《数学分析下册》期末考试卷及参考答案

合集下载

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。

()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。

f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。

5、若函数(在有界闭区域D上连续,则函数(在D上可积。

()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。

其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。

第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。

4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。

第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。

得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。

西华师范大学数学分析大二期末试题(含答案)

西华师范大学数学分析大二期末试题(含答案)

西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。

北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

解此方程组,得
10.设函数 f ( x ) =

0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于

1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)

= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2

π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为

数学分析第三版答案下册

数学分析第三版答案下册

数学分析第三版答案下册数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0n?n1??lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?0112xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n23 。

四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。

n?393n23(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。

(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(ab) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。

(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。

(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案一、填空题(每小题2分,共10分).________dx x)lnx (f ,)(.12=+=⎰⎰则若c x dx x f .________)x (F ,)(.21cos 2='=⎰-则若dt ex F x t=+-⎰-dx x x x )cos 21(.3112 . .______.41013时收敛满足条件当广义积分p xdxp ⎰-._______u lim )u 12u 1.51nn=+-∞→∞=∑n n n 收敛,则(若 二、单选题(每小题2分,共10分)的一个原函数是则的导函数是若)(,cos )(.1x f x x f ( )(A )x sin 1+; (B )x sin 1-; (C )x cos 1+; (D )x cos 1-. 2.函数)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上( ) (A )连续 ; (B )有界; (C ) 无间断点; (D)有原函数.3.下列反常积分收敛的是( ) (A)⎰∞+321dx x ; (B) ⎰∞+3ln dx x x ; (C) ⎰∞+3sin dx xx ; (D) ⎰∞+3ln 1dx x . 4.下列级数收敛的是( )(A)∑∞=11n ne ; (B))11ln(1∑∞=+n n ; (C) ∑∞=2ln 1n n ; (D) )1)1((21n n n n --∑∞=.5.)1ln()(x x f +=的幂级数展开式为( )(A )]1,1(3232-∈•••+++x x x x ; (B )]1,1(3232-∈•••-+-x x x x ; (C ))1,1[3232-∈•••----x x x x ; (D ))1,1[3232-∈•••+-+-x x x x . 三、计算题(每小题8分,共48分);cos 1sin .1dx xx x ⎰++N);n (xdx tan I .2n n ∈=⎰的递推表达式求不定积分0);(,31x .3a >=-⎰∞+a x x d 求设π4.求函数项级数∑∞=1n xnx 的收敛域;5.求幂级数∑∞=+0)12(n n x n 的和函数;.x 9)(.62的幂级数展开成将函数x xx f +=四、讨论与应用题(每小题8分,共16分)1.求由轴y x y ,12-=与23x y =所围成的平面图形的面积,并求此图形绕x 轴旋转一周所成旋转体的体积..)1cos1()1(.211的敛散性讨论级数pn n n ∑∞=--- 五、证明题(每小题8分,共16分)(从以下三题可任选两道题做)1.设)(x f 在[0,1] 连续,试证⎰⎰=πππ00)(sin )2/()(sin dx x f dx x xf .2.设函数序列)}({x f n 在区间],[b a 上一致收敛于)(x f ,且)(x g 在区间],[b a 上有界,证明: 函数序列)}()({x g x f n 在区间],[b a 上一致收敛于)()(x g x f .3.证明若∑∞=12n nx收敛,则∑∞=-11n n nx 发散. 答案一.1.c x +2ln ; 2. x e x sin cos 2-; 3. 1sin 4; 4.32<p ; 5. 1.二.1.D 2.B 3.A 4.D 5.B. 三.1.解:原式dx xdx x x⎰⎰+=2tan 2cos 22 (2分)dx xdx x xd ⎰⎰+=2tan )2(tan (5分)Cx x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . (8分)2.解:dx x x I n n )1(sec tan 22-=⎰- (2分)⎰---=21)(tan tan n n I x xd (4分)),4,3,2(tan 1121 =--=--n I x n n n . (6分)其中.cos ln ,10C x I C x I+-=+= (8分)3.解:令t x =-1,则tdt dx t x 2,12=+=,当+∞→a x :时,+∞→-1:a t (2分)故原式⎰∞+-+=1212a dt t (4分)31arctan 2arctan 21ππ=--==∞+-a t a . (6分)从而,4=a (8分) 4.解:由∑∑∞=∞==111n x n x n x n x. (2分)知,当1>x时, ∑∞=11n x n收敛,因此∑∞=1n xnx 也收敛; (4分)当1≤x时,∑∞=11n x n 发散,因此∑∞=1n xnx 也发散(0≠x ); (6分) 当0=x 时,原级数收敛;故原幂级数的收敛域为0=x 及),1(+∞. (8分)5.解:.)12(lim x x n n n n =+∞→;,1x 级数收敛时当<;)12n (,1x 0n 发散原级数化为时当∑∞=+=;)12n ()1(,1x 0n n 发散原级数化为时当∑∞=+--=故原幂级数的收敛域为)1,1(+-. (4分))1x 1()x 1(x 1x 11)x 1(2x x 11)x 1x (2x x 11)x 2x(x 11)dx nx (2x x 2nx x )12n ()x (s 221n n 1n x 01-n 0n nn n 0n n <<--+=-+-=-+'-=-+'=-+'=+=+=∑∑⎰∑∑∑∞=∞=∞=∞=∞=令 . (8分)6.解:nn n x x x x x f 202)3()1(91)3(191)(∑∞=-=+= (4分))1(21203)1(++∞=∑-=n n n nx (6分)).3,3(,9)1(121--=-∞=∑nn n nx (8分)五.1.解:1>联立可解得与由223x y x 1y =-= 1/2x =故所求图形的面积为31)34(]3)1[(2/1032/1022=-=--=⎰x x dx x x S (4分)2>所求旋转体的体积为dx x dx x V 222/102/1022)3()1(⎰⎰--=ππ (5分)ππ12031)5832(2/1053=--=x x x . (8分) 2.解.2pp n n 121~n 1cos1u -=由于.,n 121,21p 2p1n 故原级数绝对收敛收敛时当∑∞=> (4分) .,n 121)1(,n 121,21p 2p1n 1n 2p 1n 故条件收敛莱布尼茨交错级数条件满足而级数发散时当∑∑∞=-∞=-≤ 故原级数在21p ≤时条件收敛. (8分) 六.1.证明:则令,x t -=π (2分)⎰⎰-=πππ00)sin ()t ()sin (x dt t f dx x f (4分)⎰⎰-=πππ00xf(sinx)dx )sin (dx x f (6分) ⎰⎰=πππ00)sin ()2/()sin (x dx x f dx x f 故. (8分)2.证明:因为)(x g 在闭区间],[b a 上有界.不放设],[,)(b a x M x g ∈∀≤ (2分)又函数序列)}({x f n 在闭区间],[b a 上一致收敛,故对0)(,0>∃>∀εεN 当N n >时,对],[b a x ∈∀,都有Mx f x f n ε<-)()( (6分)于是当N n >时,对],[b a x ∈∀,都有ε<-)()()()(x g x f x g x f n 函数序列)}()({x g x f n 在闭区间],[b a 上一致收敛)()(x g x f . (8分)3.证明:由于)1(2122n x n x n n +≤ (4分),又因为∑∑∑∞=∞=∞=+=+12122121)1(n n n n n nx n x 收敛,故∑∞=12n nn x 收敛,从而,∑∞=1n n n x 绝对收敛. (6分).,11故原级数发散发散而∑∞=n n(8分)一、填空题(每小题3分,共15分)1.已知)(x f 为x 2sin 的原函数,且21)0(=f ,则⎰=dx x f )( 。

