不仅具有确定的能量 E = hv,
而且具有动量。根据相对论知,速度 为 V 运动的粒子的能量由右式给出:
nm
11
谱系
m
Lyman
1
Balmer
2
Paschen
3
Brackett
4
Pfund
5
氢原子光谱
n 2,3,4,...... 3,4,5,...... 4,5,6,...... 5,6,7,...... 6,7,8,......
区域 远紫外 可见 红外 远红外 超远红外
RH
C
1 m2
自然之美要由整数来表示。例如:
奏出动听音乐的弦的长度应具有波长的整数倍。
这些问题,经典物理学不能给于解释。首先,经典物理学不能 建立一个稳定的原子模型。根据经典电动力学,电子环绕原子 核运动是加速运动,因而不断以辐射方式发射出能量,电子的 能量变得越来越小,因此绕原子核运动的电子,终究会因大量 损失能量而“掉到”原子核中去,原子就“崩溃”了,但是, 现实世界表明,原子稳定的存在着。除此之外,还有一些其它 实验现象在经典理论看来是难以解释的,这里不再累述。
量子力学ppt
量子计算和量子通信是量子力学的重要应用之一,具有比传统计算机和通信更高的效率和安全性。
量子计算是一种基于量子力学原理的计算方式,具有比传统计算机更快的计算速度和更高的安全性。量子通信是一种基于量子力学原理的通信方式,可以保证通信过程中的安全性和机密性。这两个应用具有广泛的应用前景,包括密码学、金融、人工智能等领域。
薛定谔方程
广泛应用于原子、分子和凝聚态物理等领域,可以用于描述物质的量子性质和现象。
薛定谔方程的应用
哈密顿算符与薛定谔方程
03
量子力学中的重要概念
是量子力学中的一种重要运算符号,用于描述量子态之间的线性关系,可以理解为量子态之间的“距离”。
狄拉克括号
是一种量子化方法,通过引入正则变量和其对应的算符,将经典物理中的力学量转化为量子算符,从而建立量子力学中的基本关系。
描述量子系统的状态,可以通过波函数来描述。
量子态与波函数
量子态
一种特殊的函数,可以表示量子系统的状态,并描述量子粒子在空间中的概率分布。
波函数
波函数具有正交性、归一性和相干性等性质,可以用于计算量子系统的性质和演化。
波函数的性质
一种操作符,可以用于描述物理系统的能量和动量等性质。
哈密顿算符
描述量子系统演化的偏微分方程,可以通过求解该方程得到波函数和量子系统的性质。
量子优化
量子优化是一种使用量子计算机解决优化问题的技术。最著名的量子优化算法是量子退火和量子近似优化算法。这些算法可以解决一些经典优化难以解决的问题,如旅行商问题、背包问题和图着色问题等。然而,实现高效的量子优化算法仍面临许多挑战,如找到合适的启发式方法、处理噪声和误差等。
量子信息中的量子算法与量子优化
解释和预测新材料的物理性质,如超导性和半导体性质等。
量子力学应用简介课件
分子的振动和转动能级在光谱中表现为特定的谱线。通过量子力学处理,可以获得分子的 振-转能级和相应的光谱常数,进一步了解分子的结构和动力学性质。
电子能级
量子力学描述了电子在原子和分子中的能级分布。通过求解薛定谔方程,可以获得分子的 电子能级结构,从而解释化学反应中的电子转移、激发和电离等现象。
THANKS
感谢观看
ห้องสมุดไป่ตู้
这些内容构成了量子力学应用简介课件中的一部 分,通过对量子计算与量子信息的介绍,希望能 够激发学生对量子力学应用的兴趣和探索精神。
05
量子力学的哲学和社会影响
量子力学和哲学问题
1 2 3
微观世界与宏观世界的界限 量子力学描述了微观粒子的奇特行为,引发了关 于微观世界与宏观世界之间界限的哲学思考。
结构提供基础。
能带理论与导体、绝缘体、半导体
02
通过量子力学计算得到固体的能带结构,从而解释导体、绝缘
体和半导体的电子行为。
超导与磁性
03
量子力学可以解释超导现象中电子的配对以及磁性材料中自旋
的相互作用,为固体磁学和超导研究提供理论支持。
03
量子力学在化学的应用
化学反应的量子力学描述
01 02
薛定谔方程
量子力学应用简介课件
contents
目录
