冷负荷计算方法

合集下载

空调冷负荷计算方法汇总

空调冷负荷计算方法汇总

空调冷负荷的计算方法:依据《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)中的规定确定。

1、空调房间冷负荷的计算方法:(1)通过外墙、屋面、外窗等围护结构传热形成的冷负荷:()n wlq wq t t KF CL -=()n wlm wm t t KF CL -=()n wlc wc t t KF CL -=(2)透过外窗日射得所热形成的冷负荷:c jma clc c F D C C CL x z =s n w z C C C C =(3)人体、照明、设备等散热所形成的冷负荷:rt cl rt rt Q C CL φ=zm zm cl zm zm Q C C CL =sb sb cl sb sb Q C C CL =(4)空调区和邻室的夏季温差大于3℃时,其通过隔墙、楼板等内围护结构传热形成的冷负荷:()n ls t t KF CL -=, ls wp ls t t t ∆+=2、空调区及空调系统冷负荷的确定方法:(1)空调区的夏季冷负荷,应按空调区各项逐时冷负荷的综合最大值确定。

(2)空调系统冷负荷,应按下列规定确定:①末端设备设有温度自动控制装置时,空调系统的夏季冷负荷按所服务各空调区逐时冷负荷的综合最大值确定。

如采用变风量集中式空调系统时,由于系统本身具有适应各个空调区冷负荷变化的调节能力,此时即应采用各空调区逐时冷负荷的综合最大值。

②末端设备无温度自动控制装置时,空调系统的夏季冷负荷按所服务各空调区冷负荷的累计值确定。

如定风量式空调系统或无室温控制装置的风机盘管空调系统,由于系统本身不能适应各空调区冷负荷的变化,为了保证最不利情况下达到空调区的温湿度要求,即应采用各空调区夏季冷负荷的累计值。

③应计入新风冷负荷、再热负荷以及各项有关的附加冷负荷。

空调系统的夏季附加冷负荷,主要包括:空气通过风机、风管温升引起的附加冷负荷以及冷水通过水泵、管道、水箱温升引起的附加冷负荷。

④应考虑所服务各空调区的同时使用系数。

冷负荷的计算

冷负荷的计算

4、冷负荷的计算先计算出每个房间的面积,房间冷负荷计算方法采用估算值。

根据国内部分建筑空调冷负荷概算指标,取为140W/m 2.冷负荷=估算指标X 空调房间面积Q A =140X ( 4 X 3.2) Q B =140X (4 X 3.2) Q C =140X (4 X 5.78) Q A =1792kg/s Q B =1792kg/s Q C =3236.8kg/sQ D =140X ( 2.8 X 3.875) Q E =140X (6 X 3.875) Q F =140X (5.83 X 3.875) Q D =1519kg/s Q E =3255kg/s Q F =3164kg/s5、湿负荷计算湿负荷是指空提案房间的湿源向室内的散湿量,所以这里的湿负荷定为零。

6、空气调节送、回风量计算空气调节系统一般由空气处理设备和空气输送管道以及空气分配装置组成,根据需要,它能组成许多不同形式的要求。

本建筑为办公楼,各房间均为小空间结构,要求各房间能独立进行调控,因此宜采用风机盘管加新风系统。

G=Q/(i n - i 0)Q--------空调房间的冷负荷(W )W-------空调房间湿负荷 (kg/s)G--------空调房间送风量 (kg/s) i n ----排出空调房间空气的焓 (KJ/kg)i0----送出空调房间空气的焓 (KJ/kg) 房间设计送风温差为8℃及查表得到i n=55.5 i0=47G A=1792/8.5 G B=1792/8.5 G C=3236.8/8.5 G A=210.82kg/s G B=1792kg/s G C=380.8kg/sG D=1519/8.5 G E= 3255/8.5 G F=3164/8.5 G D=178.7kg/s G E =328.94kg/s G F=372.24kg/s由检验得,每个房间的送风量都小于5,所以数据不成立。

送风量=房间的体积X换气次数由上式可知:G A=268.8kg/s G B=268.8kg/s G C=485.52kg/sG D=227.85kg/s G E =488.25kg/s G F=474.6kg/s新风量=送风量X 10%注:本建筑为办公楼,查资料得:办公室高级无烟区,每人最小新风量30~50,取32(m3 /h).由上式可知:G A=32kg/s G B=32kg/s G C=48.56kg/sG D=32kg/s G E =48.83kg/s G F=47.46kg/s。

