第十七章数量性状的遗传分析
数量性状遗传
数量性状遗传
第31页
加性-显性-上位性遗传模型
❖ 对于一些性状, 不一样基因座位上基因 还可能存在互作效应, 即上位性效应。
❖ 基因型值包含加性效应、显性效应和上 位性效应
❖
G=A+D+I
❖
P=A+D+I+E
数量性状遗传
第32页
现以 P G E 表示三者平均数, 则各项方差能够推 算以下.
P P2
2
G E
GE
G G E E 2
G G2 2G GE E E E2
数量性状遗传
第33页
• 表型离均差平方和
• 基因型离均差平方和
• 环境影响造成离均差平 方和
• 基因型与环境条件互作 效应
P P2
G G2
E E2
G GE E
数量性状遗传
第34页
• 若基因型与环 境之间没有互 作,即 :
G GE E 0
• 则表型离差平 方和等于基因 型离差平方和 加环境引发离 差平方和
数量性状遗传
第35页
上式两边都除以n或n-1:
P P2 G G2 E E2
n
n
n
P P2
VP
n
G G 2
VG
n
E E 2
VE
n
VP VG VE
数量性状遗传
第36页
VP VG VE
❖ 回交(back cross)是F1与亲本之一杂交。 ❖ F1与两个亲本回交得到群体记为B1.B2。
❖ B1表示F1与纯合亲本AA回交子代群体,
❖ F1 Aa ×P1 AA ,遗传组成是 1/2AA+1/2Aa
数量性状的遗传分析
表10-2 玉米穗长度的遗传
图10-2 玉米穗长度的遗传
短
长
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
F1
穗长
8 9 10 11 12 13 14 15 16
穗长
F2
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
阈性状
有一类特殊的生物性状,不完全等同于数量性状或质量性状,其 表现呈非连续变异,与质量性状类似,但是又不服从孟德尔遗传 规律。一般认为这类性状具有一个潜在的连续型变量分布,其遗 传基础是多基因控制的,与数量性状类似。即由微效多基因控制 的,呈现不连续变异的性状。通常称这类性状为阈性状 (threshold character)。
单击此处添加副标题
10 数量性状的遗传分析
Genitics of Quantitative Character
单林娜 制作
1
上次课中所讲的性状差异,大多是明显的不连续差异。例如
豌豆种子的圆与皱,子叶的黄与绿
水稻的粳与糯
鸡羽的芦花斑纹和非芦花斑纹
这类性状在表面上都显示质的差别,所以叫做质量性状 (qualitative character)。质量性状的遗传可以比较容易地由分 离定律和连锁定律来分析。
10.3.1 广义遗传力(heritability in the broad sense) 的估算方法
因为方差可用来测量变异的程度,所以各种变异都可 用方差来表示,这样,
P = G + E 就可表示为:
VP = VG + VE 遗传方差;VE:环境方差)
(VP:表型方差;VG:
我们把遗传方差占总方差的比值称为广义遗传力
《数量性状遗传分析》课件
实例三:家禽产蛋性状的数量性状遗传分析
总结词
家禽产蛋性状的数量性状遗传分析有助于揭 示其遗传规律,提高产蛋量和品质。
详细描述
家禽产蛋性状是重要的经济性状之一,对其 数量性状遗传进行分析可以帮助育种者提高 产蛋量和品质。通过研究家禽产蛋性状的数 量性状遗传,可以发现一些与产蛋性状紧密 相关的基因和位点,进一步揭示其遗传机制 。这些研究成果有助于优化家禽育种方案, 提高经济效益和满足市场需求。