数学分析第二学期期末考试题及答案

数学分析第二学期期末考试题及答案

数学分析第二学期考试题一、 单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题4分,共32分)1、函数)(x f 在[a,b ]上可积的必要条件是( b )A 、连续B 、有界C 、无间断点D 、有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( b ) A 、⎰⎰=-aa a dx x f dx x f 0)(2)(B 、0)(=⎰-aa dx x f C 、⎰⎰-=-aaa dx x f dx x f 0)(2)(D 、)(2)(a f dx x f aa =⎰-3、下列广义积分中,收敛的积分是( a )A 、 ⎰11dx xB 、 ⎰∞+11dx xC 、 ⎰+∞sin xdxD 、⎰-1131dx x4、级数∑∞=1n n a 收敛是∑∞=1n n a 部分和有界且0lim =∞→n n a 的( c ) A 、充分条件 B 、必要条件 C 、充分必要条件 D 、无关条件5、下列各积分中可以直接运用牛顿-莱布尼兹公式求值的是( a )A 、10arcsin xdx ⎰ B 、11ln eedx x x ⎰C 、1-⎰D 、10sin xdx x⎰ 6、下面结论错误的是( b )A 、若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必有界;B 、若)(x f 在),(b a 内连续,则 )(dx x f ba ⎰存在;C 、 若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必可积;D 、 若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上必可积。