冷、湿负荷计算

冷、湿负荷计算

冷、湿负荷计算3.1 冷负荷计算在设计中,存在两中冷负荷计算的计算方法:一为谐波反应法(负荷温差法),一为冷负荷系数法。

谐波反应法(负荷温差法)计算的冷负荷的形成包括两个过程:一是由于外扰(室外综合温度)形成室内得热量的过程(既内扰量)。

此一过程考虑外扰的周期性以及围护结构对外扰量的衰减和延迟性。

二是内扰量形成冷负荷的过程。

此一过程是将该热扰量 分成对流和辐射两种成分。

前者是瞬时冷负荷的一部分,后者则要考虑房间总体蓄热作用后才化为瞬时冷负荷。

两部分叠加即得各计算时刻的冷负荷。

通过冷负荷温度与冷负荷系数直接从各种扰量值求得各分项逐时冷负荷。

本设计采用冷负荷系数法计算冷负荷。

3.1.1外墙瞬变传热形成的冷负荷计算方法在日射和室外的气温综合作用下,外墙瞬变传热引起的逐时冷负荷可按下式计 算:)t t ('Nx wl KF CL -= (3-1)ραk k t t d wl )(t 'w l += (3-2) 式中:CL ---------外墙或屋顶瞬变传热形成的逐时冷负荷,W ;K ----------外墙传热系数)(w 2k m ⋅;根据外墙和屋顶的不同构造,由附录5[1]和附录6[1]中查取;F -------外墙的传热面积(m 2);'t wl ------外墙和屋顶冷负荷计算温度的逐时值(℃); Nx t -------夏季空气调节室内计算温度(℃); wl t -------以北京地区的气象条件为依据计算出的外墙和屋顶冷负荷计算温度的逐时值(℃),根据外墙和屋顶的不同类型分别在附录7[1]和附录8[1]中查取;d t --------不同类型构造外墙和屋顶的地点修正值(℃),根据不同的涉及地点在《空调负荷使用计算法》表3-5中查取;αk -------外表面放热系数修正值,在表3-7[1]中查取54.224.36.55.36.55.30=⨯+=+=να)k (w 2⋅m ()/4.3s m =νρk -------外表面吸收系数修正值,在表3-8[1]中查取,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数一律采用ρ=0.90,ρk =1.0。

冷负荷的计算方法(冷负荷系数法)(精)

冷负荷的计算方法(冷负荷系数法)(精)
江苏建筑职业技术学院
空调冷负荷的计算方法(冷负荷系数法)
1、通过外墙、屋面、外窗等围护结构传热形成的冷负荷 《民用建筑供暖通风与空气调节设计规范》(GB50736-2012) 中规定:





空调冷负荷的计算方法(冷负荷系数法)

学Байду номын сангаас



空调冷负荷的计算方法(冷负荷系数法)





tn
北京市8类屋面的逐时冷负荷计算温度





空调冷负荷的计算方法(冷负荷系数法)
2、透过外窗日射得热形成的冷负荷
《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)中 规定:





空调冷负荷的计算方法(冷负荷系数法)





空调冷负荷的计算方法(冷负荷系数法) 3、人体、照明、设备等散热形成的冷负荷 《民用建筑供暖通风与空气调节设计规范》 (GB50736-2012)中规定:





空调冷负荷的计算方法(冷负荷系数法)





空调冷负荷的计算方法(冷负荷系数法) 4、空调区和邻室的夏季温差大于3℃时,其通过隔墙、楼板 等内围护结构传热形成的冷负荷:
Q KF (t ls t n )
t ls t wp t ls
tls
t ls
— 相邻非空调房间的平均计算温度; — 相邻非空调房间的平均计算温度与夏季空调室外
计算日平均温度的差值,如办公室、走廊等邻室 散热量很少,可取0-2℃。

