化学反应动力学1PPT
合集下载
化学反应动力学--第一、二章
i
i
Δni是反应体系中某种组分的物质的量的
产物。 特点:欲测的物理量不随空间位置而变化, 但却随时间而变化。
开放体系流动体系:反应过程中有物质的交 换,即不断补充作用物和取走产物。
特点:体系中某物理量随空间位置而变化, 但流动中某位置的物理量却不随时间而变 化。
流动体系示例图
2. 按参加反应的物质状态分类: 均相反应体系单相反应体系:只有一个相。
上述历程反应的组合为:
H2 + Br2→2HBr
还要注意:有些总反应也是基元反应。
如已知反应:2NO+O2→2NO2是基元反 应。也即该反应从历程上说:是一步完成 的,符合基元反应的定义,是基元反应。
因历程反应的组合构成总包反应。所以 该反应也是总反应。
因此,为了区分,人们引进了简单反应 和复杂反应的概念。
我们说:上述反应满足了热力学条件, 但未满足动力学条件。
如果点火或加催化剂(如铂黑),加热到 800℃以上,则上述反应能在瞬时完成,以 至于发生爆炸。
可见,改变反应条件,可改变了动力学 上的不利情况。
所以从控制化学反应过程而言,化学动 力学的研究是非常重要的。
另外,化学动力学须考虑过程和途径。 化学反应方程式只表示:
(2) 简单反应和复杂反应 描述的对象:总(包)反应。 如果总反应是一步完成的,即是基元反 应的话,则该反应称为简单反应。 如: 2NO+O2→2NO2 如果总反应是分步完成的,即是由若干 个基元反应构成,则该反应为复杂反应。 如:H2 + Br2→2HBr
几个注意点: ✓ 从反应方程式是无法判定一个总包反应
即反应的机理或历程是如何的? 目的:能使我们较好的控制反应的进行。
二、动力学和热力学的关系 研究化学反应,必须考虑二方面的因素: 一是热力学方面的因素;(方向与程度) 二是动力学因素。(反应速率)
第五讲-化学动力学——化学反应速率、反应机理PPT课件
在化学反应中,某物质的浓度(物质的量浓度)
随时间的变化率称反应速率。反应速率只能为正 值,且并非矢量。
1、平均速率
用单位时间内,反应物浓度的减少或生成物浓度
的增加来表示。
=
c
t
当△c为反应物浓度的变化时,取负号;△c为生
成物浓度的变化时,取正号
只能描述在一定时间间隔内反应速率的大致情况
-
在活着的有机物体内,有一部分碳元素为稳定同 位素碳-12,还有一小部分是放射性同位素碳-14。 生物活着时通过呼吸来补充碳-14,而当某种植 物或动物死亡后,其体内的碳-14就开始衰变 (一级反应),但稳定同位素碳-12的含量不会 变。在已知碳-14衰变速度的前提下(碳-14的半 衰期为5730年),可以通过测量样品中的碳-14 衰变的程度来计算出样品的年代。
-
25
一、化学反应速率
1、浓度对反应速率的影响
(5)一级反应及其特点
凡反应速率与反应物浓度一次方成正比的反应, 称为一级反应,其速率方程可表示为:
积分上式可得:
当上式t =可0表时示,为c =:c0(起始浓度),则B = lnc0。故
或
或
-
26
一、化学反应速率
1、浓度对反应速率的影响
4
一、化学反应速率
(一)反应速率及其表示方法
2、瞬时速率
若将观察的时间间隔△t缩短,它的极限是△t 0 , 此时的速率即为某一时刻的真实速率—— 瞬时速 率:
对于下面的反应来说,a A+ b B = g G+ h H 其反应速率可用下列任一表示方法表示:
-
5
一、化学反应速率
(一)反应速率及其表示方法
在基元步骤中,发生反应所需的最少分子数目称 为反应分子数。根据反应分子数可将反应区分为 单分子反应、双分子反应和三分子反应三种,如:
化学动力学-- 化学反应的反应速率及速率方程.ppt
2019-10-13
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
2019-10-13
2019-10-13
平均速率
2019-10-13
瞬时速率
R P
vR
d[R ] dt
vp
d[P] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
2019-10-13
瞬时速率
第十一章 化学动力学
2019-10-13
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rGm$ / kJ mol1
1 2
N2
3 2
H2
NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
生,热力学无法回答。
2019-10-13
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
反应速率方程中,反应物浓度项不出现, 即反应速率与反应物浓度无关,这种反应称为 零级反应。常见的零级反应有表面催化反应和 酶催化反应,这时反应物总是过量的,反应速 率决定于固体催化剂的有效表面活性位或酶的 浓度。
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