数量性状受遗传因素影响 的程度,范围从0到1。
遗传增益
通过选择获得的遗传改进 量。
数量性状遗传分析的重要性
农业育种
提高产量、抗性等数量性 状,提高品种的遗传品质 。
医学研究
研究人类生理、生化等数 量性状,了解疾病易感基 因。
生物多样性保护
评估物种数量性状的遗传 多样性,制定保护策略。
数量性状遗传分析的基本原理
学依据。
药物研发
通过分析药物反应相关的数量性状 基因,可以预测个体对药物的反应 差异,有助于个性化用药方案的制 定。
人类表型组研究
利用数量性状遗传分析方法,可以 对人类表型特征进行深入研究,揭 示表型与基因型之间的关联。
在人类遗传学研究中的应用
人类进化研究
通过分析不同人群的数量性状遗传变异,可以揭示人类进化的历 程和机制。
人类生物学特征研究
数量性状遗传分析有助于解释人类生物学特征的遗传基础,如身高 、体重、智力等。
人类疾病遗传学研究
利用数量性状遗传分析方法,可以研究人类复杂疾病的遗传机制, 为疾病预防和治疗提供科学依据。
04
数量性状遗传分析的挑战与展望
数据分析的复杂性
数据预处理
对原始数据进行清洗、整理和标 准化,确保数据质量。
数量性状的遗传—数量性状遗传的特征(遗传学课件)
所以数量性状在农业中显得特别重要。 (三)人类
人的身高、体重、胖瘦、寿命……
三、认识数量性状
特点:变异不容易分为截然不同的组别,其间有 一系列的过渡类型,只有数量的不同,没有质的 差别。
10
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
《遗传学》
知识目标
学习目标
一、 二、 三、
知道 清楚 数量 数量
熟悉 数量 性状
性状 性状 与质
的概 的遗 量性
念 传特 状的
点
区别
能力目标
能用分析 数量性状 的方法分 析育种与 生产中的 实际问题
Gregor Mendel 1822-1884
(一)数量性状与质量性状的区别
五、数量性状与质量性状的关系 (二)数量性状与质量性状的相对性 1、数量性状与质量性状的区别不是绝对的; 2、生物的性状都有其质和量两个方面,只是在一 定条件下质和量表现出主次关系。 3、在不易区分一个性状是质量性状或数量性状时, 就必须根据F1或F2遗传动态特征来作出判断。
30
亲 本 25
20
玉米穗长遗传的柱形图
15
10
5
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
18
16
F 14 1 12
10
8 6 4
2 0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
数量性状的遗传—数量性状基因定位(遗传学课件)
利用分子标记定位QTL(Qi),实质就是分析分子 标记与数量性状基因座Qi的连锁关系,即利用已知座位 的分子标记来定位未知座位的Qi,通过分子标记与Qi之 间的重组率,来确定Qi的具体位置。
注意把QTL与具体的群体相联系。 QTL有统计学特征 统计分析确定的QTL的位置也并
非物理上的位置。所以QTL位置与效应均有概率上的 含意。
型3种带型,这3种带型即代表某一分子标记的3种基因 型。如果将含有P1带型的个体赋值为1,P2带型的赋值 为3,杂合体赋值为2,即可得到数据化的分子标记图。
三、QTL作图一般步骤
(三)检测分离世代群体中每一个体的标记基因型
21 113 22
三、QTL作图一般步骤
(四)测量数量性状 测定作图群体的每个个体(系)数量性状值。如: 株高 百粒重 蛋白质含量 ……