冷库冷负荷计算

冷库冷负荷计算

冷库冷负荷计算:一、概述冷库是用于冷藏、冷冻食品、药品、奶制品、花卉等物品的重要设施。

冷负荷是冷库需要保持恒定的低温环境所需要的冷量。

准确计算冷库的冷负荷,对于选择合适的制冷设备、确保冷库正常运行具有重要意义。

二、计算方法1. 确定库房类型和面积:根据冷库用途和规模,确定冷藏库、冷冻库或两者皆有。

了解冷库的总面积和各区域的分布。

2. 考虑温度需求:根据冷库的使用要求,确定所需的温度范围,如冷藏库维持在+5℃~-15℃范围内,冷冻库通常在-20℃以下。

3. 选用合适的传热系数:冷库围护结构有保温和隔热的作用,其传热系数取决于围护结构材料和厚度。

一般而言,冷藏库的传热系数为2.5W/m2·K,冷冻库的传热系数为4.0W/m2·K 左右。

4. 冷负荷计算公式:根据冷库的结构和所处环境,选用适当的冷负荷计算公式。

一般而言,冷藏库的冷负荷计算公式为Q=K*(ΔT*A+B),冷冻库的公式为Q=K*ΔT*A*β。

其中,Q为冷负荷,K为传热系数,ΔT为温差,A、B为围护结构面积,β为保温隔热材料的传热系数折减系数。

5. 冷量损失考虑:除了围护结构传入的热量,还需要考虑其他冷量损失源,如门开启时的冷量损失、设备散热等。

三、实例分析假设有一冷冻库,面积为1000平方米,设计温度范围为-30℃~-5℃。

已知其围护结构传热系数为3.5W/m2·K,考虑的主要冷量损失为围护结构传入的热量和设备散热。

根据上述公式,可计算出该冷冻库的冷负荷约为Q=3.5*(5*1000+1000)+2*(1000)=3700W。

四、结论通过以上步骤,可以较为准确地计算出冷库的冷负荷,为选择合适的制冷设备和控制系统提供依据。

同时,考虑到实际运行中的各种因素,如温差波动、新风引入等,实际选用的制冷设备应具有一定的余量和能效比,以确保冷库能够稳定运行。

冷负荷的计算方法

冷负荷的计算方法

冷负荷的计算方法冷负荷是指建筑物或空调系统需要排除室内的热量或冷量,以维持室内舒适温度的能力。

冷负荷的计算对于设计和选择合适的冷却设备、空调系统以及确定合理的建筑设计方案非常重要。

在计算冷负荷时,冷负荷系数法是一种常见且精确的方法。

冷负荷系数法是将建筑物的冷负荷按照不同的部位划分,并根据室内外环境的条件、建筑物的特点和使用功能来确定系数,最后将每个部位的负荷与系数相乘得到最终的冷负荷值。

下面是冷负荷系数法的具体计算步骤:1.确定建筑物的使用功能:根据建筑物的用途(例如住宅、办公、商业等),确定建筑物的使用功能,以便进一步确定系数。

2.划分冷负荷部位:将建筑物划分为不同的部位,例如外墙、屋顶、地板、窗户、门等。

每个部位的冷负荷会有所不同,因此需要进行单独计算。

3.确定冷负荷系数:根据各个部位的特点和使用功能,确定冷负荷系数。

常见的冷负荷系数包括外墙的日射热系数、窗户的透光系数、屋顶和地板的导热系数等。

4.计算每个部位的冷负荷:根据部位的特点和系数,计算每个部位的冷负荷。

例如,对于一个外墙部位,可以通过测量外墙的面积、材料的导热系数和环境条件(例如太阳辐射的强度)来计算日射热量。

5.汇总冷负荷:将每个部位的冷负荷相加得到总的冷负荷值。

根据建筑物的大小和复杂程度,可能需要进行多次计算和调整才能得到准确的结果。

需要注意的是,冷负荷系数法是一种近似计算方法,其结果可能与实际情况存在一定的差异。

因此,在进行冷负荷计算时,建议根据实际情况和经验进行适当的调整。

总之,冷负荷系数法是一种常用且精确的计算方法,可以帮助设计师和工程师确定合适的冷却设备和空调系统,并为建筑物的舒适性和能效提供支持。

通过合理的冷负荷计算,可以提高建筑物的热效应和能源利用效率,减少能源浪费,为可持续发展做出贡献。

建筑物冷负荷概算指标

建筑物冷负荷概算指标

建筑物冷负荷概算指标建筑物冷负荷概算指标的计算方法有多种,但一般都以建筑物的热量平衡原理为基础。

建筑物的热量平衡是指建筑物吸收的热量等于放出的热量,即Qin = Qout。

其中,Qin表示建筑物吸收的热量,主要来自于室外环境和室内活动;Qout表示建筑物释放的热量,主要是通过传导、对流、辐射等方式传递到室外环境。

