培优专题一绝对值
2020秋七年级数学上册培优专项《绝对值专题》
![2020秋七年级数学上册培优专项《绝对值专题》](https://img.taocdn.com/s3/m/ae506b48b7360b4c2e3f64f8.png)
abc 的值
3、有理数 a 的位置如图所示,试求 a | a 2 | a 3 的值 |a| a2 |a3|
4、已知 x<0<z,xy>0,|y|>|z|>|x| (1) 试在数轴上表示出 x、y、z 的大致位置 (2) 化简:|x+z|+|y+z|-|z-y| (3) 求 y 1 2xz 的值
绝对值专题系列一
知识点 1、正数的绝对值得正,负数的绝对值得负:如果
,那么
;
反之,如果
,那么
;拓展:非负数的绝对值得正,非正数的绝对值得
负:如果
,那么
;如果
,那么
;反之也成
立:如果
,那么
;如果
,那么
;
知识点 2、一个数和它本身的商得 1,一个数和它的相反数的商得-1,如果 ,那么
;
如果
,那么
;反之,如果 ,那么
y ab bc ca ,求代数式 1 x 2(x 1 y 2 ) ( 3 x 1 y 2 ) 的值
| ab | | bc | | ca |
2
3
23
11.若 abc 0 ,化简 a b c abc 结果是_______________. a b c abc
12.若 abc<0,a+b+c=0,则 | b c | | a c | | a b | =___________
若
,
中有 或 或 个负数;
知识点 6、多个绝对值代数式的和为 0,则每一个绝对值代数式都等于 0
知识点 7、互为相反数的两个数或者代数式、绝对值式子,相加得 0
例:1.已知 a、b、c 是非零有理数,且 a+b+c=0,abc<0,求 a b c abc __________ | a | | b | | c | | abc |
绝对值同步练习培优
![绝对值同步练习培优](https://img.taocdn.com/s3/m/33401dd6cc17552706220897.png)
一、填空题1、一个正数的绝对值是____,一个负数的绝对值是____,0的绝对值是___2、绝对值小于3的整数有___个,它们是________。
3、用“>”或“<”号填空。
-3__-4, -(-4)__-|-5|, -65__-76 4、若a +|a |=0,则a __0,若a -|a |=0,则a __0。
5、已知|a |=73,|b |=209,且b < a ,则a =___,b =___。
6、若|a -2|+|b +1|=0,则a +b =___。
7、绝对值最小的有理数是___,绝对值等于它本身的数是___,绝对值等于它的相反数的数是____。
8、绝对值小于2的整数有___个,绝对值不大于3的非负整数是_______。
9、一个数的倒数的绝对值是21,则这个数是____。
10、-31的相反数是___,-31的绝对值是___,-31的倒数是___。
11、有理数m ,n 在数轴上的位置如图,二、选择题1、-|-2|的倒数是( ) A 、2 B 、21 C 、-21 D 、-2 2、若|a |=-a ,则a 一定是( )A 、正数B 、负数C 、非正数D 、非负数3、代数式|x -2|+3的最小值是( )A 、0B 、2C 、3D 、54、若|a |=|b |,则a 与b 的关系是( )A 、a =bB 、a =-bC 、a =b 或a =-bD 、不能确定5、下面说法中正确的有( )个①互为相反数的两个数的绝对值相等;②一个数的绝对值是一个正数;③一个数的绝对值的相反数一定是负数;④只有负数的绝对值是它的相反数。
A 、1B 、2C 、3D 、46、下面说法中错误的有( )个。
①一个数的相反数是它本身,这个数一定是0;②绝对值等于它本身又等于它的相反数的数一定是0;③|a |>|b |,则a > b ;④两个负数,绝对值大的反而小;⑤任何数的绝对值都不会是负数。
A 、1B 、2C 、3D 、47、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个8、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m9、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<41 三、解答题1、比较下列各组数的大小。
2024年浙教版七年级上册数学期末培优复习第2招与绝对值有关的常见题型
![2024年浙教版七年级上册数学期末培优复习第2招与绝对值有关的常见题型](https://img.taocdn.com/s3/m/82e7b3717275a417866fb84ae45c3b3566ecdd7c.png)
A. ①④
B. ①③
C. ②③
D. ②④
返回
1
2
3
4
5
6
7
8
9
分类训练
绝对值的非负性在求字母取值中的应用
3. 如果|-2 a |=-2 a ,那么 a 的取值范围是(
A. a >0
B. a ≥0
C. a ≤0
D. a <0
4. 如果| x -2|=2- x ,那么 x 的取值范围是
C
)
x ≤2
.
返回
1
2
3
4
5
6
7
8
9
分类训练
5. 已知| x -2|+| y -3|=0.
(1)求 x , y 的值;
【解】由题意得, x -2=0, y -3=0,
所以 x =2, y =3.
(2)已知| x + y + z |=7,求 z 的值.
【解】因为 x =2, y =3,| x + y + z |=7,
返回
2
3
4
5
6
7
8
9
分类训练
(4)当 m 为何值时,式子8-| m -2|有最大值?最大值
是多少?
【解】要使式子8-| m -2|有最大值,则| m -2|
取得最小值.
因为| m -2|≥0,所以当 m =2时,| m -2|取得
最小值,最小值为0,
所以当 m =2时,式子8-| m -2|取得最大值,最大
值为8-0=8.