四、基于混合线性模型的复合区间作图法 (MCIM)
朱军提出了用随机效应的预测方法获得基因型效 应及基因型与环境互作效应,然后再用区间作图法进 行遗传主效应及基因型与环境互作效应的QTL分析。
四、基于混合线性模型的复合区间作图法 (MCIM)
该模型可以扩展到分析具有加×加、加×显、显× 显上位性的各项遗传主效应及其与环境互作效应的QTL。
缺点:无法检测上位性效应和基因型与环境的互作; 当相邻QTL相距较近时,QTL间相互干扰使QTL的
位置和效应估计出现偏差; 每次检验仅用两个标记,其他标记的信息未加利用。
三、复合区间定位法(CIM)
Kao 和Zeng等(1999)提出了多重区间作图法进 行基因定位,这种方法也是以极大似然法估算遗传参 数,突破了回归方法的局限性,可同时在多个区间上 检测多个QTL,使QTL作图的精确度和有效性得到了改 进。
数量性状的遗传
数量性状的遗传数量性状指的是一个生物体的某种性状具有连续性质,在一个种群中表现出一定的变异程度,且受多种基因和环境因素的影响。
例如人体身高、体重等就是数量性状。
数量性状由多个基因的作用所决定,被称为多基因性状。
与单基因性状不同的是,多基因性状不符合孟德尔遗传定律。
数量性状的遗传规律经过长时间的探究,现已初步得出。
从基因层面探究数量性状的遗传数量性状的基因型及其表现形式比较复杂,同一基因型的个体之间也会存在表现形式的差异。
基因由两条相同或不同的基因座构成,分别来自父母亲。
在数量性状的遗传中,每个基因座所对应的基因影响数量性状的大小和表现型。
同时,多个基因座共同作用于数量性状,这种作用关系被称为加性效应(additive effect)。
数量性状的遗传规律主要有:性状值=基因值+环境值,基因型对数量性状的影响呈现正态分布,且受到染色体上多个基因的影响。
数量性状的遗传模式数量性状的遗传规律有三种模式:常染色体显性遗传、常染色体隐形遗传以及性联遗传。
常染色体显性遗传的表现形式是当一个自由基因突变,双等位基因后者扰动的时候,显性基因造成的表现现象。
例如,人体的眼睛颜色就是常染色体显性遗传的一种表现。
常染色体隐性遗传与常染色体显性遗传类似,不同的是表现基因是一种隐性基因。
这种遗传模式表现突变基因表现在两条染色体上都具有相同的表现现象。
例如,某些人患有系统性红狼疮就是常染色体隐性遗传的一种表现。
性联遗传指由X和Y染色体来遗传。
X染色体上的基因对于女性来说是双等位基因,由于女性有两个X染色体,所以会出现多种表现型。
而男性由于只有一个X 染色体,所以表型变化更加显著和恒定。
例如,红绿色盲就是一种典型的性连锁遗传疾病。
数量性状的计算分析数量性状的遗传变异分析可以通过基因型频度分析、亲权分析和遗传连锁分析来进行。
(1)基因型频度分析:由于每个基因座共有两个等位基因,因此可将一个种群中某一基因座的等位基因频率进行 PA+Pa=1,其中PA为某一基因座等位基因A 的频率,Pa为某一基因座等位基因a的频率。
(整理)数量性状的遗传分析
(整理)数量性状的遗传分析第七章数量性状的遗传分析以前所学性状如⽔稻的梗与糯,豌⾖种⼦的圆与皱等。
相对性状差异明显,⼀般没有过渡类型,这种变异为不连续变异,呈不连续变异的性状叫质量性状。
通常把差异不明显的变异叫连续变异,呈连续变异的性状叫数量性状。
如作物的产量、成熟期,棉花的纤维长度等。
数量性状的遗传要⽐质量性状复杂得多,它是由多对基因控制的,⽽且它们的表现容易受环境的影响(则受遗传因素的影响较⼩),同⼀品种在不同环境条件下,数量性状的表现会有很⼤的差别。