1.建筑物热负荷:建筑物热负荷是指建筑物内部需要的供暖热量。

在计算冷负荷时,一般将建筑物热负荷除以一个系数(一般为0.4到0.6),得到建筑物的冷负荷。

2.温度差法:温度差法是一种常用的建筑物冷负荷计算方法。

它通过建筑物内、外部空气温度的差值,建筑物的导热系数和热阻系数等参数来计算建筑物的冷负荷。

温度差法计算的冷负荷一般适用于中小型建筑物,且较为简化。

3.细致法:细致法是一种较为精确的建筑物冷负荷计算方法。

它通过对建筑物各部分(如墙体、屋顶、地板等)进行分析,考虑建筑物的不同热阻和热容以及室内室外的温度、湿度等参数的变化,计算出建筑物的冷负荷。

细致法一般适用于大型或复杂的建筑物。

除了以上的计算方法,建筑物冷负荷概算指标还可以根据建筑物的类型、面积、功能、使用情况等进行估算。

以下是一些常见建筑物的冷负荷概算指标:1.居住建筑:一般每平方米面积的冷负荷为80到100瓦,但在温度较高的地区,可能需要更多的冷负荷。

2.商业建筑:商业建筑的冷负荷概算指标与使用情况有关,例如商场、超市等需要考虑的冷负荷较大,一般每平方米面积的冷负荷可达到120到150瓦。

3.办公建筑:办公建筑的冷负荷概算指标一般比较稳定,每平方米面积的冷负荷为100到120瓦。

4.酒店建筑:酒店建筑的冷负荷概算指标一般较高,每平方米面积的冷负荷可达到150到200瓦。

空调冷负荷、热负荷和新风负荷计算指南

空调冷负荷、热负荷和新风负荷计算指南

空调冷负荷、热负荷和新风负荷计算指南1. 背景随着现代人们对舒适生活要求的提高,空调系统在建筑中的应用日益广泛。

为了有效设计和运行空调系统,冷负荷、热负荷和新风负荷的计算变得至关重要。

本指南旨在为设计师、空调工程师以及相关人员提供关于如何计算空调冷负荷、热负荷和新风负荷的基本指导。

2. 冷负荷计算方法空调冷负荷是指建筑所需的制冷功率,用于维持室内环境的舒适温度。

常用的冷负荷计算方法包括:- 空调负荷手算法:基于建筑结构、功率需求、室内供暖设备和风量等因素进行计算。

- 空调负荷计算软件:利用计算机程序进行冷负荷计算,考虑建筑的热传递特性、室内热源的数量和种类等因素。

3. 热负荷计算方法热负荷是指建筑所需的供暖功率,确保室内温度在寒冷的季节保持舒适。

常用的热负荷计算方法包括:- 冷负荷方法:针对新建筑或整体改造的供暖系统进行计算,考虑建筑外墙的热传递、室内的热源和散热等因素。

- U值法:根据建筑外墙、屋顶和地板等部位的U值,计算建筑的传热损失,然后确定所需的供暖功率。

4. 新风负荷计算方法新风负荷是指建筑所需的新鲜空气供应功率,用于保证室内空气质量和舒适度。

常用的新风负荷计算方法包括:- 定风量法:根据建筑的使用人数、活动强度和新风换气次数,计算所需的新风供应功率。

- 能量平衡法:综合考虑建筑的绝对和相对温湿度、人体代谢热、室内设备热和外部换気热等因素,计算所需的新风负荷。

5. 结论准确计算空调冷负荷、热负荷和新风负荷对于设计和运行空调系统至关重要。

在选择适当的计算方法时,需要综合考虑建筑的结构特点、活动强度、人员数量和使用要求等因素。

本指南提供了常用的计算方法作为参考,但具体的计算过程和参数设置需要根据具体情况进行调整。

建议在设计或改造空调系统前,首先进行详细的负荷计算,以确保舒适和能耗的平衡。

欲了解更多关于空调冷负荷、热负荷和新风负荷的计算指南,建议参考相关规范和文献,或咨询专业的空调工程师。

冷负荷计算说明

冷负荷计算说明

冷负荷计算说明一、本工程冷负荷计算方法采用目前应用较多、以传递函数法为基础、通过研究和实验而得到的冷负荷系数法。

其中内维护结构按稳态传热计算。

二、维护结构冷负荷维护结构冷负荷,可以分为外维护结构和内维护结构两部分(一)、外维护结构冷负荷1、外窗冷负荷外窗冷负荷由两部分构成,即太阳辐射得热引起的冷负荷和温差传热引起的冷负荷。

(1)、太阳辐射得热通过玻璃引起的逐时冷负荷按下式计算:CL=C a ·C s ·C n ·F c ·D jmax ·C cl( W )(1)式中C a——窗有效面积系数;C s——窗玻璃遮挡系数;C n——窗内遮阳系数;F c——外窗面积(m2);D jmax——最大太阳辐射得热因素(W);C cl——外窗冷负荷系数。

