全等三角形综合测试题(含答案[经典试卷]
全等三角形测试题含答案
![全等三角形测试题含答案](https://img.taocdn.com/s3/m/a1d4bbbd767f5acfa0c7cdb3.png)
《全等三角形》整章程度测试题一.认卖力真选,惊慌应战! 1.下列命题中准确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角等分线相等D .全等三角形对应角的等分线相等 2.下列各前提中,不克不及作出惟一三角形的是()A .已知双方和夹角B .已知两角和夹边C .已知双方和个中一边的对角D .已知三边4.下列各组前提中,能剖断△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于() A .1:2B .1:3C .2:3D .1:46.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA .OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 个中(3)的根据是( ) A .平行线之间的距离处处相等B .到角的双方距离相等的点在角的等分线上AC BDFEAMBC .角的等分线上的点到角的双方的距离相等D .到线段的两个端点距离相等的点在线段的垂直等分线上 7.如图,△ABC 的三边AB .BC .CA 长分离是20.30.40,其三条角等分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰58.如图,从下列四个前提:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为前提, 余下的一个为结论,则最多可以组成准确的结论的个数是( )A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到EDC ABC ≅,所以ED =AB ,因此测得ED 的长就是AB 的长,剖断EDC ABC ≅的来由是( ) A .SAS B .ASA C .SSS D .HL10.如图所示,△ABE 和△ADC 是△ABC 分离沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B.100°C.60°D.45°. 二.仔细心细填,记载自负!11.如图,在△ABC 中,AD=DE,AB=BE,∠A=80°,FCEABDAD则∠CED=_____.12.已知△DE F≌△ABC ,AB =AC ,且△ABC 的周长为23cm,BC =4 cm,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的等分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个极点作地位不合的三角形,使所作的三角形与△ABC 全等,如许的三角形最多可以画出_____个.15. 如图,AD A D '',分离是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你填补前提___________.(填写一个你以为恰当的前提即可) 17. 假如两个三角形的两条边和个中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________. 19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为cm .20.在数学运动课上,小明提出如许一个问题:∠B =∠C =900,E 是BC 的中点,DE 等分∠ADC ,∠CED =350,如图,则∠EAB 是若干 度?大家一路热闹地评论辩论交换,小英第一个得出准确答案,是______.三.心平气和做,展现聪明!21.如图,公园有一条“Z ”字形道路ABCD ,个中EABCD 'A 'B 'D 'CBAB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =, M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你揣摸的来由.22.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以个中两个为前提,推出一个准确的结论(只需写出一种情形),已知: 求证: 证实:23.如图,在∠AOB 的双方OA ,OB 上分离取OM =ON ,OD =OE ,DN 和EM 订交于点C .求证:点C 在∠AOB 的等分线上. 四.发散思维,游刃有余!24. (1)如图1,以ABC △的边AB .AC 为边分离向外作正方形ABDE 和正方形ACFG ,贯穿连接EG ,试断定ABC △与AEG △面积之间的关系,并解释来由.(2)园林巷子,曲径通幽,如图2所示,巷子由白色的正方形理石和黑色的三角形理石铺成.已知中央的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条巷子一共占地若干平方米?ABDCEO M NA BFD一.1—5:DCDCD 6—10:BCBBA 二. 11.100° 12.4cm 或9.5cm 13.1.5cm 14.4 15.略 16.15AD << 17. 互补或相等 18. 180 19.15 20.35三. 21.在一条直线上.贯穿连接EM 并延伸交CD 于'F 证'CF CF =.22.情形一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证实:在△ABD 和△BAC 中∴△ABD ≌△BAC即CE ED =情形二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证实:在△ABD 和△BAC 中D C ∠=∠,DAB CBA ∠=∠∴△ABD ≌△BAC23.提醒:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的等分线上. 四.24. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延伸线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形180EAG GAN BAC GAN ∠+∠=∴∠=∠(2)解:由(1)面积之和∴这条巷子的面积为(2)a b +平方米.BD。
全等三角形经典题型50题(含答案)
![全等三角形经典题型50题(含答案)](https://img.taocdn.com/s3/m/2eb6e21f974bcf84b9d528ea81c758f5f71f2953.png)
全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。
由于 BC=ED,CF=DF,∠ BCF=∠ EDF。
因此三角形 BCF 全等于三角形 EDF(边角边 )。
因此 BF=EF,∠ CBF=∠ DEF。
连结 BE。
在三角形BEF 中 ,BF=EF。
因此∠ EBF=∠ BEF。
又由于∠ ABC=∠AED。
因此∠ABE=∠AEB。
因此 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
因此三角形 ABF 和三角形 AEF全等。
因此∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
人教版数学八年级上册《全等三角形》单元综合检测题含答案
![人教版数学八年级上册《全等三角形》单元综合检测题含答案](https://img.taocdn.com/s3/m/566c33f8ba1aa8114531d9a8.png)
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
全等三角形综合测试题(含答案)
![全等三角形综合测试题(含答案)](https://img.taocdn.com/s3/m/f5d32aa802020740bf1e9b9e.png)