因此,研究数量性状的遗传时,往往要分析多对基因的遗传表现,并要特别注意环境条件的影响。
第⼀节数量性状的遗传分析⼀数量性状的遗传特点艾默森(R.A Emerson),伊斯特(R.A East)⽤短穗⽟⽶P1和长穗⽟⽶P2杂交,结果如下:1、特点:第⼀是连续变异,数字表⽰第⼆表型易受到环境影响P 1 P2、F1每个群体所有个体基因型都相同但个体有差异,如F19—15cm,F2群体个体基因型不同,变异是由基因型和环境共同作⽤结果。
2、数量性状的表型在统计学上的特征(3)数量性状的表型特征体现在群体⽽不是个体;(4)表型变化服从于正态分布。
⼆、数量性状遗传的多基因假说(⼀)⼩麦粒⾊杂交1909年尼尔森(Nilsson)实验:⼩麦⼦粒颜⾊硬质多为红粒,粉质多为⽩粒。
红粒×⽩粒红粒红粒(浅红,最浅红):⽩=3:1红粒×⽩粒红粒红粒(深红,中红,浅红,最浅红):⽩=15:1 红粒×⽩粒红粒红粒(最深红,暗红,深红,中红,浅红,最浅红):⽩=63:1解释:⽤R1r1,R2r2,R3r3表⽰⼩麦红粒⽩粒。
假设R为控制红⾊素形成的基因,r为不能控制红⾊素形成的基因。
R1R2R3为⾮等位基因,其对红⾊素的合成效应相同,且为累加效应。
(1)红粒r1 r1r2r2×⽩粒r1r1r2r2r3r3红粒r1r1r2r2R3r32R 1R1r 2r浅红最浅红⽩(3种)(2)红粒r1 r1R23×⽩粒r1r1r2r2r3r3红粒r1r1R2r2R3r34R 3R1r 2R2r 1R3r 4r深红中红浅红最浅红⽩(5种)(3)红粒R1 R13R3×⽩粒r1r1r2r2r3r3红粒R1r1R2r2R3r36R 5R1r 4R2r 3R3r 2R4r 1R5r 6r最深红暗红深红中红浅红最浅红⽩(7种)F 2(1)数量性状是由多对基因控制的,每个基因对表型的影响或作⽤微⼩,把这些控制数量性状作⽤微⼩的基因叫微效基因。
数量性状遗传分析(共47张PPT)
9.1.4 阈性状及其特性
1 阈性状(threshold character/trait ):性状 数值达到某一特定值时表现为正常,达不到则为不 正常,由多基因控制,表现呈非连续型变异,如血
压,血糖含量、生物的抗病力、患病性,还有如单胎 动物品种的产仔数表现单胎、双胎和稀有的多胎等。
2 人类的多基因遗传病
(p + q) 的一般形式,其中p + q = 1。这 可归结为 b=(xg-xr)/ag
n
数量性状和质量性状的划分不是绝对的,许多性状既受主效基因的控制,又受ห้องสมุดไป่ตู้效基因的影响。
(1/2R+1/2r)2n
↓
X(1/2R+1Y/2种r)2n 二项式的展开项构成了一种概率分布,称为二项
人类群体中多基因遗传病的遗传率(或遗传度)的估算方法:
微效基因(minor gene):控制数量性状的遗传因子,
又称为多基因(polygene)。 主效基因(major gene):控制质量性状的遗传因子,
又称为寡基因(oligogene)。
2 微效多基因之间通常不存在显隐性关系,表现 为不完全显性或无显性,或表现为增效和减效作 用。
3 微效多基因的遗传仍遵守遗传的基本规律,同样有
三对基因差异
0R 1R 2R 3R 4R 5R 6R 红粒:白粒=63:1
D 小麦子粒颜色受n对差异基因决定
则F2的表现型频率为:
(1/2R+1/2r)2n
这暗示,在数量性状中,高表型值的亲本(简称高值亲本)与低表型值的亲本(简称低值亲本)之间没有明显的显隐性关系。
F1的表型变异也完全来自环境变异,即VE1=VF1,VE2=VE1.