7、下列命题正确的是( d ) A 、)(1x a n n ∑∞=在[a ,b ]绝对收敛必一致收敛B 、)(1x a n n ∑∞=在[a ,b ] 一致收敛必绝对收敛C 、 若0|)(|lim =∞→x a n n ,则)(1x a n n ∑∞=在[a ,b ]必绝对收敛 D 、)(1x a n n ∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为( c )A 、x eB 、x sinC 、)1ln(x +D 、x cos 二、计算题:(每小题7分,共28分) 9、⎰=914)(dx x f ,求⎰+22)12(dx x xf 。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

数学分析(2)期末试题参考答案

数学分析(2)期末试题参考答案

∑ A′
∑ ℓα (
)
µ(Iα) µ Jβxα,γ

ε0 m
>
ε.
α=1 γ=1
α=1
γ=1
另 一 方 面, 对 于 每 个 xα, 存 在 一 个 Kk, 使 得 xα ∈ Kk。 因 为 P 是 利 用 K1, . . . , Kκ 的边界构造的网格分划,所以相应的 Iα × Jβxα,γ 一定包含在这个
恰好覆盖
Em,于是
∑A′
α=1
µ(Iα)

ε0。对于每个
Iα (1 于是
≤ α ≤ A′),取一个
∑ℓα
γ=1
µ(Jβxα ,γ
)

1 m
xα ∈ Iα ∩ Em,设 ,所以我们有
Jβxα,1 , . . . , Jβxα,ℓα
恰好覆盖
Kxα ,
∑ A′ ∑ ℓα ( µ Iα
) × Jβxα,γ
=
i) 求证:



ωi = ωi + ωi, i = 1, 2.
γ3
γ1
γ2
ii) 求证:

lim
ωi = 0, i = 1, 2.
R→+∞ γ2
iii) 计算广义积分:
C = ∫ +∞ cos (x2) dx, S = ∫ +∞ sin (x2) dx
0
0
() 解答: i) 因为 ωi ∈ Ω1 R2 、dωi = 0 (i = 1, 2),所以由 Green 公式可知结论
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是