1
返回
2
3
4
5
6
7
8
9
分类训练
绝对值在数轴中的应用
七年级培优——绝对值
![七年级培优——绝对值](https://img.taocdn.com/s3/m/ca9d876c51e79b89690226e5.png)
七年级培优——绝对值绝对值是七年级数学中的一个非常重要的基本概念,但涉及到的数学思想非常重要,所涉及的方法也会对整个初中数学的学习有很大的帮助,本节课我们将从几种方法对绝对值的综合题进行讲解。
一、利用绝对值的定义求绝对值的值。
绝对值的定义如下:⎪⎩⎪⎨⎧<-=>=.0,0,00,||时当时,当时,当a a a a a a例题1:已知1||≤x ,1||≤y ,求|52||1|--++x y y 的最小值。
方法点拨:要化简|52||1|--++x y y ,必须要搞清楚1+y 和52--x y 的正负情况,当不能判断的时候就需要通过分类来进行化简.解:因为1||≤x ,1||≤y 可得11≤≤-x ,11≤≤-y ,所以210≤+≤y ,从而得1|1|+=+y y因为11≤≤-y ,所以222≤≤-y ,因为11≤≤-x ,所以11≤-≤-x所以323≤-≤-x y所以2528-≤--≤-x y ,即052<--x y ,从而有52)52|52|++-=---=--x y x y x y ( 所以6521|52||1|+-=++-+=--++y x x y y x y y所以当x 取最小值,y 取最大值时,6+-y x 的值最小即当1-=x ,1=y 时,|52||1|--++x y y 的最小值为4611=+--.练习1:若3||=x ,2||=y ,且x y y x -=-||,求y x +的值.练习2:已知0<a ,0>b ,求|5||1|---+-b a a b 的值.练习3:已知a 、b 、c 是非零有理数,且0=++c b a ,求abcabc c c b b a a ||||||||+++的值.练习4:已知1||≤x ,1||≤y ,求|42||1|||--++++x y y y x 的最大值和最小值.练习5:已知152||=++y x x ,3| |=-+y y x ,求x ,y 的值.二、利用数轴解绝对值的值由绝对值的几何意义可知,||a 表示的几何意义为实数a 到原点的距离,||b a -表示的几何意思为实数a 到实数b 在数轴上的距离。
人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)
![人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)](https://img.taocdn.com/s3/m/d9fa1d4b647d27284b7351d7.png)
2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。
2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷
![2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷](https://img.taocdn.com/s3/m/8602ac1d0a4c2e3f5727a5e9856a561252d32119.png)
专题2 绝对值一、绝对值的化简【学霸笔记】1. 一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0,关系如下:;2. 绝对值可以与数轴结合起来,可用于表示距离,表示数a表示数a与数b间的距离;3. 绝对值的性质;②;③;⑤【典例】若a+b+c=0,则|a|a +|b|b+|c|c+|ab|ab+|ac|ac+|bc|bc+|abc|abc的值为()A.﹣7B.﹣1C.1D.7【解答】解:∵a+b+c=0,∴a,b,c中两正一负或一正两负,假设a>0,b>0,c<0,原式=1+1﹣1+1﹣1﹣1﹣1=﹣1,其他情况同理值为﹣1;假设a>0,b<0,c<0,原式=1﹣1﹣1﹣1﹣1+1+1=﹣1,其他情况同理值为﹣1,故选:B.【巩固】数形结合是一种重要的数学方法,如在化简|a|时,当a在数轴上位于原点的右侧时,|a|=a;当a在数轴上位于原点时,|a|=0;当a在数轴上位于原点的左侧时,|a|=﹣a.当a,b,c三个数在数轴上的位置如图所示,试用这种方法解决下列问题.(1)当a=1时,求|a|a =,当b=﹣2时,求|b|b=.(2)请根据a,b,c三个数在数轴上的位置,求|a|a +|b|b+|c|c的值.(3)请根据a,b,c三个数在数轴上的位置,化简:|a+c|+|c|+|a+b|﹣|b﹣c|.二、绝对值的非负性【学霸笔记】不小于0的数(或大于等于0的数)称为非负数,具有以下性质:(1)非负数具有最小值0;(2)若几个非负数的和为0,那么每个非负数均为0;(3)任何数的绝对值都大于等于0,即任何数的绝对值都是非负数.【典例】有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0(2)|a﹣b|+|b﹣c|=|a﹣c|(3)(a﹣b)(b﹣c)(c﹣a)>0(4)|a|<1﹣bc其中正确的命题有()A.4个B.3个C.2个D.1个【解答】解:由图可知c<﹣1<0,0<a<b<1,(1)命题abc<0正确;(2)在命题中a﹣b<0,b﹣c>0,所以|a﹣b|+|b﹣c|=﹣(a﹣b)+(b﹣c)=2b﹣a﹣c.又因为a﹣c>0,所以|a﹣c|=a﹣c.左边≠右边,故错误;(3)在该命题中,因为a﹣b<0,b﹣c>0,c﹣a<0,所以(a﹣b)(b﹣c)(c﹣a)>0,故正确;(4)在命题中,|a|<1,bc<0,∴1﹣bc>1,所以|a|<1﹣bc,故该命题正确.所以正确的有命题①③④这三个.故选:B.【巩固】如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求:1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2022)(b+2022)的值为.三、绝对值的最值【学霸笔记】1. a与数b两点间的距离;2. n为奇数,当n.【典例】阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是,最小值是;(4)当x在何范围,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并写出它的最大值.【解答】解:(1)数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5.故答案为:5;(2)数轴上表示x和﹣5的两点A和B之间的距离是|x+5|.故答案为:|x+5|;(3)在数轴上,|x﹣1|+|x+3|表示数轴上x和1的两点之间与x和﹣3的两点之间距离和,当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是﹣3≤x≤1,最小值是4.故答案为:﹣3≤x≤1,4;(4)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2.【巩固】已知数轴上表示数a的A与表示数b的点B之间的距离|AB|=|a﹣b|.(1)当x=时,|x﹣3|有最小值,这个最小值是.(2)当x=时,5﹣|x﹣2|有最大值,这个最大值是.(3)当整数x=时,|x﹣3|+|x﹣6|有最小值,这个值是.