图12图A 'C AD B E21图4 C A D B E 图10 C A D B E F 图2 图6m nCAB图11 12CA DB EF M N O ABCD F图 5A B DC EF 图1 图3 45321DAOECB DAC B全等三角形综合复习测试题一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【 】. (A )50(B )80(C )50或80(D )40或652. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】.(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14平方厘米3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )HL (B )SSS (C )SAS (D )ASA 5. 利用三角形全等所测距离叙述正确的是( )A.绝对准确B.误差很大,不可信C.可能有误差,但误差不大,结果可信D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离 6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )69. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】.(A )45(B )50 (C )60(D )75图7 图810. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D 【 】.(A )不存在 (B )有1个 (C )有3个 (D )有无数个 二、填一填,要相信自己的能力!(每小题3分,共30分) 1.在ABC ∆中,若A ∠=1123B C =∠,则ABC ∆是 三角形.2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成________个形状不同的三角形.5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于_____度.6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对.8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________. 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为______厘米.图14 C A DB E 图1335°D AEC B三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒. (1)求BAD ∠和DAC ∠的度数;(2)若DE 平分ADB ∠,求AED ∠的度数.图15 2.(10分)已知:线段a ,b ,c (如图16所示),画△ABC ,使BC =a ,CA =b ,AB =c .(保留作图痕迹,不必写画法和证明)3.(10分)图17为人民公园的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB 的长(要求画出草图,写出测量方案和理由). 4.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论. (2)选择(1)中你写出的—个正确结论,说明它正确的理由.四、拓广探索!(本大题共22分)1.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.2.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母); (2)试说明:DC BE ⊥.图16 b a c图17 图18 FE BDA C 图20①②DABBD FAE 图19参考答案一、1~10 CB C BC CD ADB. 二、1. 直角. 2.9. 3. 45°. 4.3. 5. 50. 6. HL. 7.4. 8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.三、1. (1)90905634DAC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒. 2.画图略.3.方案不惟一,画图及理由略.4.(1)如果①、③,那么②或如果②、③,那么①; (2)选择“如果①、③,那么②”证明,过程略. 四、1. △AFC 是等腰三角形.理由略 . 2.(1)图2中ABE ACD △≌△.理由如下:ABC △与AED △均为等腰直角三角形AB AC ∴=,AE AD =,90BAC EAD ∠=∠=, BAC CAE EAD CAE ∴∠+∠=∠+∠, 即BAE CAD ∠=∠ , ABE ACD ∴△≌△.(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=, 又45ACB ∠=90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥。
《全等三角形》测试题A卷及答案
![《全等三角形》测试题A卷及答案](https://img.taocdn.com/s3/m/28899b0cb14e852459fb5731.png)
第十四章全等三角形测试题、选择题(每小题4分,共32 分)1 .下列命题中真命题的个数有()⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,C、1个2.如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和,厶=/ A',若证N ABC B" A'B'C'还要从下列条件中补选一个,错误的选法是(C. BC=B'C'D. AC=A C'4. P是/ AOB平分线上一点,CD丄OP于F,并分别交OA、OB于CD,贝U CD _____________ P点到/ AOB两边距离之和.()A.小于B.大于5.如图,从下列四个条件:①BC= B C,②AC= A 'C,③/ A 'CA=Z B CB,④AB= A B '中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是()A.① B ② C ③ D ①②7 .如图,△ ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ ABC分A .甲和乙 E.乙和丙 C.只有乙 D.只有丙△ ABC全等的图形是(3 .在"ABC 和"A 'B'C'中,AB=A 'B'C.等于D.不能确定(5题)CF = 4,贝V S ABEF 为.三:解答题(共44 分)15、( 5分)已知:如图,AC 、BD 相交于点 O , Z A = Z D , AB=CD.求证:△ AOB ^A DOC ,。
为三个三角形,则 &ABO : S ^BCO : &CAO 等于( B . 1 : 2 : 3 C . 2 : 3 : 4 &如图所示,在 Rt △ ABC 中,AD 是斜边上的高,Z 交AD AC 于点F 、E, EG 丄BC 于 G 下列结论正确的是 A . Z C= / ABC B. BA=BG CC . AE=CE D. AF=FD 二、填空题(每小题4分,共24 分) 9 .如图,Rt △ ABC 中,直角边是 ,斜边是 10.如图,点D,E 分别在线段 AB, AC 上, BE, CD 相交于 /A点 O, AE AD , 要使△ ABE ACD ,需添加一个条件是(只要写一个(10 题) (11题)11.如图,把△ ABC 绕C 点顺时针旋转35。
沪科版八年级数学上册《全等三角形》单元测试题(含答案)
![沪科版八年级数学上册《全等三角形》单元测试题(含答案)](https://img.taocdn.com/s3/m/34adbdf6bb4cf7ec4afed0d4.png)
沪科版八年级上《全等三角形》综合测试题姓名 班级 得分一、填空题(每题4分,共40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个AD ECB图4ABDE 图1 图2 图3图5图612、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′ 14、如图8所示,90EF ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分) 17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FBACD B图12EC BD FA图7图8图1318、如图14,AE 是∠BAC 的平分线,AB=AC 。