(2)、温差传热通过玻璃窗引起的逐时冷负荷按下式计算:CL=k c·K C ·F c ·(t1+t d–t ns)( W )(2)式中k c——外窗传热系数修正值;K C——外窗夏季传热系数[W/(m2·℃)];F c——外窗面积(m2);t1——外窗冷负荷计算温度(℃);t d——外窗冷负荷计算温度地点修正值(℃);t ns——夏季室内设计温度(℃);2、外墙及屋面冷负荷温差传热通过外墙或屋面引起的逐时冷负荷按下式计算CL=K q ·F q ·(t2+t d–t ns)( W )(3)式中K q——外墙或屋面夏季传热系数[W/(m2·℃)];F q——外墙或屋面面积(m2);t1——外墙或屋面冷负荷计算温度(℃);t d——外墙或屋面冷负荷计算温度地点修正值(℃)。

(二)、内维护结构冷负荷内维护结构是指内隔墙及内楼板,它们的冷负荷是通过温差传热而产生的,可视作稳态传热,计算式为:CL=K n ·F n ·(t wp+△t f–t ns)( W )(4)式中K n——内墙或内楼板传热系数[W/(m2·℃)];F q——内墙或内楼板面积(m2);t wp——夏季空调室外计算日平均温度(℃);△t f——附加温升,取邻室平均温度与室外温度的差值(℃)。

冷负荷计算公式

冷负荷计算公式

1、冷负荷计算(一)外墙的冷负荷计算通过墙体、天棚的得热量形成的冷负荷,可按下式计算:CLQτ=KF⊿tτ-ε W式中K——围护结构传热系数,W/m2•K;F——墙体的面积,m2;β——衰减系数;ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;τ——计算时间,h;ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h;⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。

(二)窗户的冷负荷计算通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。

(a)窗户瞬变传热得形成的冷负荷本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2•K。

工程中用下式计算:CLQτ=KF⊿tτ W式中K——窗户传热系数,W/m2•K;F——窗户的面积,m2;⊿tτ——计算时刻的负荷温差,℃。

(b)窗户日射得热形成的冷负荷日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。

从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。

此外,还与内外放热系数有关。

工程中用下式计算:CLQj•τ= xg xd Cs Cn Jj•τ W式中xg——窗户的有效面积系数;xd——地点修正系数;Jj•τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2;Cs——窗玻璃的遮挡系数;Cn——窗内遮阳设施的遮阳系数。

(三)外门的冷负荷计算当房间送风两大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。

如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。

冷负荷计算

冷负荷计算
二. 外窗冷负荷计算
外窗的冷负荷包括瞬变得热形成的冷负荷和日射得热形成的冷负荷,现分开计算。
1.窗户瞬变得热形成的冷负荷,查参考文献【4】
公式2–60CLQc•τ=KFΔtτ
式中:Δtτ计算时刻的负荷温差℃,查附录2–12。
将第一层商场各个朝向窗户的瞬变得热形成的冷负荷计算结果列入表3–2中
第一层商场外墙冷负荷计算表表3–1
照明冷负荷:Q=40×2139=85560 W
第三节空调冷负荷总汇
参考文献【5】,空调房间、空调建筑物及空调系统的计算冷负荷。
1.房间的计算冷负荷确定方法
将上述的各项冷负荷按各不同的计算时刻累加,得出房间冷负荷的逐时值,然后取其中的最大值。对于稳定传热形成的冷负荷、估算冷负荷均以各时刻的逐时值进行累加。
从附录211查得扰量作用时刻时的重庆市各个朝向围护结构负荷温差的逐时值t即可按上面的公式算出外围护结构的逐时冷负荷计算结果列入表31外窗冷负荷计算外窗的冷负荷包括瞬变得热形成的冷负荷和日射得热形成的冷负荷现分开计算
第三章 冷负荷计算
第一节围护结构冷负荷计算
在空调工程设计中,存在两中冷负荷计算的计算方法:一为谐波反应法(负荷温差法),一为冷负荷系数法。冷负荷系数法是在传递函数的基础上为便于在工程中进行手算而建立起来的一种简化计算法。通过冷负荷温度与冷负荷系数直接从各种扰量值求得各分项逐时冷负荷。谐波反应法(负荷温差法)计算的冷负荷的形成包括两个过程:一是由于外扰(室外综合温度)形成室内得热量的过程(既内扰量)。此一过程考虑外扰的周期性以及围护结构对外扰量的衰减和延迟性。二是内扰量形成冷负荷的过程。此一过程是将该热扰量分成对流和辐射两个成分。前者是瞬时冷负荷的一部分,后者则要考虑房间总体蓄热作用后才化为瞬时冷负荷。两部分叠加即得各计算时刻的冷负荷。本设计才用谐波反应法的工程简化计算方法进行冷负荷计算。