(4)当整数x=时,|x﹣1|+|x﹣2|+|x﹣5|有最小值,这个值是.(5)|x﹣1|﹣|x﹣5|有最大值,这个值是;|x﹣1|﹣|x﹣5|有最小值,这个最小值是;(6)已知|x﹣2|+|x﹣4|+|y﹣1|﹣|y﹣2|=1,则(x+y)有最值(填“大”,“小”),这个值是.巩固练习1.设x是有理数,y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x的值使y取最小值C.有有限个(不止一个)x的值使y取最小值D.有无数多个x的值使y取最小值2.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2022的值为()A.﹣2021B.﹣1010C.﹣1011D.﹣10093.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2B.3C.4D.54.设有理数a、b、c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x−a+b2|+|x−b+c2|+|x+a+c2|的最小值是()A.a−c2B.a+b+2c2C.2a+b+c2D.2a+b−c25.若有理数m,n,p满足|m|m +|n|n+|p|p=1,则2mnp|3mnp|=.6.已知|x+2|+|1﹣x|=9﹣|y﹣5|﹣|1+y|,则x+y的最小值为,最大值为.7.有理数a、b、c均不为0,且a+b+c=0,设x=|a|b+c +|b|c+a+|c|a+b,则代数式x2021+2021x﹣2021的值为.8.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b ﹣c|+|c﹣d|+|d﹣a|的最大值是.9.如果a,b,c是非零有理数,求a|a|+b|b|+c|c|的值.10.设x1,x2,x3,x4,x5,x6是六个不同的正整数,取值于1,2,3,4,5,6,记S=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|+|x5﹣x6|+|x6﹣x1|,求S的最小值.11.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|12.有一正整数列1,2,3,…,2n﹣1、2n,现从中挑出n个数,从大到小排列依次为a1,a2,…,a n,另n个数从小到大排列依次为b1,b2,…,b n.求|a1﹣b1|+|a2﹣b2|+…+|a n﹣b n|之所有可能的值.。
初一七年级绝对值练习(含例题基础培优)
![初一七年级绝对值练习(含例题基础培优)](https://img.taocdn.com/s3/m/e0800af49a89680203d8ce2f0066f5335a81677d.png)
初⼀七年级绝对值练习(含例题基础培优)初⼀七年级绝对值练习(含例题、基础、培优)例题部分⼀、根据题设条件例1 设化简的结果是()。
(A)(B)(C)(D)思路分析由可知可化去第⼀层绝对值符号,第⼆次绝对值符号待合并整理后再⽤同样⽅法化去.解∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.⼆、借助数轴例2 实数a、b、c在数轴上的位置如图所⽰,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让⼈去观察,⼀定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表⽰的数总⼤于左边点表⽰的数.3.离原点远的点的绝对值较⼤,牢记这⼏个要点就能从容⾃如地解决问题了.三、采⽤零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,⼜没有数轴信息,要对各种情况分类讨论,可采⽤零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—⼀讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式∴原式③当时,,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采⽤此法的⼀般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不⼀定是两个).2.分段:根据第⼀步求出的零点,将数轴上的点划分为若⼲个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或⽆根据地增加⼀些附加条件,以免得出错误的结果.练习:请⽤⽂本例1介绍的⽅法解答l、2题1.已知a、b、c、d满⾜且,那么2.若,则有()。
七上绝对值培优专题
![七上绝对值培优专题](https://img.taocdn.com/s3/m/c4be8281551810a6f4248619.png)
七年级数学培优专题讲解绝对值培优一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数二、 典型例题例1.已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例5.已知|ab -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。
(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.(4) 满足341>+++x x 的x 的取值范围为 ______ .(5)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围.例7.若24513a a a +-+-的值是一个定值,求a 的取值范围.例8.已知112x x ++-=,化简421x -+-.例9.若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少?练习题 1.如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 12.已知2x ≤,求32x x --+的最大值与最小值.3.若0abc <,求a b c a b c +-的值4.有理数a ,b ,c ,d 满足1abcdabcd =-,求abcda b c d+++的值.5.试求123...2005x x x x -+-+-++-的最小值6. 已知式子:431744+---+-x x x 的值恒为一个常数,求x 的取值范围。
绝对值专项培优训
![绝对值专项培优训](https://img.taocdn.com/s3/m/96787edc534de518964bcf84b9d528ea81c72fb1.png)