2019-10-13
2019-10-13
平均速率
2019-10-13
瞬时速率
R P
vR
d[R ] dt
vp
d[P] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
2019-10-13
瞬时速率
第十一章 化学动力学
2019-10-13
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rGm$ / kJ mol1
1 2
N2
3 2
H2
NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
生,热力学无法回答。
2019-10-13
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
反应速率方程中,反应物浓度项不出现, 即反应速率与反应物浓度无关,这种反应称为 零级反应。常见的零级反应有表面催化反应和 酶催化反应,这时反应物总是过量的,反应速 率决定于固体催化剂的有效表面活性位或酶的 浓度。
中级化学反应动力学-1
产物生成速率
各组分表示的反应速率之间的关系:
VA/a=VB/b=VL/l=VM/m 2、基元反应: 反应物的微粒(分子、原子、粒子、自由 基等)一步直接实现的变化。 3、非基元反应: 由两个或更多个基元反应所构成的反应。 4.反应分子数: 每一基元反应中发生反应所需要的反应物微 粒数。 只有基元反应才有反应分子数的概念。
U Ea ,1 Ea , 2
恒容化学反应热=正反应活化能-逆反应活化能
4、非基元反应的表观活化能 非基元反应活化能没有明确的物理意义。但活 化能越大反应速率越小,活化能越小反应速率 越大。 非基元反应活化能与速率方程的关系: 若有:速率常数 则:
k k n1k n2k n3 1 2 3
1 C B 0C A kt ln C A 0 C B 0 C A 0C B
四、温度对反应速率的影响(The temperature dependence of the rates of reactions)
1、 k与T的经验式 (1).范特霍夫规则: kt+10C/k=24-----反应速率的温度系数 (2).阿累尼乌斯(Arrhenius)方程:
对非基元反应: 1)无反应分子数概念 2)反应级数与计量系数无关 3)级数可正、负、分数。
(4).用气体分压表示速率
dC A dPA n kC C A , k P PAn dt dt
kp=kC(RT)1-n 或
kC=kp(RT)n-1
三.速率方程的积分形式
1、零级反应 微分式:-dCA/dt=k 积分式:kt=CA0-CA 半衰期: t1/2= CA0/2k 特点: 1)k单位:[浓度][时间]-1 2)CA-t成直线关系,斜率=-k 3)半衰期与初始浓度成正比
化学反应动力学 PPT
C C C ri f T、C f 1T f 2C k
1 A1
2 A2
3 A3
通式: ri kim 1Ci i
对基元反应:i反 i反,i产 0
对非基元反应:i由试验测定
11
2.可逆反应
例 : AA BB LL MM
ri ri1 ri1
2
N 2 3H 2 2NH3
r 的物理意义:
15
复杂可逆反应中控制步骤的那个基元反应所
进行的次数
①
r与反应机理和化学计量系数
有关
i
② 1 M (活化分子数)
r
(2)动力学参数和热力学参数之间的关系:
K1
r
K1 ;
K 1
E 1 E1 1 Qr MQr r
a.对气---液相反应,S为相界面积 b.对流固相非催化反应,S为固体反应物表面积 c.对流固相催化反应,S为固体催化剂内表面积
(2)流---固相反应
ri 1 dni W dt
5
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
二、连续流动系统反应速率表示方式 6
k1CA1CB2 CL3 CM4 k 1CA1CB2 CL3 CM4
C C (1)基元反应
k
动力学平衡时: 1
k
C C 1
3 3
L
1 1
A
4 4
M
2 2
B
CC C C 热力学平衡时: Kc
L
M
L
M
A
B
A
B
化学动力学-反应机理与速率方程PPT课件
解:
dcO3 dt
k1cO3 cM k1cO2 cOcM k2cO3 cO
2k2cO3 cO
dcO dt
k1cO3 cM
k1cO2 cOcM
k2cO3 cO
0
k2cO3 cO k1cO3 cM k1cO2 cOcM
2O3 3O2
k1
O3 M k1
O + O3
O2 + O + M k2 2O 2
例:
CO Cl2 COCl2
Cl 2
k1 k1
2Cl
(快)
Cl CO M k2 COCl M (快) k2
COCl Cl2 k3 COCl2 Cl (慢)
例:
CO Cl2 COCl2
Cl
Cl 2
CO
k1 2Cl
M k1 k2 COCl
(快) M
(快)
k2
COCl Cl2 k3 COCl2 Cl (慢)