人教版数学八年级上册第十二章《全等三角形》测试题含答案
![人教版数学八年级上册第十二章《全等三角形》测试题含答案](https://img.taocdn.com/s3/m/fd6eaf371eb91a37f1115c82.png)
人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
3套全等三角形测试卷含答案
![3套全等三角形测试卷含答案](https://img.taocdn.com/s3/m/7d1ce153bf1e650e52ea551810a6f524ccbfcb63.png)
全等三角形一.填空题(每题3分,共30分)1.如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______.2.如图,△ABD ≌△ACE,且∠BAD 和∠CAE,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,那么对应边_________. 3. 已知:如图,△ABC ≌△FED,且BC=DE.那么∠A=__________,A D=_______. 4. 如图,△ABD ≌△ACE,那么AB 的对应边是_________,∠BAD 的对应角是______. 5. 已知:如图,△ABE ≌△ACD,∠B=∠C,那么∠AEB=_______,AE=________.6.已知:如图 , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .假设AB=5 , 那么AD=___________. 7.已知:△ABC ≌△A ’B ’C ’, △A ’B ’C ’的周长为12cm ,那么△ABC 的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 依照是_________再证△BDE ≌△______ , 依照是__________.4321EDCBA9.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,那么需添加的条件是____________.10.如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,那么∠CBC ’为________度.二.选择题(每题3分,共30分)1一、以下条件中,不能判定三角形全等的是 ( ) A.三条边对应相等 B.两边和一角对应相等ABCD12AA'BCC'C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 若是两个三角形全等,那么不正确的选项是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 以下说法中不正确的选项是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 那么图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.那么不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 那么∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一水池,要测水池两头A、B的距离,可先在平地上取一个能够直接抵达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,确实是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC和BC,CD和CA,BD和AB2.AB和AC,AD和AE,BD和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 因此△ABC≌△CED AB=ED 23.证△ABC≌△FED得∠ACB=∠F 因此AC∥DF 24.证△BED ≌△CFD得∠E=∠CFD 因此CF∥BE 25.由AAS证△ABC≌△CED AC=EF.全等三角形B卷(考试时刻为90分钟,总分值100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,那么△ABD ≌_________.4. 如图4,△ABC ≌△AED ,假设AE AB =,︒=∠271,那么=∠2 .5.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,那么图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,那么图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .图1图2图5 图68.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,那么∠BOC =__________.9.假设△ABC ≌△A ′B ′C ′,AD 和A ′D ′别离是对应边BC 和B ′C ′的高,那么△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,那么∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 别离是对应极点,假设AB =6cm ,AC =4cm ,BC =5cm ,那么AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.以下说法正确的选项是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.以下条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,假设AB =4,AC =6,那么AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.以下命题正确的选项是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等AEB O F C图8A CD图917.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,那么图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,那么P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点 三.解答题(共46分)19. (8分)如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB 是一个任意角,在边OA,OB 上别离取OM=ON,移动角尺,使角尺两边相同的刻度别离与M,N 重合,过角尺极点C 的射线OC 即是∠AOB 的平分线,什么缘故?21. (7分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.ABCEDO图10图 11B DOCAABECD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 彼此平分.24. (8分)如图,∠ABC =90°,AB =BC ,D 为AC 上一点,别离过A.C 作BD 的垂线,垂足别离为E.F,求证:EF =CF -AE. 答案1.△ADC2. ∠B=∠C 或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135° 11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC ≌△CON 21.先证△ABC ≌△DBC 得∠ABC=∠DCB,再证△ABE ≌△CED 22.垂直 23. 先证△ABE ≌△DFC 得∠B=∠D,再证△ABO ≌△COD 24.证△ABF ≌△BCFABEO FDCACEDB图 5全等三角形 C 卷(考试时刻为90分钟,总分值100分)一.