绝对值培优训练一、选择题1.(2分)(2022秋•南通期末)已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5 B.0或±1 C.0或±5 D.±1或±52.(2分)(2022秋•南通期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b3.(2分)(2022秋•黔江区期末)下列式子化简不正确的是()A.+(﹣6)=﹣6 B.﹣(﹣0.8)=0.8C.﹣|+0.3|=﹣0.3 D.4.(2分)(2022秋•江都区期末)已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c5.(2分)(2022秋•鲤城区校级月考)适合|3a+7|+|3a﹣5|=12的整数a的值有()A.4个B.5个C.7个D.9个6.(2分)(2022秋•城西区期中)若|a﹣2|+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.20167.(2分)(2022秋•朝阳区校级期中)式子|x﹣1|+3取最小值时,x等于()A.1 B.2 C.3 D.08.(2分)(2022秋•黄埔区校级期中)设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b| C.c﹣a D.﹣c﹣a9.(2分)(2022秋•宛城区校级月考)若m、n互为相反数,则在①m+n=0;②|m|=|n|;③m2=n2;④m3=n3;⑤mn=﹣n2中,必定成立的有()A.2个B.3个C.4个D.5个10.(2分)(2021秋•锡山区期末)两数a、b在数轴上对应点的位置如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.a﹣b<0 D.|a|﹣|b|>0评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋江市期末)若abcd≠0,则=.12.(2分)(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是.13.(2分)(2022秋•黔西南州期中)已知|2x﹣4|+|3y﹣9|=0,则(x﹣y)2022=.14.(2分)(2021秋•呈贡区校级期末)已知实数a,b,c,则化简+++3×结果是.15.(2分)(2022秋•辉县市期中)若|a﹣|+|b+1|=0,则a+b=.16.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.17.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式的最大值是.18.(2分)(2014秋•巴南区期末)已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.19.(2分)(2022•南京模拟)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是.20.(2分)(2019秋•秦安县期中)式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•南安市月考)把下列各数:2,0,﹣3,,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.22.(6分)(2022秋•西安期末)【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探索】(1)若|x﹣2|=5,则x=;(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到2和﹣1所对应的点的距离之和为3.(3)由以上探索猜想,对于任意有理数x,|x﹣2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.23.(8分)(2022秋•泗阳县校级月考)有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:a,﹣a,b,﹣b,c,﹣c;(2)化简:|a﹣b|+|a+b|+|b﹣c|.24.(8分)(2022秋•郫都区校级期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(8分)(2022秋•渠县校级期末)a、b、c三个数在数轴上位置如图所示,且|a|=|b| (1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.26.(8分)(2022秋•永兴县期末)对于有理数x,y,a,t,若|x﹣a|+|y﹣a|=t,则称x和y关于a的“美好关联数”为t,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“美好关联数”为3.(1)﹣3和5关于2的“美好关联数”为;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为;②x1+x2+x3+……+x40的最小值为.27.(8分)(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.28.(8分)(2022秋•铁东区校级月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.。
正、负数,相反数,绝对值培优题
![正、负数,相反数,绝对值培优题](https://img.taocdn.com/s3/m/a2c4e0c876a20029bd642d65.png)
正、负数、相反数、绝对值概念综合题一、填空题:1.若a=3,则-a= ;a = ; a -= ;2.若a=-3,则-a= ;a = ;3.若-a=-3,则a= ;a = ;4.若-(-a)=-3,a= ;-a= ;a = ;5.若-a=3-,则a= ;a = ;6.若-a=3--,则a= ;a = ;7.若-a=-(-3),则a= ;a = ; 8.若a =3,则a= ;-a= ;9.若a -=3,则a= ; 10.若a -=3,则a= ;11.若a -=3-,则a= ; 12.若a =-(-3),则a= ;13.若a -=-3,则a= ; 14.若a -=-(-3),则a= ;15.若a<0,b<0且b a 则a b 16.若a<0,b<0且b a 则a b;17.若a<0,b>0且b a 则a b ; 18.若a>0,b<0且b a 则a b;19.若b a 且a>0,b<0则a b; 20.若b a 且a>0,b>0则a b;21.若b a 且a<0,b>0则a b; 22.若b a 且a<0,b<0则a b;23.若3,4==b a 且a<0,b>0则a= b= ; 24.若3,4==b a 且a>0,b>0则a= b= ;25.若3,4==b a 且a<b,则a= b= ; 26.若3,4==b a 且a>b,则a= b= ;a 10b 二、选择题1.在-(-14),-1,0,-43,(-3)4,-(-112)3,-|23-8|这几个有理数中,负数的个数是( ) A.2 B.3 C.4 D.52.若有理数a 、b 在数轴上对应点位置如图所示,则下列结论正确的是( )b O aA.|b|>-aB.|a|>-bC.b >aD.|a|>|b|3..下列说法正确的是( )A.数轴上表示-3的点与表示+1的点的距离为2;B.表示-a 的点一定在原点左边C.数轴上表示所有的点的数都为有理数;D.数轴上的原点表示零4.a 的相反数是非正数,则a 为( )A.正数 B.负数或零 C.正数 D.正数或零5.在 -1,+7, 0, 23, 516中,正数有 ( )A 、1个 B 、2个 C 、3个 D 、4个 6、如图 ,那么下列结论正确的是 ( )A .a 比b 大B .b 比a 大C .a 、b 一样大D .a 、b 的大小无法确定7.下列说法:①绝对值相等的两个数互为相反数;②绝对值等于本身的数只有正数,③不相等的两个数的绝对值不相等;④绝对值相等的两数一定相等。