c N2O2
k1 k1
cN2 O
K ccN2 O
v k2KccN2OcO2 kcN2OcO2
k
k2 K c
d lnk
dT
d lnk2
dT
d lnKc
dT
Ea RT 2
E2 RT 2
U RT 2
Ea E2 U
反应机理中至少存在一个能快速达到 平衡的对峙反应;
由“慢反应”建立复合反应的速率方 程表达式(复合反应速率由慢速步骤 的速率决定) ;
由“对峙反应”解出活泼中间物的浓 度表达式;
求出复合反应速率系数和活化能。
平衡态处理法辨析 2O3 3O2
O3
M
k1 k1
化学反应动力学
4
(2)流---固相反应
ri 1 dni W dt
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
5
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式:
ri
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表 Kg面/m积3 ,--m-2固/m体3 反应物或固体催化Ri剂R的i堆密r度i,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且
P P
10%
时可忽略P对ri的影响
ri f T、C
则:
(反应动力学模型)
32
33
2. 控制阶段 外扩散控制:第1或7步速率最慢
内扩散控制:第2或6步速率最慢
化学动力学控制:第3、4、5步其中一步速率最慢
(1) 有控制步骤的反应:
r总 r控 r非控 (r1)控 (r1)控 (r1)非控 (r1)非控
(2) 无控制步骤的反应:各反应步骤速率接近
34
二、化学吸附与平衡
型式: a. 幂函数型----经验模型
(2)流---固相反应
ri 1 dni W dt
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
5
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式:
ri
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表 Kg面/m积3 ,--m-2固/m体3 反应物或固体催化Ri剂R的i堆密r度i,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且
P P
10%
时可忽略P对ri的影响
ri f T、C
则:
(反应动力学模型)
32
33
2. 控制阶段 外扩散控制:第1或7步速率最慢
内扩散控制:第2或6步速率最慢
化学动力学控制:第3、4、5步其中一步速率最慢
(1) 有控制步骤的反应:
r总 r控 r非控 (r1)控 (r1)控 (r1)非控 (r1)非控
(2) 无控制步骤的反应:各反应步骤速率接近
34
二、化学吸附与平衡
型式: a. 幂函数型----经验模型
化学反应工程第一章气固相催化反应本征及宏观动力学
•Solid catalyzed reactions Kinetics, rate equation
n 1-12 n 1-13 n 1-14 n 1-15
固体催化剂 吸附等温方程 均匀表面吸附动力学方程 不均匀表面吸附动力学方程
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-12 固体催化剂
速率常数与活化能及温度的关系
•速率常数
•活化能
PPT文档演模板
•温度
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-9反应速率常数及温度对反应速率常数 影响的异常现象
•ln k •ln k
PPT文档演模板
•1/T
•1/T
化学反应工程第一章气固相催化反应 本征及宏观动力学
第四节 气-固相催化反应本征动力学方程
新途径,它涵盖了化学量测的全过程,包括采样理论与方法、
试验设计与化学化工过程优化控制、化学信号处理、分析信号
的校正与分辨、化学模式识别、化学过程和化学量测过程的计
算机模拟、化学定量构效关系、化学数据库、人工智能与化学
专家系统等,是一门内涵相当丰富的化学学科分支。
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
xA=(15mol-13mol)/15mol=0.133 第一个反应所消耗的乙烯=转化的乙烯×S
第二个反应所消耗的乙烯=转化的乙烯×(1-S)
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
•例题
•故有:2mol ×S ×0.5+2mol ×(1-S) ×3=7mol-4.76mol •S=0.752 •Y=第一个反应所消耗的乙烯÷加入的乙烯总量(15mol) •故Y=2 × 0.752÷15=0.100 •或Y= xA S=0.100
n 1-12 n 1-13 n 1-14 n 1-15