填空题:(每题3分,共30分)1.如图1,假设△ABC ≌△ADE ,∠EAC=35°,那么∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,若是AD=7cm ,DM=5cm ,∠DAM=300,那么AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,那么∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)假设以“SAS ”为依据,还须添加的一个条件为________________. (2)假设以“ASA ”为依据,还须添加的一个条件为________________. (3)假设以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,那么△______≌△_______.6. 如图6,AB=AC ,BD=DC ,假设︒=∠28B ,那么=∠C .图 6 图 77.如图7,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有______对.ABCDE图1ABCDMN 图2ABCD9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,假设︒=∠60ADB ,EO=10,那么∠DBC= ,FO= . 10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 那么在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,以下各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具有①②③B. 具有①②④C. 具有③④⑤D. 具有②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边13. 若是两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 必然全等 B. 必然不全等 C. 没必要然全等 D. 面积相等14. 若是两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 (15ABCDEF16. 如图AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD=AB ,那么 ( ) A. ∠1=∠EFD B. BE=EC C. BF=DF=CD D. FD ∥BC17.以下说法正确是 ( ) A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形 D. 有三个角对应相等的两个三角形是全等三角形18.以下说法错误的选项是 ( ) A. 全等三角形对应边上的中线相等 B. 面积相等的两个三角形是全等三角形 C. 全等三角形对应边上的高相等 D. 全等三角形对应角平分线相等19.已知:如图,O 为AB 中点,BD ⊥CD ,AC ⊥CD ,OE ⊥CD ,那么以下结论没必要然成立的是 ( )A. CE =EDB. OC =ODC. ∠ACO =∠ODBD. OE =21CD20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?FEDCBA23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠DB5.ACD,AED6.28°7.58.SAS9.60°,1010.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B21.AE和AC,ED和BC, ∠B和∠D, ∠BAC和∠DAE22.AD=BC,AE=CF,DE=BF,AD∥BC, △ACD≌△ACB,AB∥CD等23.相等, △AOB≌△DOC24.连AC,证△ADC≌△ABC25.(1)证DE=EC (2) 设BE与CD交于F,通过全等证DF=CF.。
全等三角形测试题及答案
![全等三角形测试题及答案](https://img.taocdn.com/s3/m/3815572c8f9951e79b89680203d8ce2f00666591.png)
全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
全等三角形综合练习题含答案
![全等三角形综合练习题含答案](https://img.taocdn.com/s3/m/30178b56e53a580216fcfee7.png)
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。
第一章全等三角形综合提优卷(含答案)
![第一章全等三角形综合提优卷(含答案)](https://img.taocdn.com/s3/m/10915ebace2f0066f53322f0.png)
【第一章全等三角形综合提优卷(时间:60分钟满分:100分)一、选择题(每题3分,共30分)1.有下列四种说法:①所有的等边三角形都全等;②两个三角形全等,它们的最大边是对应边;③两个三角形全等,它们的对应角相等;④对应角相等的三角形是全等三角形.其中正确的说法有( ).A.1个B.2个 C.3个 D.4个2.在△ABC和△A'B'C'中,下面能得到△ABC≌△A'B'C'的条件是( ).A.AB=A'B',AC=A'C,∠B=∠B'; B.AB=A'B',BC=B'C,∠A=∠A';C.AC=A'C',BC=B'C',∠C=∠C'; D.AC=A'C',BC=B'C',∠B=∠B'¥3.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ4.如图,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,则下面式子中不能成立的是( ).A.∠1+∠3=90° B.DE⊥AC且DE=ACC.∠3=60° D.∠2=∠35.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( ).A.70° B.48° C.45° D.60°!6.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( ).A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等7.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是( ).第7题第8题第9题第10题A.∠B=∠C B.AD=AE C.∠ADC=∠AEB; D.DC=BE<8.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为4,则BE等于( ).A.1 B.3 C.2 D.9.如图,点A在DE上,点F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于( ).A.DC B.BC C.AB D.AE+AC10.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是( ). A.AB-AD>CB-CD B.AB-AD=CB-CDC.AB-AD<CB-CD D.AB-AD与CB-CD的大小关系不确定二、填空题(每题2分,共12分)^11.如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是_______.(填一个即可)第11题第13题第14题第15题12.在△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=_______.13.如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC 上.①若MN=EF,则MN⊥EF;②若MN⊥EF,则MN=EF.你认为正确的是_______.(填序号)14.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到_______位置时,才能使△ABC≌△QP A.15.