2021-2022学年数学分析II期末试题参考答案

2021-2022学年数学分析II期末试题参考答案

课程编号:100171019 北京理工大学2021-2022学年第二学期2021级数学分析(II )期终考试试题A 卷解答1.(23分)求下列函数的偏导数或全微分 (1)设cos xyz e=,求dz .(2)设(,)z z x y =由方程zx y z e ++=所确定的隐函数,求z x ∂∂和22zx∂∂.(3)设1()()z f xy yg x y x=++,其中f 和g 在R 上有连续的二阶导数,求z x ∂∂,z y ∂∂和2zy x∂∂∂ 解:(1)cos (cos )xy dz e d xy =cos (sin )()xy e xy d xy =−cos sin ()xy xye ydx xdy =−+.(2)方程关于x 求导,y 是常数,z 是x 的函数,1z x x z e z +=,11x zz e =−. 23(1)(1)z zx xx z ze z e z e e =−=−−−. 方法二. zzxx x x xx z e z z e z =+,221(1)z zx xx z ze z e z e e =−=−−−. (3)//211()()()z f xy f xy y yg x y x x x∂=−+⋅++∂ //21()()()yf xy f xy yg x y x x =−+++,//1()()()z f xy x g x y yg x y y x∂=⋅++++∂ //()()()f xy g x y yg x y =++++,2/////()()()zf xy yg x y yg x y y x∂=⋅++++∂∂ /////()()()yf xy g x y yg x y =++++.2.(15分)(1)求二重积分22Dy I dxdy x=⎰⎰,其中D 为由1,2,y y y x x ===所围的区域. (2)求三重积分I x dxdydz Ω=⎰⎰⎰,其中Ω由0,0,0,21x y z x y z ===++=所围成.(3)求第一型曲面积分()MI x y z dS =++⎰⎰,其中M为上半球面:z =222x y R +≤(0)R >. 解:(1)2221221y y Dy y I dxdy dy dx x x==⎰⎰⎰⎰22111()yyy dy x =−⎰2223111()()y y dy y y dy y=−=−⎰⎰ 94=. 方法二. 22212221122212x x Dy y y I dxdy dx dy dx dy x xx ==+⎰⎰⎰⎰⎰⎰.(2)设D 为xy −平面上由0,0,21x y x y ==+=所围成区域.I x dxdydz Ω=⎰⎰⎰120x yDdxdy xdz −−=⎰⎰⎰(12)Dx x y dxdy =−−⎰⎰[]11(1)20(1)2x dx x x xy dy −=−−⎰⎰12011(1)448x x dx =−=⎰. 方法二. 对任意的[0,1]x ∈,x D 为yz −平面上由0,0,21y z y z x ==+=−所围成区域.I x dxdydz Ω=⎰⎰⎰1xD dx xdydz =⎰⎰⎰12011(1)448x x dx =−=⎰(3) x z =y z =,()MI x y z dS =++⎰⎰221(x y x y +≤=++⎰⎰221(x y x y +≤=++⎰⎰221x y Rdxdy +≤=⎰⎰3R π=.3.(8分)设(,)z z x y =在2R 有连续偏导数,并且322cos(2)3cos(2)dz axy x y dx x y b x y dy ⎡⎤⎡⎤=+++++⎣⎦⎣⎦其中,a b 是常数,求,a b 的值和(,)z z x y =的表达式. 解:由条件3cos(2)x z axy x y =++,223cos(2)y z x y b x y =++, 则232sin(2)xy z axy x y =−+,26sin(2)yx z xy b x y =−+. 因为xy z 和yx z 都连续,所以xy yx z z =, 232sin(2)axy x y −+26sin(2)xy b x y =−+, 取,02x y π==,解得2b =,进而得出2a =.再由32cos(2)x z xy x y =++,23(,)sin(2)()z x y x y x y y ϕ=+++, 22/32cos(2)()y z x y x y y ϕ=+++, 于是/()0y ϕ=,()y C ϕ=.故23(,)sin(2)z x y x y x y C =+++.4.(10分)求幂级数211(1)(21)!n n n n x n +∞−=−+∑的收敛域及和函数的表达式.解:记21(1)()(21)!n n n n u x x n −−=+. 对任意的0x ≠,21()0,()2(23)n n u x xn u x n n +=→→+∞+, 则211(1)(21)!n n n n x n +∞−=−+∑收敛. 即得211(1)(21)!n n n n x n +∞−=−+∑的收敛域为(,)−∞+∞. 记211(1)()(21)!n n n n S x x n +∞−=−=+∑,定义域为(,)−∞+∞.容易求得(0)0S =. 对任意的0x ≠,利用幂级数的性质,2/11(1)()()2(21)!nn n S x x n +∞=−=+∑/211(1)2(21)!n n n x n +∞=⎛⎫−= ⎪+⎝⎭∑/21111(1)2(21)!n n n x x n +∞+=⎛⎫−= ⎪+⎝⎭∑/11(sin )2x x x⎛⎫=− ⎪⎝⎭ 2cos sin 2x x xx−=.5.(10分)设()f x 是以2π为周期的函数,它在区间(,]ππ−上的表达式为00()20x f x x ππ−<≤⎧=⎨<≤⎩. (1)求()f x 的Fourier 级数;(2)求()f x 的Fourier 级数的和函数在区间[0,2]π上的表达式;(3)求11(1)21n n n −+∞=−−∑.