• 量子力学概述 • 量子力学在物理学的应用 • 量子力学在化学的应用 • 量子计算与量子信息 • 量子力学的哲学和社会影响 • 实验和案例分析
01
量子力学概述
量子力学定 义
定义描述
量子力学是研究物质世界微观粒 子运动规律的物理学分支,主要 用于描述和预测原子和亚原子尺 度的现象。
观测者效应 量子力学中的观测者效应,即观察者的存在会影 响量子系统的状态,引发了关于主观与客观、主 体与客体关系的讨论。
量子力学基础通用课件
量子力学的起源可以追溯到20世纪初,由普朗克、爱因斯坦、玻尔等科学家的 开创性工作奠定基石。随后,薛定谔、海森堡、狄拉克等科学家进一步完善了 量子力学理论体系。
量子力学的基本概念和原理
基本概念
波函数、量子态、测量、算符等 是量子力学的基本概念,用于描 述微观粒子的状态和性质。
基本原理
叠加原理、测不准原理、量子纠 缠等是量子力学的基本原理,反 映了微观世界的奇特性质和规律 。
应用领域
量子计算和量子信息在密码学、 化学模拟、优化问题、机器学习 等领域具有广泛的应用前景。
05
现代量子力学研究的前沿问题
量子纠缠和量子通信
量子纠缠的研究现状和意义
详细介绍量子纠缠的概念、性质,以及其在量子信息传输、量子 密码学等领域的应用。
基于纠缠态的量子通信协议
如BB84协议、E91协议等,并分析它们的优缺点。
应用总结
量子力学在多个领域有着广泛应用,如原子能级与光谱、半导体器件、超导与磁性材料、量子计算与 量子信息等。通过本课件的学习,学生应能了解这些应用背后的量子力学原理,以及量子力学在解决 实际问题时的优势与局限。
对未来量子力学研究和发展的展望
理论研究展望
随着实验技术的进步,未来量子力学研 究将更加注重高精度、高效率的数值模 拟与解析计算,以解决复杂多体问题、 拓扑物态、量子引力等前沿课题。此外 ,与相对论、宇宙学等其他理论的交叉 研究也将成为热点。
THANKS
感谢观看
对于包含多个电子的原子,需要考虑电子之间的相互作用和自旋等效应。多电子原子的量子力学处理更为复杂, 需要采用近似方法和数值计算等手段进行求解。
04
量子力学的应用和实验验证
量子隧穿效应
量子力学发展简史.ppt
3. 固体比热的研究
1906年,爱因斯坦将普朗克的量子假说应用于 固体比热,解释了固体比热的温度特性并且得 到定量结果。然而,这一次跟光电效应一样, 也未引起物理界的注意。不过,比热问题很快 就得到了能斯特的低温实验所证实。量子理论 应用于比热问题获得成功,引起了人们的关注, 有些物理学家相继投入这方面的研究。在这样 的形式下,能斯特积极活动,得到比利时化学 工业巨头索尔威的资助,促使有历史意义的第 一届索尔威国际物理会议的召开,讨论的主题 就是《辐射理论和量子》,这次会议在宣传量 子理论上起了很好的作用。
3.矩阵力学的创立
矩阵力学的创立者海森伯1924年到哥本哈根跟玻尔和克拉末斯合 作研究光色散理论。在研究中,他认识到不仅描写电子运动的偶 极的振幅的傅里叶分量的绝对值平方决定相应辐射的强度,而且 振幅本身的位相也是有观察意义的。海森伯由这里出发,假设电 子运动的偶极和多极电矩辐射的经典公式在量子理论中仍然有效。 然后运用玻尔的对应原理,用定态能量差决定的跃迁频率来改写 经典理论中电矩的傅里叶展开式。这样,海森伯就不再需要电子 轨道等经典概念代之以频率和振幅的二维数集。他当时并不知道 这就是矩阵运算,于是就向玻恩请教有没有发表价值。玻恩经过 几天思索才发现海森伯用来表示观察量的二维数集正是线性代数 中的矩阵,此后,海森伯的新理论就叫《矩阵力学》。 玻恩着手 运用矩阵方法为新理论建立一套严密的数学基础。与数学家约丹 联名发表了《论量子力学》一文,首次给矩阵力学以严格的表述。 接着,玻恩、约丹、海森伯三人合作,系统地论述了本征值问题、 定态微扰和含时间的定态微扰,导出了动量和角动量守定律,以 及强度公式和选择定则,从而奠定了量子力学的基础。
三 .关于量子力学完备性的争论