在Rt△ABC中,∠ACB=90°.BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=_______cm.)16.将长度为20 cm的铁丝折成三边长均为整数的三角形,那么,不全等的三角形的个数为_______.三、解答题(共58分)17.如图,方格中有一个△ABC,请你在方格内,画出满足条件A1B1=AB,B1C1=BC,∠A1=∠A的△A1B1C1,并判断△A1B1C1与△ABC是否一定全等18.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=C B.请你判断BE 和DF的位置关系."19.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE 相交于点F.(1)说明△ABE≌△CAD的理由;(2)求∠BFD的度数.20.如图(1),已知点C为线段AB上一点,△ACM、△BCN都是等边三角形.(1)求证:AN=BM;(2)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形(如图(2)所示),AN与BM的关系如何请说明理由.-21.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE的度数.22.如图,在△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论."23.如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.】24.一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图所示的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.25.某校七(1)班学生到野外活动,为测量一池塘两端A、B之间的距离,设计出如下几种方案:~①如图(1)所示,先在平地上取一个可直接到达A、B的点C,再连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB之长,②如图(2)所示,过点B作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出了DE的长即为A、B之间的距离.阅读后回答下列问题:(1)方案①是否可行答:_______,理由是_______;(2)方案②是否可行答:_______,理由是_______;(3)方案②中作BD⊥AB,ED⊥BF的目的是_______,若仅满足∠ABD=∠BDE≠90°,方案②的结论是否仍成立,答:_______.26.已知在Rt△ABC中,AC=BC,∠C=90°,D为边AB的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC、CB(或它们的延长线)于点E、F.]当∠EDF绕点D旋转到DE⊥AC于点E时(如图(1)),易证S△DEF+S△CEF=12S△AB C.当∠EDF绕点D旋转到DE和AC不垂直时,在图(2)和图(3)这两种情况下,上述结论是否成立若成立,请给予说明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系请写出你的猜想,不需说明.参考答案1.B 2.C 3.B 4.C 5.B 6.A 7.D 8.C 9.C 10.A11.AB=DC(答案不唯一)12.90°13.①②—14.AC中点15.316.817.略18.BE∥DF19.(1)略(2)60°20.(1)略(2)AN=BM.理由略.21.39°22.相等23.(1)易得△DEC≌△AEF,所以CD=AF (2)说明△BEC≌△BEF,得BE⊥CF.24.25.(1)可行△ABC≌△DEC(2)可行△ABC≌△EDC(3)略26.图(2)成立;图(3)不成立.。
(完整版)全等三角形证明经典50题(含答案)
![(完整版)全等三角形证明经典50题(含答案)](https://img.taocdn.com/s3/m/fb4a491c856a561253d36f66.png)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
全等三角形经典题目测试含答案
![全等三角形经典题目测试含答案](https://img.taocdn.com/s3/m/e35312c15f0e7cd18525361d.png)
全等三角形经典题目测试含答案(总19页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March一.选择题(共13小题,共39分)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4C.D.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.54.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.56.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题)A.330°B.315°C.310°D.320°8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()(第11题)(第12题)(第13题)A.3B.4C.5D.612.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个13.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C二.填空题(共7小题,共21分)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_________.(第14题)(第15题)15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=_________cm.(第16题)(第17题)(第18题)17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_________度.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:_________,使OC=OD(只添一个即可).20.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_________度.三.解答题(共6小题,共60分)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.24.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.25.如图,在∆ABC中,AB=AC,点D是BC的中点,点E在AD上.⑴求证:BE=CE;⑵若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:∆AEF≌∆BCF.26.(10分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.EAF ADE一.选择题(共13小题)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判定与性质.分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD考点:全等三角形的判定.分析:根据全等三角形的判定方法,对每个选项分别分析、解答出即可;解答:解:A、BC=BD,∠BAC=∠BAD,又由图可知AB为公共边,不能证明△ABC和△ABD全等,故本项错误,符合题意;B、∠C=∠D,∠BAC=∠BAD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;D、BC=BD,AC=AD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意.故选A.点评:本题主要考查了全等三角形的判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5考点:角平分线的性质;三角形的面积.