解:(1)先计算()f x 的Fourier 系数, 01()a f x dx πππ−=⎰122dx ππ==⎰,1()cos n a f x nxdx πππ−=⎰12cos 0nxdx ππ==⎰,1,2,n =,1()sin n b f x nxdx πππ−=⎰ ()0122sin 1(1)n nxdx n πππ==−−⎰2421(21)n k n k k π=⎧⎪=⎨=−⎪−⎩,1,2,k =.()f x 的Fourier 级数为()01cos sin 2n n n a a nx b nx +∞=++∑ 14sin(21)121k k xk π+∞=−=+−∑. (2) 12(0,)4sin(21)10(,2)2110,,2k x k x x k x ππππππ+∞=∈⎧−⎪+=∈⎨−⎪=⎩∑. (3)令2x π=,1411sin (21)2212k k k ππ+∞=⎛⎫+−= ⎪−⎝⎭∑,解得11(1)214n n n π−+∞=−=−∑.6.(12分)(1)判别下列广义积分的收敛性,若收敛,是绝对收敛还是条件收敛?(a) 30411dx +∞−⎰ (b) 20sin x dx +∞⎰ (2)设()af x dx +∞⎰收敛,并且lim ()x f x L →+∞=.证明:0L =.解:(1)(a) 0,1x x ==为瑕点, 考虑30411dx +∞−⎰1122133330122444411111111dx dx dx dx +∞=+++−−−−⎰⎰⎰⎰.因为330004411lim lim111x x x →+→+==−−,3431141lim 111x x x →→−⋅==−,31342433441lim lim111x x xxx +→+∞→+∞⋅==−−,而其中1351244+=>,所以112213333012244441111,,,1111dx dx dx dx +∞−−−−⎰⎰⎰⎰都收敛,于是30411dx +∞−⎰收敛,又被积函数非负,故是绝对收敛.(b)0x =不是瑕点,20sin x dx +∞⎰与21sin x dx +∞⎰具有相同的收敛性,只讨论21sin x dx +∞⎰即可.令2t x =,则2111sin 2x dx +∞+∞=⎰⎰, 1+∞⎰条件收敛. 那么20sin x dx +∞⎰条件收敛.(2)假设0L ≠,不妨设0L >.由lim ()x f x L →+∞=,根据极限性质,存在0X >,使得当x X >时,()2Lf x >.则A X ∀>,()()()A X AaaXf x dx f x dx f x dx =+⎰⎰⎰()()2X aLf x dx A X >+−⎰, 由此推出lim()A aA f x dx →+∞=+∞⎰,与()af x dx +∞⎰收敛矛盾.假设不成立,即0L =.7.(12分)(1)证明:函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,但在(0,)+∞不一致收敛.(2)证明:1()nx n f x ne +∞−==∑在区间(0,)+∞上连续且可导.证:(1)对任意的[,)x δ∈+∞和任意的正整数n ,0nx n ne ne δ−−<<, 而1,e n δδ−−=→<→+∞,说明1nn neδ+∞−=∑收敛,根据M 判别法,函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛.记()nx n u x ne −=,对任意的正整数n ,取1(0,)n x n=∈+∞, 1()0,n n u x ne n −=→+∞,则()nxn u x ne−=在(0,)+∞不一致收敛于0.故函数项级数1nx n ne +∞−=∑在(0,)+∞不一致收敛. (2) (0,)x ∀∈+∞,存在0δ>,使得(,)x δ∈+∞.因为()nxn u x ne−=在(0,)+∞连续(1,2,)n =,利用(1),函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,所以和函数1()nx n f x ne +∞−==∑在[,)δ+∞上连续,于是它在x 连续.由x 的任意性,1()nx n f x ne +∞−==∑在区间(0,)+∞上连续.对任意的0δ>,/22()nx n n u x n e n e δ−−=−≤,[,),1,2,x n δ∀∈+∞=,而1,e n δδ−−=→<→+∞,说明21nn n eδ+∞−=∑收敛,根据M 判别法,函数项级数/1()n n u x +∞=∑在[,)(0)δδ+∞>一致收敛.根据一致收敛的函数项级数的逐项可导性,1()nx n f x ne +∞−==∑在区间[,)(0)δδ+∞>可导. 同理可得,1()nx n f x ne +∞−==∑在区间(0,)+∞上可导.8.(10分)设1α>,10n n a a +<≤,0,1,2,n =.证明:111n n n n n a a a a α+∞−=−−∑收敛. 证:由条件,{}n a 单调递增,则要么{}n a 有上界要么{}n a 趋于+∞. (1)设{}n a 有上界. 则{}n a 收敛,记lim n n A a →+∞=,显然0A >.利用极限性质,存在0N ,当0n N >时, 2n Aa >. 则当01n N >+时,由条件1α>,那么1111120()()()22n n n n n n n n a a a a a a A A a a A ααα+−−−−−−≤<=−. 由于1001(),nk k n k a a a a A a n −=−=−→−→+∞∑,说明11()n n n a a +∞−=−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.(2) 设{}n a 无上界,即lim n n a →+∞=+∞.利用极限性质,存在0N ,当0n N >时,1n a >. 则当01n N >+时,由条件1α>,那么11111110n n n n n n n n n na a a a a a a a a a α−−−−−−−≤≤=−. 由于 110011111(),nk k k n n a a a a a =−−=−→→+∞∑, 说明1111()n n n a a +∞=−−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.。