B组实验中,F2 红粒:白粒 = 15:1,表明子粒颜 色由2对差异基因决定。
《数量性状遗传》课件
05
总结与展望
数量性状遗传研究的重要意义
揭示生物多样性
数量性状遗传研究有助于揭示生物多样性的遗传基础,理解生物进 化的机制。
指导育种工作
通过数量性状遗传研究,可以更有效地进行动植物育种,提高农作 物的产量和品质,以及改善动物的生长性能和健康状况。
遗传方差与环境方差的比较
01
02
03
遗传方差
表示数量性状受基因控制 的变异程度,包括加性方 差和显性方差。
环境方差
表示数量性状受环境因素 影响的变异程度。
比较意义
了解遗传方差和环境方差 的相对大小,有助于理解 数量性状的变异来源和选 择潜力。
遗传进度与选择效率的关系
遗传进度
指选择过程中一个或多个世代的 遗传改变量。
应用
QTL定位在动植物育种、人类医学等领域具有广泛的应用价值,有 助于深入了解数量性状的遗传基础和进行相关研究。
03
数量性状遗传的应用
作物育种中的应用
提高产量和品质
通过研究数量性状遗传,育种家可以培育出产量更高、品质更优的作物品种。例如,通过 选择具有理想株高、穗粒数等数量性状的个体,可以获得抗逆性强、适应性广的作物品种 。
《数量性状遗传》ppt课件
Hale Waihona Puke 录• 数量性状遗传概述 • 数量性状遗传的遗传机制 • 数量性状遗传的应用 • 数量性状遗传的未来发展 • 总结与展望
01
数量性状遗传概述
数量性状遗传的定义
数量性状遗传是指多个基因位点 共同作用,对个体表现型产生影
响的遗传现象。
它与质量性状遗传不同,质量性 状遗传是由单一或少数基因位点 控制,表现为明显的孟德尔遗传
遗传学-数量性状的遗传分析
由于亲本是纯合体,遗传型一致,∴遗传变异 方差等于0,即VG=0。∴亲本P1P2的表型方差完 全来自环境变异,即与环境方差一致。 VP1=VG1+VE VG1=0。 VG2=0。 VP2=VG2+VE ∴VE=1/2(VP1+VP2)
(2)
=6.63
2.方差和标准差
(a)方差是正值。 (b)方差表示变异的程度,表示样本中个体观察 数与平均数差异的程度,偏离程度大,方差大。 (c)方差大,说明群体不整齐,变异程度大;反 之,群体整齐,变异程度小。 标准差不仅能反映群体内的变异幅度,还能 反映群体内平均数的代表性大小 。即标准差小, 群体内变异幅度小,整齐度高,平均数代表性 大;反之,标准差大,群体内变异幅度大,整 齐度低,平均数的代表性小。
变异系数CV
S CV 100% x
例:某大学助教进修班和硕士研究生班同时学习英语课,期末考 试平均成绩如下: S x 班级 人数 助教进修班 硕士研究生 18 71 5.68
27
78
6.00
试问这两个班学习整齐度是否相同?
CV助
CV研
S 6.00 100% 7.69% 78 x
小麦抽穗日期数和表型方差数
狭义遗传率 h2N=1/2VA/1/2VA+1/4VD+VE
二、数量性状的遗传
1909年Nilson-Ehle提出多基因假说: ( 1) 数量性状受许多彼此独立的基因作用,每个基 因作用微小, 但仍符合孟德尔遗传. ( 2 )各基因的表型效应微小,效应相等,作 用是累加性的,呈剂量效应。 ( 3 )各个等位基因表现为不完全显性或无显 性,或增效和减效作用 (4)数量性状易受环境条件的影响。
《数量性状遗传》课件
遗传模型构建方法
遗传力模型
通过构建遗传力模型,分 析数量性状的遗传变异程 度,并估计遗传力和相关 参数。
遗传相关模型
通过构建遗传相关模型, 分析不同数量性状之间的 遗传相关控制的群体遗传现象, 通过混合模型进行基因型 和环境交互作用的分析。
数量性状遗传在自然界中广泛存在,如人的身高、 体重、智力等都属于数量性状。
数量性状遗传的特点