玻恩、海森伯等人提出了量子力学的诠释之后,遭到了爱因斯坦 和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、 测不准原理和互补原理,双方展开了一场长达半个世纪的大论战, 许多理论物理学家、实验物理学家和哲学家卷入了这场论战,至 今还未告结束。 正是由于以爱因斯坦为代表的EPR一派和以玻尔 为代表的哥本哈根学派的长期争论,才使得量子力学越来越完备, 很多问题得到了系统性的研究。 1965年,贝尔在定域隐参量理论 的基础上提出了一个著名的关系,人称贝尔不等式,于是有可能 对隐参量理论进行实际的实验检验,从而判断哥本哈根学派对量 子力学的解释是否正确。从70年代开始,各国物理学家先后完成 了十几项检验贝尔不等式的实验。这些实验大多数都明显地违反 了贝尔不等式,而与量子力学理论预言的相符。但也不能就此对 爱因斯坦和玻尔的争论作出最后裁决。目前这场论战还在进行之 中,没有得出最后的结论。
量子力学简介PPT课件
量子力学简介
说明
2 2 V E
2m
——定态薛定谔方程
(x,y,z)应为单值函数;
(1) 标准条件: |Ψ |2dxdydz 1 应为有限值;
(2) 求解
, , ,
应连续.
x y z
E (粒子能量)
(定态波函数)
(3) 势能函数V 不随时间变化.
(Et px)
Ψ(x,t) ψ0e h
ψ0e
2019/11/14
类比
量子力学简介
光栅衍射
I E02
I 大处 I 小处
I=0
INhN
到达光子数多 到达光子数少 无光子到达
2019/11/14
电子衍射
I |Ψ|2 I N
电子到达该处概率大 电子到达该处概率小 电子到达该处概率为零
量子力学简介
量子力学简介
量子力学简介
17.1 微观粒子的波粒二象性和不确定关系式 17.1.1 微观粒子的波粒二象性 1. 物质波提出的背景
(1) 玻尔模型遇到根本困难,亟需突破; (2) 爱因斯坦的光量子论及光的波粒二象性思想得到国际科
学界的承认; (3) 德布罗意本人对量子物理研究感兴趣,有相当好的研究
氢原子中电子速率约为106m/s.速率 不确定量与速率本身的数量级基本相 同,因此原子中电子的位置和速度不能 同时完全确定,也没有确定的轨道.
此几率分布形成一种对称而美观的“电子(几率)云”图象.
2019/11/14
能量—时间不确定关系
E E
2
Et h
E
E
反映了原子能级宽度ΔE和原子在该 2
2019/11/14
这个迷你的结构由纳米管和氧化锌构成, 电子显微镜拍下了这个精巧的结构
关于量子力学课件
对实物粒子: =c ? 错。
3.
相速:
c2
违背相对论吗?
不。能量是以群速g=传播。
例题17-1 (1)电子动能Ek=100eV;(2)人:m=66.3kg,
=10m/s, 求德布罗意波长。
解 (1) 用非相对论公式计算电子速度
Ek
1 2
mυ2
5.93106 m / s
p mυ 5.41024
7.3 106 (m
/
s)
可见,微观粒子的速度和坐标不能同时准确测定。 故研究氢原子不能用经典理论,只能用量子力学理 论来处理。
例题17-5 子弹质量m=1kg , 速度测量的不确定量是
x=10-6 m/s ,求子弹坐标的不确定量。
解 按不确定关系: xpx h,则子弹坐标的不确
定量为
x h m x
h
=0.0535Å
mυ
mo=s
§17.2 不确定关系
一. 不确定关系
微观粒子的位置坐标 x 、动量分量 px 不能同时具 有确定的值。
x、px 分别是 x,px 同时具有的不确定量,
则其乘积
x
px
2
(海森伯不确定关系)
下面借助电子单缝衍射试验加以说明。
远小于光速, 可不再修正
h h =1.23Å mυ p
m=9.11×10-31 kg h= 6.63×10-34J.s
(2) 人: h h = 1.0×10-36m
p mυ
可见,只有微观粒子的波动性较显著;而宏观粒子
(如人)的波动性根本测不出来。
例题17-2 用5×104V的电压加速电子,求电子的速度、
x sin
x
psin
电
量子物理发展简史ppt课件