《数学分析III》期末考试卷2 参考答案

《数学分析III》期末考试卷2  参考答案

红河学院XXXX —XXXX 学年秋季学期《数学分析III 》期末考试卷2 参考答案及评分标准一、单项选择题(每小题2分,共16分)题号 1 2 3 4 5 6 7 8 答案 AABACCBD二、填空题(每小题3分,共24分)1、12、()xy ze ydx xdy dz +++ 3、12cos xf y f ''⋅+4、π5、1128107x y z -+-==6、200(,)dy f x y dx ⎰ 8、33a三、计算题(每小题8分,共48分)1、设,y z f x y x ⎛⎫=+ ⎪⎝⎭,求2z x y ∂∂∂.解 记u x y =+,y v x =,1f f u ∂'=∂,2f f v∂'=∂, 则由复合函数链式法则,122z z u z v yf f x u x v x x∂∂∂∂∂''=+=-∂∂∂∂∂. …………………(2分) 再记2112f f u∂''=∂,212f f u v ∂''=∂∂,2222f f v ∂''=∂,…… 2122z z y f f x y y x y x ∂∂∂∂⎛⎫⎛⎫''==- ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭…………………(3分) 11222221f f f f u v y u v f u y v y x u y v y x ⎛⎫''''∂∂∂∂∂∂∂∂'=+-+- ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭……………(6分)11122122222111y f f f f f x x x x⎛⎫'''''=+-+- ⎪⎝⎭ …………………(7分)11122222321x y y f f f f x x x-''''=+-- …………………(8分) 2、讨论函数2222220(,)00xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处的连续性,计算(0,0)x f 和(0,0)y f . 解 首先考虑(,)(0,0)lim (,)x y f x y →,当点(,)x y 沿直线y kx =趋于(0,0)时,则有 ………………(2分)2222(,)(0,0)lim (,)lim (,)lim1x y x x y kxx kx kf x y f x kx x k x k →→→=⋅===++由此可见,该极限值随k 的变化而变化,故此极限不存在,从而函数(,)f x y 在原点不连续. …………(4分)由偏导数的定义,0(0,0)(0,0)0(0,0)limlim 0x x x f x f f x x ∆→∆→+∆-===∆∆ …………(6分)0(0,0)(0,0)0(0,0)limlim 0y x x f y f f yy ∆→∆→+∆-===∆∆ …………(8分)3、设方程组22x u yu y v xu⎧-=⎨-=⎩确定了隐函数组(,)(,)u u x y v v x y =⎧⎨=⎩,求u x ∂∂和uy ∂∂ 解 方程组关于x 求偏导数得122x xx x uu yu vv u xu -=⎧⎨-=+⎩…………………(3分) 解此方程组得,12u x u y∂=∂+ ………………(4分)方程组关于y 求偏导数得212y yy y uu u yu vv xu -=+⎧⎨-=⎩…………………(7分) 解此方程组得,2u uy u y∂=-∂+. ………………(8分) 4、计算22Lx ydx xy dy -⎰,其中L 是以R 为半径,圆心在原点的右半圆周从最下面一点A 到最上面一点B .解 题设中的右半圆周从点A 到点B 的参数方程为cos sin x R y R θθ=⎧⎨=⎩, 其中θ从2π-到2π. ………………………(3分)又()sin x R θθ'=-,()cos y R θθ'=,故第二型曲线积分 …………(4分)/222422422/2(cos sin cos sin )Lx ydx xy dy R R d ππθθθθθ--=-+⎰⎰……(6分)44/2/2(1cos 4)44R R d πππθθ-=--=-⎰ ………………………(8分)5、利用含参量积分计算1ln b ax x dx x-⎰,其中0a b <<. 解 因为ln b abyax x x dy x-=⎰,所以 …………………………(2分)1100ln b ab y a x x dx dx x dy x-=⎰⎰⎰.由于被积函数(,)yf x y x =在[0,1][,]a b ⨯上连续,………………………(4分)故由含参量积分连续性定理,交换积分顺序得111000ln b ab b y y a a x x dx dx x dy dy x dx x-==⎰⎰⎰⎰⎰ …………………(6分)11ln11ba bdy y a+==++⎰…………………(8分) 6、利用极坐标变换计算22Dy dxdy x⎰⎰,其中D 是由圆222x y x += (0)y ≥与x 轴所围成的平面区域.解 引入极坐标变换cos x r θ=, sin y r θ=, …………………………(2分)则积分区域D 在此极坐标变换下变为{(,)0,02cos }2r r πθθθ∆=≤≤≤≤,………………………(4分)所以,222/22cos 22200sin sin cos cos Dy dxdy rdrd d rdr x πθθθθθθθ∆==⎰⎰⎰⎰⎰⎰ ………………(6分) /2202sin 2d ππθθ==⎰……………(8分)四、应用题(每小题6分,共12分)1、某工厂打算建造一个容积为25003m 长方体仓库,其中仓库顶的造价为200元/2m ,仓库底面造价为300元/2m ,仓库四周造价为100元/2m ,问如何设计可以使仓库的建造成本最小.解 设仓库的长宽高分别为x ,y ,z ,则由题设有2500xyz =. 又设建造仓库的成本为S ,则(,,)100(22)300200S S x y z xz yz xy xy ==+++500200200xy xz yz =++ …………(2分)因此,所求问题可归结为在约束条件2500xyz =下,函数(,,)S x y z 的最小值问题.构造拉格朗日函数(,,,)500200200(2500)L x y z xy xz yz xyz λλ=+++- ………(3分)令50020005002000200200025000x yz L y z yz L x z xz L x y xy L xyz λλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪=-=⎩,解之得101025x y z =⎧⎪=⎨⎪=⎩ ………(5分)即仓库的长、宽、高分别为10m ,10m ,25m 时,造价最小,为150000元.………(6分)2、求由球面2224x y z ++=与抛物面223x y z +=所围成的区域Ω的体积. 解 设所求区域的体积为V ,则V dxdydzΩ=⎰⎰⎰. …………………(2分)引入柱面坐标变换cos x r θ=, sin y r θ=, z z =,则球面方程变为224r z +=,抛物面方程变为23r z =. …………………(3分)由方程组22243r z r z⎧+=⎨=⎩,消去z 得Ω在xy 平面上的投影区域D 的边界曲线方程r =0z =.于是,Ω在柱面坐标下可表示为2{(,,)02,3r r z r z θθπ≤≤≤≤≤≤,………………(4分)所以,22220/3)3r r V dxdydz d d rdr ππθθΩ===⎰⎰⎰⎰⎰20192)36r rdr ππ==………………(6分)。