数量性状遗传具有连续变异的 特点,即在一个群体中,个体 的表现型值可以连续变化。
数量性状遗传受多个基因位点 的影响,这些基因位点通常具 有微效作用,即每个基因位点 对表现型的影响较小。
数量性状遗传还受到环境因素 的影响,环境因素可以影响个 体表现型值的变异范围和分布 。
数量性状遗传在动物育种中的应用
生长速度
通过研究动物生长速度的数量性 状遗传,育种家可以培育出生长 快速的动物品种,提高养殖效益
。
繁殖性能
通过选育具有优良繁殖性能的数 量性状基因,可以提高动物的繁
殖效率,加速品种改良进程。
抗病性
通过研究动物抗病性的数量性状 遗传,育种家可以培育出具有较 强抗病能力的动物品种,降低养
利用新一代测序技术和遗传资源发掘,精细定位和克隆控制数量性状的基因或基因组区域 。
解析数量性状基因的互作网络
研究基因之间的相互作用关系,解析数量性状形成的复杂网络调控机制。
探索表观遗传修饰对数量性状的影响
研究DNA甲基化、组蛋白修饰等表观遗传修饰对数量性状表达的调控作用。
加强数量性状遗传与其他学科的交叉研究
03
数量性状遗传分析方法
统计分析方法
01
02
03
方差分析
通过比较不同群体或处理 组之间的变异程度,确定 数量性状是否受遗传控制 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.表型方差及分量 VP=VG+VE ①G和E相关:VP=VG+VE+2covGE ②G和E无相关:VP=VG+VE=VA+VD+VI+VE
其中VA加性方差——可稳定遗传; VD显性方差,VI互作方差作——不能稳定遗传。
二、群体基因型值的平均数 1.基因型值的尺度
对一对等位基因A1和A2,基因频率分别为p和q。在平衡时基 因型频率为: P2(A1A1)+2pq(A1A2)+q2(A2A2)=1 设基因型值分别为(实为平均值的离差): (A1A1) a (A1A2 ) d (A2A2) -a
③红色的深浅与基因的数目有关,而与种类无关。
归纳上述实验结果:
符合二项展开式(杨辉三角) A组——(1/2R+1/2r)2, 一对基因控制 B组——(1/2R+1/2r)4, 两对基因控制 C组——(1/2R+1/2r)6, 三对基因控制
2.多基因假说的要点:
Nilsson-Ehle于1909年提出多基因假说,要点如下: (1)数量性状是由许多微效基因(多基因, polygene)控制的; (2)多基因中每一对基因对数量性状的表型贡献是微小的; (3)多基因对性状的效应是累加的; (4)多基因彼此之间缺乏显隐性,各自对性状的贡献用大 写表示增效,小写表示减效; (5)多基因对性状的控制受环境因素的影响;
第二节 数量性状遗传分析的统计学基础
一、平均数 1.算术平均数 表示观察样本的集中程度: 公式: X, μ 2.加权平均数 利用样本中随机变量的分布频率表示平均数: 公式: 计算P.517中果蝇梳齿数的平均值。
二、方差与标准差 表示偏离平均数的变异程度. 1.方差: 样本方差: S2 总体方差: σ2
① d=0,杂合体为完全累加效应; ②d= +a,A1A2表型完全等同于A1A1 ; 或d=-a, A1A2表型完全等同于A2A2 ; ③ 0﹤ d ﹤a, A1A2累加效应偏向于A1A1 ; -a﹤ d ﹤0, A1A2累加效应偏向于A2A2 ; ④d﹥+a或d ﹤ -a,A1A2A1=10; A2A2=6; 若d 值为0 则A1A2=5+3=8 ;而a=10-8=2; -a=6-8=-2
二、数量性状的多基因遗传
1.多基因假说的实验基础,说明如下: ①籽粒颜色由3对基因控制,F2其中
A组——一对基因单独分离; B组——两对基因分离;
C组——三对基因同时分离
②F2中籽粒颜色可细分:
A组——1/4红;1/4中红;(1/4 白);