爱因斯坦引力场方程(广义相对论)
论运动学与动力学关系的量子理 论再解释,海森堡,1925
关于量子力学I,波恩和约当, 1925
关于量子力学II,波恩、海森堡和 约当,1925
矩阵 力学 奠基 之作
史称“一人文章”、“二人文章”、“三人文章”
返回
测不准原理
德布罗意和物质波
德布罗意 1892年出生于法国的贵
海森堡甚至对玻尔的旧量子论提出了怀疑, 他指出 “ …电子的周期性轨道可能根本就不存在。直接观 测到的, 不过是分立的定态能量和谱线强度, 也许还 有相应的振幅与相位, 但绝不是电子的轨道。唯一的 出路是建立新型的力学, 其中分立的定态概念是基本 的, 而电子轨道概念看来是应当抛弃的。”
因此,基于上述原则,海森堡在论文中只考虑了 光谱线频率和决定谱线强度的振幅等可观察量。
经典物理学的信条之一就是一切过程和一切物理 量都是连续的,连续性又是微积分的核心思想,而 微积分是处理物理问题的基本数学工具。微积分的 发明人莱布尼兹(1646年-1716年)曾明确指出:如果我 们对连续性原理提出疑问,那么世界将会出现许多 间隙,而这条间隙就会将这条具有充分理由的普遍 原理推翻,结果迫使我们不得不乞求奇迹或纯粹的 机遇来解释自然现象了。普朗克引入不连续的能量 子突破了经典物理的连续性原理。正是这一点被认 为是量子物理学诞生的标志!
电子动能 脱出功
光电效应的解释
截止频率ν0(红限)- 只有当入射光频率ν>ν0时,
电子才能逸出金属表面,产生光电效应
遏止电压 - 初动能及反向遏止电压与ν成正比
效应瞬时性 - 电子吸收光子时间很短,只要光子 频率大于截止频率,电子就能立即逸出金属表面, 无需积累能量的时间,与光强无关
量子力学课件
量子力学彭斌地址:微固楼211电话:83201475Email: bpeng@引言牛顿力学质点运动牛顿力学(F、p、a)22dtvdmmaF==牛顿力学成功应用到从天体到地上各种尺度的力学客体的运动中。
引言牛顿力学热力学●统计物理Ludwig Boltzmann Willard Gibbs引言牛顿力学热力学●统计力学 电动力学电磁现象——Maxwell方程组¾统一电磁理论¾光─> 电磁波1600170018001900时间t力学电磁学热学物理世界(力、光、电磁、热…)经典热力学(加上统计力学)经典电动力学(Maxwell 方程组)经典力学(牛顿力学)迈克尔逊-莫雷实验黑体辐射动力学理论断言,热和光都是运动的方式。
但现在这一理论的优美性和明晰性却被两朵乌云遮蔽,显得黯然失色了……——开尔文(1900年)引言什么是量子力学?什么是量子力学?——研究微观实物粒子(原子、电子等)运动变化规律的一门科学。
相对论量子力学量子电动力学量子场论高能物理相对论力学经典电动力学V~C量子力学(非相对论)经典力学v<<C微观宏观量子力学的重要应用量子力学的重要应用¾自从量子力学诞生以来,它的发展和应用一直广泛深刻地影响、促进和促发人类物质文明的大飞跃。
¾百年(1901-2002)来总颁发Nobel Prize 97次单就物理奖而言:——直接由量子理论得奖25次——直接由量子理论得奖+与量子理论密切相关而得奖57次¾量子力学成为整个近代物理学的共同理论基础。
在原理和基础方面,仍然存在着至今尚未完全理解、物理学家普遍的困惑的根本性问题。
在原理和基础方面,仍然存在着至今尚未完全理解、物理学家普遍的困惑的根本性问题。
任何能思考量子力学而又没有被搞得头晕目眩的人都没有真正理解量子力学"Anyone who has not been shocked by quantum physics has not understood it." -Niels Bohr 任何能思考量子力学而又没有被搞得头晕目眩的人都没有真正理解量子力学"Anyone who has not been shocked by quantum physics has not understood it."-Niels Bohr 我想我可以相当有把握地说,没有人理解量子力学。