【最新试题库含答案】数学分析(下册)答案

【最新试题库含答案】数学分析(下册)答案

数学分析(下册)答案:篇一:《数学分析下册》期末考试卷及参考答案数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u?则?u?u?,??y?xdu?。

2、设L:x2?y2?a2,则??xdy?ydx?。

L?x=3cost,L:3、设?(0?t?2?),则曲线积分?(x2+y2)ds=。

?y=3sint.L4、改变累次积分?dy?(fx,y)dx的次序为。

2y33x?y?1,则??1)dxdy 。

5、设DD二、判断题(正确的打“O”;错误的打“×”;每题3分,共15分)px0,y0)px0,y0)1、若函数(在点(连续,则函数(点(必存在一fx,y)fx,y)阶偏导数。

( )px0,y0)px0,y0)2、若函数(在点(可微,则函数(在点(连续。

fx,y)fx,y)( )px0,y0)3、若函数(在点(存在二阶偏导数fxy(x0,y0)和fyx(x0,y0),则 fx,y)?必有 fxy(x0,y0)fyx(0x,0y) 。

L(B,A)( ) ( ) 4、L(A,B)?f(x,y)dx??f(x,y)dx。

5、若函数(在有界闭区域D上连续,则函数(在D上可积。

( ) fx,y)fx,y)第 1 页共 5 页三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I??(exsiny?3y)dx?(excosy?3)dy ,?AOAO为由A(a,0)到O(0,0)经过圆x2?y2?ax上半部分的路线。

其中?、计算三重积分???(xV2?y2)dxdydz,是由抛物面z?x2?y2与平面z?4围成的立体。

第 2 页共 5 页3、计算第一型曲面积分I???dS,S其中S是球面x2?y2?z2?R2上被平面z?a(0?a?R)所截下的顶部(z?a)。

4、计算第二型曲面积分22 I????y(x?z)dydz?xdzdx?(y?xz)dxdy,S其中S是立方体V??0,b???0,b???0,b?的外表面。

《数学分析II》期末试卷+参考答案

《数学分析II》期末试卷+参考答案

《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。

yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。

a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。

四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。

]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。

求。

∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。

证明:存在且小于)(lim x f x +∞→41π+。

七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。

1>x 判别级数∑∞=2)(1n n f 的敛散性。

八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。

求级数的和。

∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。

二.。

3=a 三. 是紧集。

四.一致收敛。

五.43。

六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。

数学分析期末考试题1、2(第二份有答案)

数学分析期末考试题1、2(第二份有答案)

第三学期数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分)1.设)sin(y x e z xy+=,则其全微分=dz . 2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++S dxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1. 求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:221140π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. (⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2 .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 解:方程ze z y x =++两边对x ,y 求偏导数,得 xze x z z∂∂=∂∂+1 y z e y z z ∂∂=∂∂+1 解得11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z zz z z xy e e y z e e e y z 。

数学分析期末试题(值得下载 )

数学分析期末试题(值得下载    )