B组——1/16深红;4/16次深红;6/16中红;4/16淡红;(1/16 白) C组——1/64极深红;6/64深红;15/64;20/64;15/64;6/64; (1/64 白)
第一节 数量性状及其特性
一、数量性状的概念及其基本特征 1.概念:与质量性状相比较而言,连续变异的 性状称为数量性状(quantitative traits),又分为 连续变异性状和阈形状(threshold traits). 2.数量性状的特征 与质量性状的差异,一个基因控制多个形状, 而一个性状又由多个基因共同控制,多基因之间 表现出累加效应。eg. 五个基因座控制一个性状: 每个基因座有3种基因型(++/+-/--),共35= 243种 基因型、11种表型: (+++++/+++++,+++++/++++-, … …,-----/-----) 环境影响可使相同的基因型有不同的表型
十七章
数量性状遗传
学习要点: 1. 相关概念:数量性状;阈性状;回归系数;累 加效应;显性效应;上位效应;遗传率;同型 交配;异型交配;近交系数;杂种优势. 2. 多基因假说的原理及应用; 3. 简单的统计学分析及应用; 4. 数量性状遗传率的分析; 5. 近交与杂交的遗传效应分析; 6. 杂种优势的显性学说和超显性学说。
2.标准差: s σ 计算P.517中梳齿数的方差
三、直线相关与回归 (1)直线相关: rxy度量变量x和y之间的相关程度. (2)协方差: covxy度量相关变量x和y共同变异的程度. (3)回归系数 一个变量变异时另一个变量的变异程度 byx:表示x变化一个单位后y改变的单位数; bxy:表示y变化一个单位后x改变的单位数; 计算P.517中rxy 、covxy和bxy.
(6)多基因表现出多效性——一个性状由多个基因内控制; 而一个基因往往影响多个性状; (7)多基因定位在染色体上,具有分离、重组、连锁等性 质。 例外:存在累积效应、偏态分布、主效效应等。 3.多基因性状的研究方法: ①以群体和多世代为对象进行研究; ②性状差异无法分组归类,而需逐个测量; ③应用统计学的方法研究数量性状的遗传规律。 4.阈性状及特性: 阈性状——由多基因控制非连续表型的性状。 特征: ①由多基因控制; ②表现为是或非的效应,如存活或死亡;健康 或患病等——存在阈值。
2.群体基因型值的平均值 μ=P2a+2pqd+q2(-a) =a(p-q)+2pqd, μ不代表绝对 平均值,而是对双亲基因型平均值的离差。 (Ⅰ) a(p-q)表示纯合体的累加效应; (Ⅱ) 2pqd表示杂合体的显性效应,d=0表示无显 性效应. (Ⅲ)若p=q=1/2,且d=0, μ=0 (Ⅳ)n个基因座的联合效应 μ=∑a(p-q)+2 ∑pqd p、q改变使μ改变。
第三节 数量性状的遗传率
一、数量性状表型值及其方差分量 1.数量的表型值 ①个体: P=G +E (P表型值; G基因型值; E环境效应) ②群体:∑P= ∑G +∑E (其中∑E=0) 两边各除以N, ∴P(均值)=G(均值) ③推算一种表型个体产生下一代个体表型:
eg. 奶牛群体年平均产奶量6000Kg,已知某个体产奶量为年 8000Kg,且已知遗传效应占30%,环境效应占70%, 求该奶牛繁殖 后代的产奶量: 个体G: 环境E: 6000+(8000-6000) × 30% =6600Kg (8000-6000) × 70% =1400Kg
后代平均E:(6600+6000)/2 =6300Kg
④G细分: G=A+D+I (A累加效应; D显性效应; I上位效应) 累加效应(A) : 许多微效基因加和的效应 显性效应(D): 显隐性基因造成的非加和的效应, 群体中∑D=0 上位效应(I) : 非等位基因之间的相互作用造成的非加和 的效应,常归于环境效应. 用剩余值(R)表示: R=E+D+I, ∴P=A+R