数学———容斥原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学———容斥原理

(1)如果被计数的事物有A、B两类,那么,A类B

类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分)(把A、B两个集合的元素个数相加,因为既是A类又是B类的部分重复计算了一次,所以要减去。)总数=两个圆内的-重合部分的(2)如果被计数的事物有A、B、C三类,那么,A类和B类和C 类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B 类而且是C类的元素个数。三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C

总数=三个圆内的—重合两次的+重合三次的【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( ) A.22

B.18

C.28

D.26【解析】:设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显

然,A+B=26+24=50;A∪B=32-4=28,则根据A∩B=A+B-A ∪B=50-28=22。答案为A。【例题2】电视台向100人调查前

一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?【解析】:设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。

【例题3】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】:数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A ∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分

【例题4】某科研单位共有68名科研人员,其中45人具有硕士以上学历,30人具有高级职称,12人兼而有之。没有高级职称也没有硕士以上学历的科研人员是多少人?() A.

13 B. 10 C. 8 D. 5【解析】:这是一道容斥原理问题。设既没有高级职称又没有硕士以上学历的人员有x人,根据容斥原理基本公式得:45+30-12 = 68-X,解得:x=5。故选D。

【例题5】大学四年级某班共有50名同学,其中奥运会志愿者10人,全运会志愿者17人,30人两种志愿者都不是,则班内是全运会志愿者而非奥运会志愿者的同学为多少?() A. 3 B. 7 C. 10 D. 17【解析】:如图所示,设既是奥运志愿者

又是全运志愿者的人数为:x,根据容斥原理得

(10-x)+x+(17-x) +30 = 50,解得:x=7,17-7 = 10 人。故选C。【例题6】某班56名同学参加了奥数或作文课外兴趣小组的活动,其中参加奥数的有32人,参加作文的有35人,问两种活动都参加的有多少人?( ) A. 3 B. 11 C. 21 D. 24

解析:由题可知,两种活动都参加的有32+35-56 = 11人。故选B

【例题7】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人 A.57 B.73 C.130 D.69【解析】:设A=会骑自行车的人(68),B=会游泳的人(62)显然,

A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B=A+B-A ∪B=130-73=57所以,答案为A。

【例题8】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?【解析】:参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪

C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

【例题9】某高校对一些学生进行问卷,在接收调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人,问接受调查的学生共有多少人?()A.120 B.144 C.177

D.192

【解析】:根据题目所给的条件令注会为A,六级为B,计算机为C,设学生总数为x,代入上面公式为:x-15= 63+89+47- A∩B - B∩C - C∩A+24,如图所示A∩B=a+24,B∩C=c+24,C ∩A=b+24, A∩B + B∩C+ C∩A=a+b+c+72,这a+b+c是参加两种考试的人,也就是46,代入公式得x=120.【例题10】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:【解析】:由题意知:(40-x)+x+(36-x)+6+12+4+16=100,解得x=14;则只喜欢看电影的人有36-x=22. A.22人 B.28人C.30人 D.36人【例题11】外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4

相关文档
最新文档