分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.解答:解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.点评:本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.6.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°考点:全等三角形的判定与性质.专题:网格型.分析:利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.解答:解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.点评:考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP考点:角平分线的性质.分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.解答:解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.点评:本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组考点:全等三角形的判定.分析:要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.解答:解:根据全等三角形的判定方法可知:①AB=DE,BC=EF,AC=DF,用的判定方法是“边边边”;②AB=DE,∠B=∠E,BC=EF,用的判定方法是“边角边”;③∠B=∠E,BC=EF,∠C=∠F用的判定方法是“角边角”;④AC=DF,∠A=∠D,∠B=∠E,用的判定方法是“角角边”;因此能使△ABC≌△DEF的条件共有4组.故选D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定考点:全等三角形的判定与性质.分析:本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;因此只要证明△AMC≌△FNE,即可得出h1=h2.解答:解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.故选C.点评:本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.11.(2007•义乌市)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6考点:角平分线的性质.分析:已知条件给出了角平分线还有PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.12.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或夹已知角的另一边.解答:解:∠1=∠2,AC=AD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.13.(2005•乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C考点:角平分线的性质.分析:根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.解答:解:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选B.点评:本题考查的是三角形角平分线的性质及三角形全等的判定;做题时要结合已知条件在图形上的位置对选项逐个验证.二.填空题(共7小题)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=3cm.考点:全等三角形的判定与性质.分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.20.(2005•荆门)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.三.解答题(共6小题)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.考点:全等三角形的判定.专题:证明题.分析:根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.解答:证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.点评:本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.24.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.25.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.解答:解:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.26.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.考点:全等三角形的判定与性质.专题:证明题.分析:首先证明∠B=∠2,再加上条件AE=BC,∠FAF=∠BCA,可利用ASA证明△ABC≌△FEA,再根据全等三角形对应边相等可得AB=FE.解答:证明:∵EF⊥AB于点D,∴∠ADE=90°.∴∠1+∠2=90°,又∵∠C=90°,∴∠1+∠B=90°.∴∠B=∠2,在△ABC和△FEA中,,∴△ABC≌△FEA(ASA)∴AB=FE.。
全等三角形综合测试题
![全等三角形综合测试题](https://img.taocdn.com/s3/m/29abafb57d1cfad6195f312b3169a4517723e5d7.png)
全等三角形综合测试题(100分)1、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()【单选题】(3分)A.50°B.80°C.50°或80°D.40°或65°正确答案: C2、已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为()【单选题】(3分)A.5cmB.7cmC.9cmD.11cm正确答案: C3、下列可使两个直角三角形全等的条件是()【单选题】(3分)A.A、一条边对应相等B.B、两条直角边对应相等C.C、一个锐角对应相等D.D、两个锐角对应相等正确答案: B4、如图,D是BC的中点,E.F分别是AD和AD延长线上的点且DE=DF,连结BF,CE.下列说法:①CE=BF;②ΔABD和ΔACD面积相等;③BF//CE;△BDF≌ΔCDE其中正确的有()【单选题】(3分)A.1个B.2个C.3个D.4个正确答案: D5、用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是()【单选题】(3分)A.①②③B.②③C.③④⑤D.③④⑥正确答案: D6、如图,平行四边形ABCD中,AC、BD相交于点0过点O,过点O作直线分别交于AD、BC于点E、F.那么图中全等的三角形共有()【单选题】(3分)A.2对B.4对C.6对D.8对正确答案: C7、根据下列条件,能判定△ABC≌△A’B’C’的是()【单选题】(3分)A.)AB=A’B’,BC=B’C‘,∠A=∠A’B.∠A=∠A’,∠B=∠B‘,AC=BCC.∠A=∠A’,∠B=∠B‘,∠C=∠C’D.AB=A‘B’,BC=B’C’,ABC的周长等于△A’B’C’的周长正确答案: D8、【单选题】(3分)A.HLB.SSSC.SASD.ASA正确答案: B9、【填空题】(4分)________________________答案解析: AC=AD(答案不唯一)10、【填空题】(4分)________________________正确答案: CE=DF(回答与答案完全相同才得分)11、如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若CA=30°,DE=2,∠DBC的度数为____CD的长为____【填空题】(4分)________________________正确答案: 30° 2(回答包含答案即可得分)12、如图,ΔABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC.则∠ABC的度数是____【填空题】(4分)________________________正确答案: 45°(回答与答案完全相同才得分)13、【填空题】(8分)________________________正确答案: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF ……4 分 (2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分 (方法不唯一,其他证明方法酌情给分)(回答包含答案即可得分)答案解析: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF……4 分(2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分(方法不唯一,其他证明方法酌情给分)14、【填空题】(6分)________________________正确答案: 证明:(1)·∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° ......2分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC ,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC ∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADC AD=BD ∠DBH=∠DAC} ∴.△BDH≌△ADC.......6分(回答包含答案即可得分)答案解析: 证明:(1).∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° (2)分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADCAD=BD∠DBH=∠DAC}∴.△BDH≌△ADC.......6分15、【填空题】(6分)________________________正确答案: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等 ),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA; (4)分(2)连接DG,则△ADG是等腰三角形. 证明如下: .∵△ABD≌AGCA .∴AG=AD,......5分∴△ADG 是等腰三角形.......6分(回答包含答案即可得分)答案解析: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA;......4分(2)连接DG,则△ADG是等腰三角形.证明如下:.∵△ABD≌AGCA.∴AG=AD,......5分∴△ADG是等腰三角形.......6分16、【填空题】(7分)________________________正确答案: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF .∴△AF D≌AAFB(AAS)......7分(回答包含答案即可得分)答案解析: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF.∴△AF D≌AAFB(AAS)......7分17、【填空题】(7分)________________________正确答案: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF} .∴△AF D≌△AFB(AAS)......7分(回答包含答案即可得分)答案解析: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF}.∴△AF D≌△AFB(AAS)......7分18、【填空题】(7分)________________________正确答案: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB ∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2 ∴BE/AB=1/2 ∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分(回答包含答案即可得分)答案解析: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2∴BE/AB=1/2∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分19、【填空题】(7分)________________________正确答案: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE 与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中 {CD=AD,∠EDA=∠DCF,DE=CF} ∴△AED≌△CFD ∴AE=DF......7分(回答包含答案即可得分)答案解析: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中{CD=AD,∠EDA=∠DCF,DE=CF}∴△AED≌△CFD∴AE=DF......7分20、如图,山脚下有A、B两点,要测出A、B两点的距离,请说说你的解决方案。
全等三角形综合测试经典题
![全等三角形综合测试经典题](https://img.taocdn.com/s3/m/770003cb31126edb6e1a1004.png)
B c D E 1234图2A 图1Dc B A 43F B c D E 图3A 第8题全等三角形综合检测题——经典一、填空题:1、如图,已知∠3=∠4,要说明△ABC ≌△DCB ,(1)若以“SAS ”为依据,则需添加一个条件是 ;(2)若以“AAS ”为依据,则需添加一个条件是 ;(3)若以“ASA"为依据,则需添加一个条件是 。
2、如图,若∠1=∠2,,3=∠4,则图中共有全等三角形 对,它们分别是3F 在一条直线上,AB ∥DE,AC ∥DF ,AC =DE ,若BE =3cm,则CF =4、若DEF ABC ∆≅∆,△DEF 周长为28 cm,DE=9 cm ,EF=12 cm ,则AB= ,BC=5、已知DEF ABC ∆≅∆,∠A=52°,∠B=31°,ED=10,那么∠F= ,AB=6、如图,在△ABC 和△DEF 中,AB ∥DE ,可以推出 = ,然后加上条件AB=DE 和 可得到DEF ABC ∆≅∆,根据是7、如图,△ABD ≌△ACD ,AD 、BC 交于点D,则∠ABD= 。
8、如图,若∠1=∠2,∠3=∠4,则△ ≌△ ,根据是9、如图,∠xoy,分别在ox ,oy 上截取OA =OB ,OC =OD 。
连AD 、BC 相交于E 点。
则射线OE 与∠xoy 的关系为 。
10、如图,AB =CD ,AD =CB,O 为AC 上一点,过O 任作直线EF 分别交AD 、BC 于E 、F,要使BE =FD ,则应满足的条件是 .11、等边△ABC 中,D 、E 为BC 、AC 上两点,且BD =CE,连AD 、BE 交于O ,则∠DOE = 。