冷负荷计算方法

冷负荷计算方法

冷负荷计算方法1.外墙和屋面传热冷负荷计算公式外墙或屋面传热形成的计算时刻冷负荷Qτ(W),按下式计算:Qτ=K·F·Δtτ-ξ(1.1) 式中:F—计算面积,㎡;τ—计算时刻,点钟;τ-ξ—温度波的作用时刻,即温度波作用于外墙或屋面外侧的时刻,点钟;Δtτ-ξ—作用时刻下,通过外墙或屋面的冷负荷计算温差,简称负荷温差,℃。

注:例如对于延迟时间为5小时的外墙,在确定16点房间的传热冷负荷时,应取计算时刻τ=16,时间延迟为ξ=5,作用时刻为τξ=16-5=11。

这是因为计算16点钟外墙内表面由于温度波动形成的房间冷负荷是5小时之前作用于外墙外表面温度波动产生的结果。

当外墙或屋顶的衰减系数β<0.2时,可用日平均冷负荷Qpj代替各计算时刻的冷负荷Qτ:Qpj=K·F·Δtpj(1.2)Δtpj—负荷温差的日平均值,℃。

2.外窗的温差传热冷负荷通过外窗温差传热形成的计算时刻冷负荷Qτ按下式计算:Qτ=a·K·F·Δtτ(2.1) 式中:Δtτ—计算时刻下的负荷温差,℃;K—传热系数;a—窗框修正系数。

3.外窗太阳辐射冷负荷透过外窗的太阳辐射形成的计算时刻冷负荷Qτ,应根据不同情况分别按下列各式计算:[1].当外窗无任何遮阳设施时Qτ=F·Xg·Jwτ(3.1) 式中:Xg—窗的构造修正系数;Jwτ—计算时刻下,透过无遮阳设施玻璃太阳辐射的冷负荷强度,W/㎡。

[2].当外窗只有内遮阳设施时Qτ=F·Xg·Xz·Jnτ (3.2)Xz—内遮阳系数;Jnτ—计算时刻下,透过有内遮阳设施玻璃太阳辐射的冷负荷强度,W/㎡。

[3].当外窗只有外遮阳板时Qτ=[F1·Jwτ+(F-F1) ·Jwτ0] ·Xg(3.3)式中:F1—窗口受到太阳照射时的直射面积,㎡。

冷负荷计算方法

冷负荷计算方法

1.外墙和屋面传热冷负荷计算公式外墙或屋面传热形成的计算时刻冷负荷Qτ(W),按下式计算:Qτ=K·F·Δtτ-ξ(1.1)式中:F—计算面积,㎡;τ—计算时刻,点钟;τ-ξ—温度波的作用时刻,即温度波作用于外墙或屋面外侧的时刻,点钟;Δtτ-ξ—作用时刻下,通过外墙或屋面的冷负荷计算温差,简称负荷温差,℃。

注:例如对于延迟时间为5小时的外墙,在确定16点房间的传热冷负荷时,应取计算时刻τ=16,时间延迟为ξ=5,作用时刻为τξ=16-5=11。

这是因为计算16点钟外墙内表面由于温度波动形成的房间冷负荷是5小时之前作用于外墙外表面温度波动产生的结果。

当外墙或屋顶的衰减系数β<0.2时,可用日平均冷负荷Qpj代替各计算时刻的冷负荷Qτ:Qpj=K·F·Δtpj(1.2)式中:Δtpj—负荷温差的日平均值,℃。

2.外窗的温差传热冷负荷通过外窗温差传热形成的计算时刻冷负荷Qτ按下式计算:Qτ=a·K·F·Δtτ(2.1)式中:Δtτ—计算时刻下的负荷温差,℃;K—传热系数;a—窗框修正系数。

3.外窗太阳辐射冷负荷透过外窗的太阳辐射形成的计算时刻冷负荷Qτ,应根据不同情况分别按下列各式计算:[1].当外窗无任何遮阳设施时Qτ=F·Xg·Jwτ(3.1)式中:Xg—窗的构造修正系数;Jwτ—计算时刻下,透过无遮阳设施玻璃太阳辐射的冷负荷强度,W/㎡。