武汉七年级数学培优讲义——第1讲 绝对值(word版)
![武汉七年级数学培优讲义——第1讲 绝对值(word版)](https://img.taocdn.com/s3/m/72c3dac1d15abe23482f4d59.png)
第1讲 绝对值一、知识要点绝对值是是初中代数中的一个基本概念,是学习有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解决代数式化简求值、解方程(组)、解不等式(组)等问题中有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手:1.去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质①非负性:|a |≥0;②|a |=|-a |;③|ab |=|a |·|b |;④|ba |=b a (b ≠0);⑤|a |2=|a 2|=a 2. 3.绝对值的几何意义 (从数轴上看)|a |指的是数轴上表示数a 的点到原点的距离(长度,非负);|a -b |指的是表示数a 、数b 的两点间的距离.二、基础能力测试1.小明家去年收入为20 000元记作+20 000元,那么支出15 000元记作__________;如果向西100米记作-100米,那么400米表示__________,0米表示_________.2._____和____统称有理数;正整数、零、_________统称整数,_________和________统称分数.3.把-722,π,∙3.0,-21,+5,-6.3,0,-254,6.9,-7,210,0.031,-10%,填在相应的括号内. 正有理数集合:{ …};整数集合:{ …}; 非负有理数集合:{ …};负分数集合:{ …};4.规定了_______、________和________的直线叫做数轴.5.把-2,321,0,-421,1,-31,用“<”号连接起来:__________________. 6.有理数中,最大的负整数是________,最小的正整数是__________.7.-5.4的相反数是_________,________和3.5互为相反数;-(-2)=_______,-[+(-31)]=_______. 8.(1)若2x +1是-9的相反数,在x =_______.(2)已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b (a <b ),并且A 、B 两点间的距离是4.8,则a =_______,b =________.9.一般地,在数轴上表示数a 的点与原点的距离叫做a 的________,记作|a |.若a 是正数,则|a |=______,若a 是负数,则|a |=_______,|0|=________,若|x |=6,则x =______.10.若|a |=a ,则a ______0;若|a |=-a ,则a _______0.11.绝对值不大于3的整数有______________________.三、例题解析【例1】填空:(1)已知a ,b 互为相反数,c ,d 互为负倒数,x 的绝对值是2,则x 2-(a +b +cd )x +(a +b )99+(-cd )100=____________.(2)若a >0,b <0,且a <|b |,用“<”号连接比较a ,b ,-a ,-b _____________.(3)已知|a |=5,|b |=3,且|a -b |=b -a ,则a +b =__________.【例2】(1)计算:|20161-20151|+|20171-20161|-|20171-20151|=_________. (2)已知a -|a |=0,b +|b |=0,且|a |<|b |,则|a +b |+|-a +b |-|a -b |-|b -|b |=_________.(3)若a 、b 、c 均不为0,且a +b +c =0,求a a +b b +cb a =___________.〖练〗如图,有理数a <b <0<c ,化简|c -b |+|a -c |+|b +c |=_________.【例3】将1,2,3,…,100这100个自然数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,50组都代进后可求得50个值,求这50个值的和的最大值.【例4】(1)化简:|x +5|+|2x -3|.(2)化简:|3+|x -1||.(3)a ,b 为有理数,且|a |>0,方程||x -a |-b |=3有三个不相等的解,求b .〖练〗(1)①已知a=1,|b|=2,若a>b,求b的值;②已知a=2,|b|=1,若a>b,求b的值;(2)①已知|a|=1,|b|=2,若a>b,求a、b的值;②已知|a|=2,|b|=1,若a>b,求a、b的值;(3)①已知|a|=1,|b|=2,|c|=3,若a>b>c,求a、b、c的值;②已知|a|=3,|b|=2,|c|=1,若a>b>c,求a、b、c的值.【例5】(1)已知|ab+2|与|a+1|互为相反数,则a+b的值为___________.(2)已知(a+1)2+|b-2|=1-c,且c为正整数,求a+b-c.(3)已知有理数x、y满足(y-2)2+|x|=x,且|x-2y+5|=2,求xy.【例6】(1)当x=_____时,|x-2|有最小值;当x=_____时,3-|x-2|有最大值,最大值为_______.(2)|x+2|+|x-3|的最小值为___________,此时x需满足的条件为_____________.(3)已知|x+2|+|1-x|=10-|y-5|-|2+y|,求x+y的最大值和最小值.〖练〗(1)当x取什么值时,|x-1|+|x-2|+|x-3|+|x-4|有最小值,并求出这个最小值.(2)试求|x-1|+|x-2|+|x-3|+…+|x-2017|的最小值.(3)公共汽车运营线路AD段上有A、B、C、D四个汽车站,如图,现在要在AD段上修建一个加油站M,为了使加油站选址合理,要求A、B、C、D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好.四、反馈练习一、填空题1.(1)如果温度上升10℃记作+10℃,那么下降5℃记作____________.(2)高出正常水位0.5米记作+0.5米,则低于正常水位0.3米记作________,正常水位记作________.(3)负债2000元,可以说成拥有_____________元.(4)一潜艇所在高度是-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在的高度是____米.2.2002,-3.1416,310,0,190%,0.2,1,+3.2,-5%,34中 属正数集合的是_______________________,属负数集合的是______________________,属整数集合的是_______________________,属分数集合的是______________________,属正整数集合的是_____________________,属负分数集合是______________________,属有理数集合的是______________________.3.点A 表示-3,从点A 出发,沿数轴移动4个单位长度到达B 点,则点B 表示的数是_______.4.