固体催化剂 吸附等温方程 均匀表面吸附动力学方程 不均匀表面吸附动力学方程
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-12 固体催化剂
速率常数与活化能及温度的关系
•速率常数
•活化能
PPT文档演模板
•温度
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-9反应速率常数及温度对反应速率常数 影响的异常现象
•ln k •ln k
PPT文档演模板
•1/T
•1/T
化学反应工程第一章气固相催化反应 本征及宏观动力学
第四节 气-固相催化反应本征动力学方程
新途径,它涵盖了化学量测的全过程,包括采样理论与方法、
试验设计与化学化工过程优化控制、化学信号处理、分析信号
的校正与分辨、化学模式识别、化学过程和化学量测过程的计
算机模拟、化学定量构效关系、化学数据库、人工智能与化学
专家系统等,是一门内涵相当丰富的化学学科分支。
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
xA=(15mol-13mol)/15mol=0.133 第一个反应所消耗的乙烯=转化的乙烯×S
第二个反应所消耗的乙烯=转化的乙烯×(1-S)
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
•例题
•故有:2mol ×S ×0.5+2mol ×(1-S) ×3=7mol-4.76mol •S=0.752 •Y=第一个反应所消耗的乙烯÷加入的乙烯总量(15mol) •故Y=2 × 0.752÷15=0.100 •或Y= xA S=0.100
第三章 化学反应动力学
例3:0℃时,H2O2在铂溶胶催化下分解,k=0.047min-1, 求应30min时H2O2的剩余量。(四阶Runge-Kutta 法)
dc dt kc f ( x , y )
K 1 hf(x K K K
2
n n
,yn)
1 2 1 2
hkc
1 2 1 2
n n n n
a a (1 -e - k t )
t
Y
t
y e
dy dx
Pdx
( e
Pdx
Qdx C )
x y
X
x2+y2=C2
§3.2 常微分方程的数值解-Eular法 3.2.1 微分方程的解和导数
一级反应A → B
1.2
dc dt
A
kc A
cA = cA.0e-kt
[A]
1.0 0.8 0.6 0.4 0.2
一级反应动力学
dc dt
A
c A . 0 ke
kt
kc A
0
5
10
t
15
§3.2 常微分方程的数值解-Eular法 3.2.2 Eular法
dy f (x, y ) dx y (a ) x (a , b )
a = x0<x1<…<xi<…<xn = b y0 y1 …… y2 …… y n hi = xi-xi-1 (i = 0,1,2,3 , …, n-1)
x n1
f ( x , y ) dx
xn
欧拉法 yn+1 = +h f(xn,yn)
梯形法
x n1 xn
《化学反应动力学》课件
反应活化能
反应活化能是使反应物通过反应过渡态的能垒。 它的高低决定了反应的速率和温度对反应速率 的影响程度。
反应级数与反应机理
反应级数指的是反应速率对各反应物浓度的指数。通过实验测定速率随浓度的变化规律,可以确 定反应级数并推断反应机理。
化学平衡和动力学的关系
化学平衡是指在闭合系统中,反应物与生成物浓度达到一定比例,反应速率 相等的状态。动力学研究反应速率,而平衡研究反应终点。两者密切相关, 但研究的角度不同。
反应程是描述反应速率与反应物
浓度之间关系的数学表达式。它的
形式由实验数据决定,允许我们推
断反应的机理和确定反应物底数。
3
反应速率
反应速率是单位时间内反应物消失 或生成的物质的数量的变化量。它 可以通过实验测量,并用数学模型 表示。
反应级数
反应级数是描述反应速率与反应物 浓度之间关系的指数。通过测定速 率对浓度的实验数据,可以确定反 应级数并推断反应机理。
应用和实例
化学反应动力学的研究对于了解和优化化学过程具有重要意义。它被广泛应 用于药物合成、环境保护、能源开发等领域。实例包括酶催化反应、催化剂 设计和反应动力学模拟等。
影响化学反应速率的因素
反应物浓度
反应物浓度的增加会增加 碰撞频率,从而提高反应 速率。
温度
提高温度会增加分子的平 均动能,促使反应物分子 更容易发生有效碰撞,从 而加快反应速率。
催化剂
催化剂通过提供新的反应 路径,降低反应活化能, 从而加速反应速率。
动力学常数与反应活化能
动力学常数
动力学常数是速率方程中的常数,代表了反应 速率与反应物浓度之间的比例关系。它的值由 实验测定。
《化学反应动力学》PPT 课件
第十一章 化学反应动力学:速率及速率方程(物理化学课件)
2020/11/1
3
化学动力学与化学热力学的关系
化学热力学 — 研究物质变化过程的能量效 应及过程的方向与限度, 即有关平衡的规律; 解决物质变化过程的可能性.