[2].当外窗只有内遮阳设施时Qτ=F·Xg·Xz·Jnτ (3.2)式中:Xz—内遮阳系数;Jnτ—计算时刻下,透过有内遮阳设施玻璃太阳辐射的冷负荷强度,W/㎡。

[3].当外窗只有外遮阳板时Qτ=[F1·Jwτ+(F-F1) ·Jwτ0] ·Xg (3.3)式中:F1—窗口受到太阳照射时的直射面积,㎡。

Jwτ0—计算时刻下,透过无遮阳设施玻璃太阳散射辐射的冷负荷强度,W/㎡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冷负荷计算方法发布时间:2016-01-30冷负荷的定义是维持室内空气热湿参数在一定要求范围内时,在单位时间内需要从室内除去的热量,包括显热量和潜热量两部分。

1建筑物结构的蓄热特性决定了冷负荷与得热量之间的关系。

瞬时得热中潜热得热和显热得热的对流成分立即构成瞬时冷负荷,而显热得热中的辐射成份则不能立即构成冷负荷,辐射热被室内的物体吸收和储存后,缓慢散发给室内空气。

2、空调负荷为保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷。

相反,为了补偿房间失热量需向房间供应的热量称为热负荷。

3、室内冷负荷主要有以下几方面的内容:照明散热、人体散热、室内用电设备散热、透过玻璃窗进入室内日照量、经玻璃窗的温差传热以及维护结构不稳定传热。

外墙的冷负荷计算通过墙体、天棚的得热量形成的冷负荷,可按下式计算:CLQτ=KF⊿tτ-ε W式中K——围护结构传热系数,W/m2·K;F——墙体的面积,m2;β——衰减系数;ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;τ——计算时间,h;ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h;⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。

窗户的冷负荷计算通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。

(a)窗户瞬变传热得形成的冷负荷本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2·K。

工程中用下式计算:CLQτ=KF⊿tτ W式中K——窗户传热系数,W/m2·K;F——窗户的面积,m2;⊿tτ——计算时刻的负荷温差,℃。

(b)窗户日射得热形成的冷负荷日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。

从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。

此外,还与内外放热系数有关。

工程中用下式计算:CLQj·τ= xg xd Cs Cn Jj·τ W式中xg——窗户的有效面积系数;xd——地点修正系数;Jj·τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2;Cs——窗玻璃的遮挡系数;Cn——窗内遮阳设施的遮阳系数。

外门的冷负荷计算当房间送风量大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。

如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。

(a)外门瞬变传热得形成的冷负荷计算方法同窗户瞬变传热得形成的冷负荷。

(b)外门日射得热形成的冷负荷计算方法同窗户日射得热形成的冷负荷,但一层大门一般有遮阳。

(c)热风侵入形成的冷负荷由于外门开启而渗入的空气量G按下式计算:G=nVmγw kg/h式中Vm——外门开启一次(包括出入各一次)的空气渗入量(m2/人次·h),按下表3—9选用;n——每小时的人流量(人次/h);γw——室外空气比重(kg/m2)。

表3—9 Vm值(m2/人次·h)每小时通过的人数普通门带门斗的门转门单扇一扇以上单扇一扇以上单扇一扇以上100 3.0 4.75 2.50 3.50 0.80 1.00100~700 3.0 4.75 2.50 3.50 0.70 0.90700~1400 3.0 4.75 2.25 3.50 0.50 0.601400~2100 2.75 4.0 2.25 3.25 0.30 0.30因室外空气进入室内而获得的热量,可按下式计算:Q=G·0.24(tw-tn) kcal/h地面的冷负荷计算舒适性空气调节区,夏季可不计算通过地面传热形成的冷负荷。

工艺性空气调节区,有外墙时,宜计算距外墙2m范围内的地面传热形成的冷负荷,地面冷计算采用地带法(同采暖)。

内墙、内窗、楼板、地面的冷负荷内墙、内窗、楼板等围护结构,当邻室为非空气调节房间时,其室温基数大于3℃时,邻室温度采用平均温度,其冷负荷按下式计算:Q=KF(twp+⊿tls-tn) W式中Q——内墙或楼板的冷负荷,W;K——内墙或楼板的传热系数,W/m2·℃;F——内墙或楼板的传热面积,m2;tls——邻室计算平均温度与夏季空气调节室外计算日平均温度的差值,℃。