与原点距离5个单位长度的点共有__________个,它们分别可以表示有理数______________________.5.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6,则这个数是_____.6.化简-{+[-(-1)]}=___________,|-(5)|=__________,-|-6.7|=_______.7.绝对值不大于5.5的整数有______________________.8.已知|x |>|y |,x <0,y >0,把x ,y ,-x ,-y 从小到大排列,可得__________.(用“<”连接)9.已知|a |=5,|b |=3,且|a -b |=b -a ,那么a +b =__________.10.已知|2a -1|+|3b -2|=0,则a =_______,b =_________.11.已知b 为正整数,且a ,b 满足|2a -4|+b =1,则a b =___________.12.若a <0,ab <0,|a |>|b |,则a ,b ,-a ,-b 的大小关系为______________;化简|a +b |+|a -b |-|a |-|b |=___________.二、解答题1.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于2,p 的绝对值是最小的数,求p 2000-cd +abcdb a +m 2的值.2.有理数a ,b ,c 均不为0,且a +b +c =0,设x =|c b a++a c b++b a c+|,试求:x 19+2x +13的值.3.化简|x -1|-|3x -6|.4.将1,2,3,…,200这100个自然数任意分成100组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,100组都代进后可求得100个值,求这100个值的和的最大值.。
初一数学上册苏科版培优03绝对值化简(一)课件
![初一数学上册苏科版培优03绝对值化简(一)课件](https://img.taocdn.com/s3/m/08be5113ff4733687e21af45b307e87101f6f8af.png)
,-|x-1|可以取最
值,且最
值为_______
值,且最
值为_______
6Hale Waihona Puke ,6-|x-1|可以取最总结
运用绝对值非负性计算
例题P19
引入
讲授
例题
练习
总结
运用绝对值非负性计算
有理数的相关概念与实际应用
引入
讲授
练习
例题
绝对值非负性应用P19
模型“0+0=0”,比如 若|x|+|y|=0,则x=y=0
若a|x|+b|y|=0,a>0,b>0,则x=
,y=
.
总结
有理数的相关概念与实际应用
绝对值非负性应用P19
引入
讲授
例题
练习
总结
有理数的相关概念与实际应用
绝对值非负性应用P19
引入
讲授
例题
练习
总结
目录
1
专题一、运用绝对值非负性计算
2
专题二、运用代数意义化简绝对值
3
专题三、运用几何意义化简绝对值
绝对值的化简
目录
1
专题一、运用绝对值非负性计算
2
专题二、运用代数意义化简绝对值
3
专题三、运用几何意义化简绝对值
目录
1
专题一、运用绝对值非负性计算
2
专题二、运用代数意义化简绝对值
3
专题三、运用几何意义化简绝对值
运用绝对值非负性计算
引入
讲授
例题
练习
绝对值的定义
一个数在数轴上对应的点到原点的
【注意】由于绝对值表示距离,所以绝对值不能为
所以绝对值具有
对于任意数a,则|a|
杭州建兰中学校本 绝对值 培优(原卷版)
![杭州建兰中学校本 绝对值 培优(原卷版)](https://img.taocdn.com/s3/m/1daf425c26284b73f242336c1eb91a37f11132f6.png)
1.3绝对值 培优一、单选题1.数轴上点A 表示的数是3,与点A 的距离小于5的点表示的数x 应满足( )A .0<x<5B .-2<x<8C .-2≤x≤8D .x>8或x<-22.当x 满足( )时,1.50.5 2.50.5 3.50.5 4.50.5 5.50.5 6.50.5x x x x x x -+-+-+-+-+-的值取得最小. A .11119x ≤≤ B .1197x ≤≤ C .1175x ≤≤ D .111311x ≤≤ 3.已知,,,a b c x 为实数,且c a b <<,则代数式222+++-+-+-a b b c a c x x x 的最小值是( ) A .2a b c ++ B .2a b + C .2-b c D .2b c + 4.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定5.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a–2cB .–aC .aD .2b–a6.在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①(1)(1)(1)0a b c ---<;①a b b c a c -+-=-;①()()()0a b b c c a +++>;①1a bc <-,其中正确的结论有( )个A .4个B .3个C .2个D .1个7.若存在3个互不相同的有理数a ,b ,c ,使得|1﹣a |+|1﹣3a |+|1﹣4a |=|1﹣b |+|1﹣3b |+|1﹣4b |=|1﹣c |+|1﹣3c |+|1﹣4c |=t ,则t =A .112B .34C .1D .2二、填空题8.若0a <,则化简||a a +的结果为________.9.如果0abc >,则a b ca b c ++=__________.10.①若2a 与1-a 互为相反数,则a=_________.①已知|a|=3,|b -1|=4,|a -b|=b -a ,则a+b=_____________.11.当|x -2|+|x -3|的值最小时,|x -2|+|x -3|-|x -1|的值最大是______,最小是______.12.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.13.若237x x -++=,则x =____.14.代数式|x -1|-|x +6|-5的最大值是_______.15.如图所示,a ,b ,c 表示数轴上的三个有理数,则|a +c |+|b -a |-|c -b |=_________.三、解答题16.阅读下列材料: 我们知道|x|的几何意义是在数轴上数 x 对应的点与原点的距离,即|x|=|x ﹣0|, 也就是说,|x|表示在数轴上数 x 与数 0 对应点之间的距离,这个结论可以推广 为|x 1﹣x 2|表示在数轴上 x 1,x 2 对应点之间的距离.例 1:解方程|x|=2,容易看出,在数轴上与原点距离为 2 点的对应数为 2 或﹣2, 即该方程的解为 x=2 或 x=﹣2例 2:解不等式|x ﹣1|>2,如图 1,在数轴上找出|x ﹣1|=2 的解,即到 1 的距 离为 2 的点对应的数为﹣1 和 3,则|x ﹣1|>2 的解集为 x <﹣1 或 x >3.例 3:解方程|x ﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上 与 1 和﹣2 的距离之和为 5 的点对应的 x 的值在数轴上,1 和﹣2 的距离为 3, 满足方程的 x 对应点在 1 的右边或﹣2 的左边,若 x 对应点在 1 的右边,由图 2 可以看出 x=2.