化学动力学 —研究完成该过程所需要的时间 以及实现这一过程的具体步骤, 即有关速率 的规律; 解决物质变化的现实性.
可能性的趋势强弱与现实性的速率快慢之间 没有必然的联系.
为是基元反应的一个原因.
由假设的机理导出的速率方程与实验结果一致, 是证实该 机理的一个必要条件.
2020/11/1
23
201111303通过化学动力学的研究可以了解如何控制反应条件提高主反应的速率如何抑制或减慢副反应的速率如何避免危险品的爆炸材料的腐蚀或产品的老化变质还可以为科研成果的工业化进行最优设计和最优控制为现有生产选择最适宜的操作条件
化学动力学
2020/11/1
1
引言
化学动力学研究的内容:
(i) 研究各种因素, 包括浓度, 温度, 催化剂, 光照等对化学反应速率的影响;
2020/11/1
14
4. 化学反应速率方程的一般形式 复合反应的速率方程是由实验来确定的. 实
验表明, 许多反应的速率方程具有幂函数形式:
A dcA / dt kcAcB …
2020/11/1
15
• 分级数: 式中指数 , 等, 分别称为反应组分A
和B等的反应分级数,反映浓度对速率的影响程 度; 可以是整数, 分数或负数. 负数表示该物质对 反应起阻滞作用.
2020/11/1
13
单分子反应 A→P
A = -dcA/dt = kcA
双分子反应 2A→P ; A + B→P
A = kcA2 A = kcAcB
(完整版)化学反应动力学..
(2)流---固相反应
ri 1 dni W dt
5
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
二、连续流动系统反应速率表示方式 6
流动系统: 反应物料处于连续稳定流动状态,物料在反应器 内没有积累,物系参数随空间位置变化
表示方式:
ri
Ri — 为“-”时表示转化速率,为“+”时表示生成
9
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且 P 10% 时可忽略P对ri的影响
P
则: ri f T、C (反应动力学模型)
型式: a. 幂函数型----经验模型 b. 双曲函数型----机理模型 c. 级数型----经验模型
r
,,, A
k C r 1
1A
1
A
rQ
2
k C 2U
,,,r2
rQ
Q
R r r r k C A转化速率:
m
A
A
Aj j
A
A
1A
j 1
A
m
R r r r k C Q生成速率:
1
第二章 化学反应动力学
§1 化学反应速率的工程表示 §2 化学反应速率方程(幂函数型) §3 动力学方程的转换 §4 多相催化反应的表面反应动力学
(双曲型动力学方程)
§1 化学反应速率的工程表示 2
一、间歇系统反应速率表示方式
间歇系统:非定态过程,反应器内物系参数随t变化
1.均相反应速率表示方式
一、单一反应动力学方程
10
简单反应、并列反应、自催化反应
最新第2章化学反应动力学ppt课件
当吸附和脱附达到动态平衡时有:rrard0
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与实验结果一致。 3、研究物质的结构和反应能力之间的关系。 研究化学反应动力学的最终目的是为了控 制化学反应过程, 以满足生产和科学技术的 要求。
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
§1-1 绪论 §1-2 反应速率的定义 §1-3 反应速率方程与反应级数 §1-4 反应动力学方程 §1-5 反应级数测定法
§1-6 温度对反应速率的影响 §1-7 基元反应的活化能
4
§1-1 绪论
一、化学反应动力学的地位和作用 物理化学主要分支: 量子化学 催化化学 结构化学 胶体与界面化学 化学动力学 电化学 化学热力学( 统计热力学) 光化学 化学动力学与量子化学、结构化学、化学热力学 ( 统计热力学 )构成了物理化学的主要理论基 础,为化学这一中心科学提供了一系列的原理和 5 方法。
12
五、化学反应的层次及其关系