内墙、内窗、楼板等其邻室为空气调节房间时,其室温基数小于3℃时,不计算。

室内得热冷负荷计算(a)电子设备的冷负荷电子设备发热量按下式计算:Q=1000n1n2n3N W式中Q——电子设备散热量,W;N——电子设备的安装功率,kW;n1——安装系数。

电子设备设计轴功率与安装功率之比,一般可取0.7~0.9;n2——负荷功率。

电子设备小时的平均实耗功率与设计轴功率之比,根据设备运转的实际情况而定。

n3——同时使用系数。

房间内电子设备同时使用的安装功率与总功率之比。

根据工艺过程的设备使用情况而定。

对于电子计算机,国外产品一般都给出设备发热,可按其给出的数字计算。

本次设计每台计算机Qs=150W。

(b)照明设备照明设备散热量属于稳定得热,一般得热量是不随时间变化的。

根据照明灯具的类型和安装方式的不同,其得热量为:白炽灯Q=1000N W荧光灯Q=1000 n1n2N W式中N——照明灯具所需功率,kW;n1——镇流器消耗功率系数,当明装荧光灯的镇流器装在空调房间内时,取n1=1.2;当暗装荧光灯镇流器设在顶棚内时,可取n1=1.0;n2——灯罩隔热系数,当荧光灯罩上部有小孔(下部为玻璃板),可利用自然通风散热与荧光灯顶棚内时,取n2=0.5~0.6;而荧光灯罩无通风孔者,则视顶棚内通风情况,n2=0.6~0.8。

(c)人体散热人体散热与性别、年龄、衣着、劳动强度及周围环境条件等多种因素有关。

人体散发的潜热量和对流热直接形成瞬时冷负荷,而辐射散发的热量将会形成滞后的冷负荷。

实际计算中,人体散热可以以成年男子为基础,成以考虑了各类人员组成比例的系数,称群集系数。

对于不同功能的建筑物中的各类人员(成年男子、女子、儿童等)不同的组成进行修正,下表给出了一些建筑物中的群集系数,作为参考。

于是人体散热量为:Q=qnn′ W式中q——不同室温和劳动性质时成年男子散热量,W;n——室内全部人数;n′——群集系数。

(d)食物散热量形成冷负荷计算餐厅负荷时,食物散热量形成的显热冷负荷,可按每位就餐人员9W考虑。

计算过程如下:已确定餐厅人数为200人。

则Q=9×200=1800W(e) 电动设备当工艺设备及其电动机都放在室内,设备冷负荷为Q=1000n1n2n3N/η W当只有工艺设备在室内,而电动机不在室内时,设备冷负荷为Q=1000n1n2n3N W当工艺设备不在室内,只有电动机放在室内时,设备冷负荷为Q=1000n1n2n3(1-η)N/η WN——电动设备的安装功率,KWη——电动机效率n1——利用系数,是电动机最大实耗功率与安装功率之比,一般可取0.7~0.9n2——电动机负荷系数,定义为电动机每小时平均实耗功率与机器设计时最大实耗功率之比,对精密机床可取0.15~0.40,对普通机床可取0.5左右n3——同时使用系数,定义为室内电动机同时使用的安装功率与总安装功率之比,一般取0.5~0.8湿负荷计算(a)人体散湿量人体散湿量应同人体散热量一样考虑。

计算过程如下:查资料得,成年男子散热散湿量为:显热61W/人,潜热73W/人,109g/h·人;房间人数为20人。

Q=qnn′=109×20×0.77=0.00047kg/s(b)水面散湿量W=β(Pq·b-Pq)F kg/s式中Pq·b——相应于水表面温度下的饱和空气的水蒸汽分压力,Pa;Pq——空气中水蒸汽分压力Pa;F——蒸发水槽表面积,m2;β——蒸发系数,kg/(N·s),β按下式确定:β=(α+0.00363v)10-5;B——标准大气压力,其值为101325Pa;B′——当地实际大气压力,Pa;α——周围空气温度为15~30℃,不同水温下的扩散系数,kg/(N·s);v——水面上周围空气流速,m/s。

表3—11 不同水温下的扩散系数α水温(℃)<30 40 50 60 70 80 90 100α kg/(N·s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125(c)食品的散湿量餐厅的食品的散湿量可按就餐总人数每人10g/h考虑。

以207餐厅为例,计算过程如下:已确定餐厅人数为200人。

则Q=10×200=2000g/h=0.00056kg/s 热负荷的计算和供热基本相同只是采用了平均温度的计算方法。

相关文档
最新文档