同理,若 x 对应点在﹣2 的左边,可得 x=﹣3,故原方程的解是 x=2 或 x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4 的解为 .(2)不等式|x ﹣3|+|x+4|≥9 的解集为 .17.已知数轴上有两点A和B,它们对应的数分别为-6,5.点P为数轴上一动点,其对应的数为m.(1)若点P到点A和点B的距离相等求出点P对应的数M的值.(2)数轴上是否存在点P,使点P到点A和点P到点B的距离之和为15?若存在,请直接写出M的值,若不存在,请说明理由.18.如图:E在线段CD上,EA、EB分别平分①DAB和①CBA,①AEB=90°,设AD=x,BC=y,且2(3)40x y-+-=.(1)求AD和BC的长;(2)你认为AD和BC还有什么关系?并验证你的结论;(3)取AB中点F,连接EF,且EF①AD①BC.若EF=72,你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.19.一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a 和﹣2的两点之间的距离是3,那么a =___________;(2)若数轴上表示数a 的点位于﹣4与2之间,那么42a a ++-的值是_____;当a _______时,514a a a ++-+-的值最小,最小值是________.(3)依照上述方法,6244a a a a ++-+-++的最小值是________.20.综合与探究阅读材料:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2;在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5;在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……如图1,在数轴上有理数a 对应的点为点A ,有理数b 对应的点为点B ,A ,B 两点之间的距离表示为|a ﹣b|或|b ﹣a|,记为|AB|=|a ﹣b|=|b ﹣a|.解决问题:(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于 ;数轴上有理数x 与﹣5对应的两点之间的距离用含x 的式子表示为 ;若数轴上有理数x 与﹣1对应的两点A ,B 之间的距离|AB|=2,则x 等于;联系拓广:(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.请从A,B两题中任选一题作答,我选择题.A.①若点P在点M,N两点之间,则|PM|+|PN|=;①若|PM|=2|PN|,即点P到点M的距离等于点P到点N的距离的2倍,则x等于.B.①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=;①根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.21.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;①若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.22.若a 、b 互为相反数,b 、c 互为倒数,并且m 的立方等于它本身.(1)试求2a+2b m+2+ac 值;(2)若a >1,且m <0,S =|2a −3b|−2|b −m|−|b +12|,试求4(2a −S)+2(2a −S)−(2a −S)的值.(3)若m ≠0,试讨论:x 为有理数时,|x +m|−|x −m|是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.23.已知3x <-,化简:|3|2|1|||x +-+24.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=___________.(2)数轴上表示x 和-1的两点之间的距离表示为___________.(3)找出所有符合条件的整数x ,使|x+5|+|x -2|=7,这样的整数有___________个.(4)若x 表示一个有理数,且|x -2|+|x+4|>6,则有理数x 的取值范围是_________.25.已知 ,求 的最大值.。
七年级培优专题:解含绝对值的一元一次方程
![七年级培优专题:解含绝对值的一元一次方程](https://img.taocdn.com/s3/m/a1086fa04028915f804dc290.png)
绝对值邂逅一次方程模型①c=+b ax 1、解方程:4x -2=333-=+x 2、244-23=x 112-x 72=+ 2122-x 3-=+711-x 2-=+3、已知关于x 的方程有两个解,求a 的取值范围。
a 43-23=+x 模型②dcx +=+b ax 1、2x 1=-x 1x 1-2+=x 2、63x 3-4+=x 5-765x x x =++1x 23=-+x多重绝对值方程怕不怕1.解方程:34-2-x =2.解方程:32-x -2=3.已知满足的x 有2个,求a 的取值范围。
a 1-2-x =多个绝对值方程怕不怕1.____x ,64x 2-x 的取值范围是则已知=++2.____,842-==++x x x 则已知3.____x ,54--3==+则已知x x 4.____x ,74--3的取值范围为则已知-=+x x5.。
____x ,74-232的取值范围是则已知=++x x 6.个。
的整数解共有_____127x 25-x 2=++7.个。
的值的个数有的整数符合_____81-2-72x x x =+含绝对值的方程组1.已知,则x=___,y=_____6y x ,12y x =+=+2.____y x ,12y -y x 10,y x x =+=+=++则3.已知|x|+|y|=7,2|x|-3|y|=-1,则x+y=______。
4.已知|x-1|+|y-2|=6,|x-1|=2y-4,则x+y=________.5.已知x-y=4,|x|+|y|=7,求x,y 的值。
6.已知3a-2|b|=5,4|a|-6a=3b,则a 2+b 2=______数形结合突破绝对值1.已知,求y 的取值范围。
2-x 1-x +=y 2.当a 满足什么条件时,方程分别有2个解?无解?无数解?a 2-x 1-x =+3.已知,求y 的取值范围。
2-x -1-x =y 4.当a 满足什么条件时,方程分别有1个解?无解?无数解?a 2-x -1-x =5.____m m 5-x 4x 3-x 2x 1-x 的最大值为,恒成立,则若≥++++++6.____y x ,4x 3-x 2-1x y 的取值范围是可以取所有实数,则且已知+++=小结:解含绝对值的二元一次方程组时,分类讨论是万能的,但不到万不得已不要轻易用,杀敌一千自损八百。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 绝对值
题型一、基本定义化简
【典型例题】
例1、(1)已知数a 、b 、c 在数轴上的位置如图所示,化简a b a b b c +++-- (2)已知有理数a , b, c,在数轴上的位置如图所示,化简:a c c b b a ++--+.