1、总包反应 若干种基元反应结合。如:H2 + Br2 = 2 HBr 当总包反应只包含一种基元反应时,称其为 简单反应;反之,则称其为复杂反应。 2、基元反应 一步完成的反应。 如:H + Br2 HBr + Br
13
3、态态反应 关于“态” 平动状态: 平动能或平动速度。 转动状态: 转动量子数 J。 振动状态: 振动量子数 V。 电子状态: 如 O2 :X3∑g-,1Δ g, 1∑g+
• 若热力学×(rG 0),则不必考虑动力 学因素,反应不可能。
10
• 即一个实际的反应:需热力学、动力学均允许。
2. 热力学(平衡点)
取决于反应体系 的性质
动力学(反应速率) 与外部条件的变 化有关
两者必定有联系
11
就事物普遍联系的哲学观点看 , 对于某一反 应体系,其热力学性质与动力学性质必定是 有一定联系的。 但就人们现有的认识水平,尚未有统一的定 量方法把两者联系起来。 因此,目前多为相对独立地展开反应动力学 研究(尽管化学热力学已发展得比较成熟)。
二、化学反应动力学的特点 与平衡态热力学比较,化学反应动力学的特点:
1、考虑时间这个因素(反应速率) 2、涉及化学变化所经由的中间步骤(反应机理)
例如: 在298 K及101.3 kPa下, H2 (g) +1/2O2(g) = H2O(l) Δ rGθ m = -287.19 kJ mol-1 根据热力学第二定律,该反应发生的可能性非常大。
但在上述条件下,实际观察不到H2和O2的任何变化。 如果在反应混合物里加入火花或催化剂(如铂黑),或 者把它们加热到 800℃以上,则上述反应能在瞬时完成, 以致于发生爆炸。
6
三、化学反应动力学的基本任务
1、 研究反应进行的条件——温度、压力、浓 度、介质以及催化剂等对化学反应速率的 影响。
2、揭示化学反应的历程(也叫作机理)。 H2 + Cl2 = 2 HCl (1) r∝[H2][Cl2]1/2 H2 + Br2 = 2 HBr (2) r ∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]} H2 + I2 = 2 HI (3) r ∝[H2][I2] 其中,r为反应速率 7
14
X3∑g:
1Δ g:
*+1
*-1
*+1
*-1
*+1
*-1
*+1
*-1
*+1
*-1
1∑ +, g
*+1
*-1
X3∑g15
2S H 1S
1S 1S H 1S H2 H
H
2S 1S
1S 1S H 1S H2 H 1S
1S
1S
1S
H
1S H2
H
1S
16
态态反应: (老师标记过的重点定义) 利用分子束和激光技术将反应物分子有选择地 激发到特定的某一能态(选态)上,在“单次 碰撞”中一步直接反应,使其转变成具有一定 能态(定态)分布的生成物分子,这种反应过 程叫做“态态反应”。 也即从一个选态的反应物分子一步转变成某一 定态的生成物分子,构成一个“态态反应”。 具有各种不同选态的同一种反应物在相同的反 应条件下反应,生成各种不同定态的同一种生 成物分子,构成许许多多不同的态态反应。
参考书 :
1《化学反应动力学原理》(上、下册) 赵学庄编 (高等教育出版社) 2《化学反应动力学》 藏雅茹编(南开大学出版社) 3《化学动力学基础》 韩德刚、高盘良 (北京大学出版社)
4《 Fundamentals of Chemical Kinetics 》 S. R. Logan (世界图书出版社)
1
授课内容:
第一章 动力学基本概念
第二章 复杂反应 第三章 动力学测定 第四章 溶液反应动力学 第五章 催化反应 第六章 势能面与反应途径
2
第七章 双分子碰撞动态学 第八章 实验化学动态学
第九章 过渡态理论
第十章 单分子反应动力学
第十一章 多组元体系动力学:燃烧化学
第十二章 多组元体系动力学:大气化学 预备知识:高等数学,物理化学
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
§1-1 绪论 §1-2 反应速率的定义 §1-3 反应速率方程与反应级数 §1-4 反应动力学方程 §1-5 反应级数测定法
§1-6 温度对反应速率的影响 §1-7 基元反应的活化能
4
§1-1 绪论