二、选择题:12、已知△ABC ≌△DEF ,若∠A =500,∠C =300,则∠E 的度数为 ( )A 、300B 、500C 、600D 、100013、如图,若AC =BD ,AB =DC ,则图中全等三角形的对数是( )A 、1对B 、2对C 、3对D 、4对14、小颖同学不小心把一块三角形的玻璃打碎(如图),现在他要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去配A 、(1)B 、(2)C 、(3)D 、(1)和(2)第6题 C D E 第7题 A B C D 第11题 第10题 第9题 第1题 第2题 第3题O 6题Dc B A (1)(2)(3) E F D B C A 15、如图,在△ABC 中,AD 是△BAC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别为E 、F,下面给出四个结论:①DA 平分∠EDF ;②AE =AF ;③AD ⊥BC ;④BD =CD ,其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个16、下列说法正确的是( )⑴ 形状相同的两个图形是全等形 ⑵ 对应角相等的两个三角形是全等形⑶ 全等三角形的面积相等 ⑷ 若DEF ABC ∆≅∆,MNP DEF ∆≅∆,则MNP ABC ∆≅∆A 、0个B 、1个C 、2个D 、3个17、若BCD ABC ∆≅∆, AB=6cm,BD=7cm ,AD=4cm,那么BC 的长为( )A 、6 cmB 、5 cmC 、4cmD 、不能确定18、若AD=BC ,∠A=∠B ,直接能利用“SAS ”证得△ADF ≌ △BCE 的条件是( )A 、AE=BFB 、DF=CEC 、AF=BED 、∠CEB=∠DFA19、下列能够确定△ABC 的形状和大小的是( )A 、AB=4,BC=5,∠C=60°B 、AB=6,∠C=60°,∠B=70°C 、∠C=60°,∠B=70°,∠A=50°D 、AB=4,BC=5,CA=1020、如图所示,已知OA=OB ,则再加上下列哪个条件后,不能..判断△AOC ≌△BOD 的是( ) A 、∠A=∠B B 、∠C=∠DC 、AC=BD D 、OC=OD 21、如图所示,已知AB=AC,BD=CE ,则图中共有( )组全等三角形A 、4B 、5C 、6D 、7 22、以下能够判定两个直角三角形全等的情况有( )⑴ 两个锐角和一个锐角的对边对应相等 ⑵ ⑶ 一个锐角和它的对边对应相等 ⑷ 两条直角边对应相等⑸ 两边对应相等 ⑹ 斜边和一条直角边相等A 、3B 、4C 、5D 、623、如图:AB =CD ,BC =DA ,O 为AC 中点,过O 的直线BA 、DC 的延长线于E 、F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4 C A D B E 图2 A
B
C
D F
图5
A
B D
C E
F 图1 图3 45321D
A
O
E
C
B D
A
C
B
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【 】. (A )50
(B )80
(C )50或80
(D )40或65
2. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】. (A )2平方厘米 (B )1平方厘米 (C )
12平方厘米 (D )1
4
平方厘米
3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米
4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】. (A )HL (B )SSS (C )SAS (D )ASA
5. 利用三角形全等所测距离叙述正确的是( )
A.绝对准确
B.误差很大,不可信
C.可能有误差,但误差不大,结果可信
D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离
6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】.
(A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′
(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′
(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长
8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )6
9. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】. (A )45
(B )50 (C )60
(D )75
图12 图9 A
'C
A D
B E 21图10
C A
D B
E
F 图6
m n
C
A
B 图11 12
C A
D B E
F M N O D
A
E C
B
图7 图8
10. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D 【 】. (A )不存在 (B )有1个 (C )有3个 (D )有无数个 二、填一填,要相信自己的能力!(每小题3分,共30分) 1.在ABC ∆中,若A ∠=112
3
B C ∠=∠,则ABC ∆是 三角形.
2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .
3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .
4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成________个形状不同的三角形.
5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于_____度.
6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.
7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对. 8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________. 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .
10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6
厘米.沿BD 过点B 的直线折叠这个三角形,使顶点C 落在AB 边
上的点E 处,折痕为BD ,则△AED 的周长为______厘米.
三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒. (1)求BAD ∠和DAC ∠的度数;
图14 C A D B
E 图13
35°
(2)若DE 平分ADB ∠,求AED ∠的度数.
图15 2.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论. (2)选择(1)中你写出的—个正确结论,说明它正确的理由.
3.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.
4.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽
象出的几何图形,B C E ,,在同一条直线上,连结DC .
(1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);
(2)试说明:DC BE ⊥.
参考答案
图18 F
E B
D
A C 图20
①
②
B
C D F
A
E 图19
一、1~10 CB C BC CD ADB.
二、1. 直角. . 3. 45°. . 5. 50. 6. HL. . 8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.
三、1. (1)90905634DAC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒. 2.(1)如果①、③,那么②或如果②、③,那么①; (2)选择“如果①、③,那么②”证明,过程略. 3. △AFC 是等腰三角形.理由略 . 4.(1)图2中ABE ACD △≌△.
理由如下:ABC △与AED △均为等腰直角三角形
AB AC ∴=,AE AD =,90BAC EAD ∠=∠=, BAC CAE EAD CAE ∴∠+∠=∠+∠, 即BAE CAD ∠=∠ , ABE ACD ∴△≌△.
(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=, 又45ACB ∠=
90BCD ACB ACD ∴∠=∠+∠=,
DC BE ∴⊥
|。