例2、已知00x z xy y z x <<>>>,
,,那么x z y z x y +++--= 例3、已知0,>-<b
a b a ,化简a b a b ab -+++
【课后练习】 1、实数,,a b c 在数轴上的对应点如图,化简a c b a b a c +--++-
0c
b a
2、已知有理数,,a b c 在数轴上的位置如图所示,化简a a b c b a c -++-++
3、⑴若有理数a 、b 满足|a+4|+|b-1|=0,则a+b=_______
⑵若|a|=5,|b|=3,且|a-b|=b-a ,则a+b=________.
⑶若m 是有理数,则|m|-m 一定是( ) A.零 B.非负数 C. 正数 D 负数
⑷如图,有理数b a 、在数轴上的位置如图所示,则在b a +,a b 2-,a b -,b a -,2+a ,4--b 中,负数共有( )
A . 1个
B .2个
C .3个
D .4个
-2
32b a
1-1
题型二、绝对值零点分段化简
【典型例题】
例4、阅读下列材料并解决相关问题: 我们知道()()()
0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,
可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:·
⑴当1x <-时,原式()()1221x x x =-+--=-+
⑵当12x -<≤时,原式()123x x =+--=
⑶当2x ≥时,原式1221x x x =++-=-
综上讨论,原式()()()
211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥
通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-
【课后练习】
化简: ⑴3x
- ⑵12x x +++
⑶523
x x ++- ⑷212x x ---
⑸12m m m +-+- ⑹121
x x --++
(7)3243m m m ++-+- (8)32264m m m ++-+-
题型三、关于a
a
的探讨应用
【典型例题】 例5、已知a b c abc x a b c abc =
+++,且a b c ,,都不等于0,求x 的所有可能值。
例6、11、已知a b c ,,是非零整数,且0a b c ++=,求
a b c abc a b c abc
+++的值。
【课后练习】
1、已知a 是非零有理数,求23
23a a a a a a ++的值.
2、若01a <<,21b -<<-,求
1212a b a b a b a b -++-+-++的值。
13、如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值。
14、a ,b ,c 为非零有理数,且0a b c ++=,则
a b b c c a a b b c c a ++的值等于多少?
题型四、绝对值的几何意义的应用
【典型例题】
例7、m n -的几何意义是数轴上表示m 的点与表示( )的点之间的距离。
+m n 的几何意义是数轴上表示m 的点与表示( )的点之间的距离。
例8、①x 的几何意义是数轴上表示x 的点与_______之间的距离;____0(,,);x x ->=< ② 21- 的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-=_______;
③3x -的几何意义是数轴上表示x 的点与表示_______的点之间的距离,若3x -=1,则x =_______. ④2x +的几何意义是数轴上表示x 的点与表示_______的点之间的距离,若2x +=2,则x =_______. ⑤当x =-1时,则22_____.
x x -++= 例9、(1)如图表示数轴上四个点的位置关系,且它们表示的数分别为别为,,,.p q r s 若10,12,9,p r p s q s -=-=-=则______.
q r -=
(2) 不相等的有理数,,a b c 在数轴上的对应点分别为,,A B C ,如果a b b c a c -+-=-,那么,,A B C 在数轴上的位置关系是( )
A 、点 A 在点
B ,
C 之间 B 、点B 在点A ,C 之间
C 、点C 在点A ,B 之间
D 、以上三种情况均有可能
例10、(1)利用绝对值得几何意义完成下题:
已知2,x =利用绝对值的几何意义可得2;x =±
若21,x +=利用绝对值的几何意义可得1x =-或-3.
已知125,x x -++=利用绝对值在数轴上的几何意义得______x =.
(2)利用绝对值的几何意义求12x x -++的最小值_______.
52x x ++-的最小值__________.
214x x x ++-+-的最小值__________.
7326x x x x ++++-+-的最小值__________.
【课后练习】
1、设2020y x b x x b =-+-+--,其中020,20b b x <<≤≤,求y 的最小值.
2、如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点,现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建立在什么位置?
3、如图,在一条数轴上有依次排列的5台机床在工作,现要设置一个零件供应站p ,使这5台机床到供应站p 的距离总和最小,供应站p 建在哪?最小值为多少?。