一、化学反应动力学的地位和作用 物理化学主要分支: 量子化学 催化化学 结构化学 胶体与界面化学 化学动力学 电化学 化学热力学( 统计热力学) 光化学 化学动力学与量子化学、结构化学、化学热力学 ( 统计热力学 )构成了物理化学的主要理论基 础,为化学这一中心科学提供了一系列的原理和 5 方法。
12
五、化学反应的层次及其关系
1、总包反应 若干种基元反应结合。如:H2 + Br2 = 2 HBr 当总包反应只包含一种基元反应时,称其为 简单反应;反之,则称其为复杂反应。 2、基元反应 一步完成的反应。 如:H + Br2 HBr + Br
13
3、态态反应 关于“态” 平动状态: 平动能或平动速度。 转动状态: 转动量子数 J。 振动状态: 振动量子数 V。 电子状态: 如 O2 :X3∑g-,1Δ g, 1∑g+
• 若热力学×(rG 0),则不必考虑动力 学因素,反应不可能。
10
• 即一个实际的反应:需热力学、动力学均允许。
2. 热力学(平衡点)
取决于反应体系 的性质
动力学(反应速率) 与外部条件的变 化有关
两者必定有联系
11
就事物普遍联系的哲学观点看 , 对于某一反 应体系,其热力学性质与动力学性质必定是 有一定联系的。 但就人们现有的认识水平,尚未有统一的定 量方法把两者联系起来。 因此,目前多为相对独立地展开反应动力学 研究(尽管化学热力学已发展得比较成熟)。
二、化学反应动力学的特点 与平衡态热力学比较,化学反应动力学的特点:
1、考虑时间这个因素(反应速率) 2、涉及化学变化所经由的中间步骤(反应机理)
例如: 在298 K及101.3 kPa下, H2 (g) +1/2O2(g) = H2O(l) Δ rGθ m = -287.19 kJ mol-1 根据热力学第二定律,该反应发生的可能性非常大。
但在上述条件下,实际观察不到H2和O2的任何变化。 如果在反应混合物里加入火花或催化剂(如铂黑),或 者把它们加热到 800℃以上,则上述反应能在瞬时完成, 以致于发生爆炸。
6
三、化学反应动力学的基本任务
1、 研究反应进行的条件——温度、压力、浓 度、介质以及催化剂等对化学反应速率的 影响。
2、揭示化学反应的历程(也叫作机理)。 H2 + Cl2 = 2 HCl (1) r∝[H2][Cl2]1/2 H2 + Br2 = 2 HBr (2) r ∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]} H2 + I2 = 2 HI (3) r ∝[H2][I2] 其中,r为反应速率 7
14
X3∑g:
1Δ g:
*+1
*-1
*+1
*-1
*+1
*-1
*+1
*-1
*+1
*-1
1∑ +, g
*+1
*-1
X3∑g15
2S H 1S
1S 1S H 1S H2 H
H
2S 1S
1S 1S H 1S H2 H 1S
1S
1S
1S
H
1S H2
H
1S
16
态态反应: (老师标记过的重点定义) 利用分子束和激光技术将反应物分子有选择地 激发到特定的某一能态(选态)上,在“单次 碰撞”中一步直接反应,使其转变成具有一定 能态(定态)分布的生成物分子,这种反应过 程叫做“态态反应”。 也即从一个选态的反应物分子一步转变成某一 定态的生成物分子,构成一个“态态反应”。 具有各种不同选态的同一种反应物在相同的反 应条件下反应,生成各种不同定态的同一种生 成物分子,构成许许多多不同的态态反应。
参考书 :
1《化学反应动力学原理》(上、下册) 赵学庄编 (高等教育出版社) 2《化学反应动力学》 藏雅茹编(南开大学出版社) 3《化学动力学基础》 韩德刚、高盘良 (北京大学出版社)
4《 Fundamentals of Chemical Kinetics 》 S. R. Logan (世界图书出版社)
1
授课内容:
第一章 动力学基本概念
第二章 复杂反应 第三章 动力学测定 第四章 溶液反应动力学 第五章 催化反应 第六章 势能面与反应途径
2
第七章 双分子碰撞动态学 第八章 实验化学动态学
第九章 过渡态理论
第十章 单分子反应动力学
第十一章 多组元体系动力学:燃烧化学
第十二章 多组元体系动力学:大气化学 预备知识:高等数学,物理化学