数学分析考试题一、判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集.()2.当二元函数的重极限与两个累次极限都存在时,三者必相等.()3.连续函数的全增量等于偏增量之和. ()4.在原点不可微.()5.若都存在,则.()6.在内不一致收敛.()7.平面图形都是可求面积的.()8.学过的各种积分都可以以一种统一的形式来定义. ()9.第二型曲面积分也有与之相对应的“积分中值定理”.()10.二重积分定义中分割的细度不能用来代替.()二、填空题(每小题3分,共15分)1.设,则其全微分.2.设,则在点处的梯度.3.设为沿抛物线,从到的一段,则.4.边长为密度为的立方体关于其任一棱的转动惯量等于.5.曲面在点(3,1,1)处的法线方程为.三、计算题(每小题5分,共20分)1.求极限.2.设是由方程所确定的隐函数,求.3.设,求.4.计算抛物线与轴所围的面积.四、(10分)密度的物体由曲面与所围成,求该物体关于轴的转动惯量.五、(10分)求第二类曲面积分其中是球面并取外侧为正向.六、(第1小题8分,第2小题7分,共15分).1. 求曲线,在点(1,1,2)处的切线方程和法平面方程.2.证明:.七、(10分)应用积分号下的积分法,求积分.第三学期数学分析参考答案及评分标准一、判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集.()2.当二元函数的重极限与两个累次极限都存在时,三者必相等.(√)3.连续函数的全增量等于偏增量之和. ()4.在原点不可微.(√)5.若都存在,则.()6.在内不一致收敛.(√)7.平面图形都是可求面积的.()8.学过的各种积分都可以以一种统一的形式来定义. (√)9.第二型曲面积分也有与之相对应的“积分中值定理”.()10.二重积分定义中分割的细度不能用来代替.(√)二、填空题(每小题3分,共15分)1.设,则其全微分.2.设,则在点处的梯度 (1,-3,-3).3.设为沿抛物线,从到的一段,则 2 .4.边长为密度为的立方体关于其任一棱的转动惯量等于.5.曲面在点(3,1,1)处的法线方程为.三、计算题(每小题5分,共20分)1.解:先求其对数的极限.由于,所以 =0,故=1.2.解:方程两边对,求偏导数,得解得。

《数学分析III》期末考试卷及参考答案05

《数学分析III》期末考试卷及参考答案05

第 1 页 共 6 页数学分析下册期末试题及参考答案05一、 填空题(第1题每空2分,第2、3、4、5、6题每题4分,共26分)1、已知、已知 22xy u e-=,,则u x¶¶= ,uy¶=¶ , du = ;2、cos sin x ar y br q q =ìí=î,则(,)J r q = ;3、设L :cos sin x a t y b t=ìí=î 0t p ££,则22()Lx y ds +ò= ;4、120(,)ydyf x y dx òò交换积分顺序后为:交换积分顺序后为: ; 5、2221x y I x ydxdy +£=òò= ;6、令设222L x y a +=:,则Lydx xdy -=ò . 第 2 页 共 6 页二、判断题(对的打√,错的打×,每空3分,共15分)1、若函数(,)z f x y =的重极限和两个累次极限都存在,的重极限和两个累次极限都存在,则他们必相等;则他们必相等; ( )2、若函数(,)z f x y =在00(,)x y 可微,则(,)z f x y =在点00(,)x y 一定连续;一定连续; ( )3、若函数(,)z f x y =在闭区域D 上连续,则函数(,)z f x y =在D 上可积;上可积; ( )4、(,,)P x y z 是定义在双侧曲面S 上的函数,则上的函数,则(,,)(,,)SSP x y z dxdy P x y z dxdy =-òòòò; ( )5、若函数(,)z f x y =的偏导数在00(,)x y 的邻域内存在,则(,)f x y 在点00(,)x y 可微;( )三、计算题(第3、6题各7分,其余每题8分,共46分)1、求曲面22z x y =+与22z x y =+所围立体的体积. 得 分分 阅卷人阅卷人得 分分 阅卷人阅卷人第 3 页 共 6 页2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域. 3、利用二重积分计算椭圆面:22221x y a b+£的面积的面积任教姓学考生答题不得过此线密封线课教师:学班号:名:号:装订线第 4 页 共 6 页4、计算第二型曲面积分:1SI dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧. 5、计算22()SI x y ds =+òò,其中S 为立体221x y z +££的边界曲面.第 5 页 共 6 页6、利用高斯公式计算235SI xdydz ydzdx zdxdy =++òò,其中S 是单位球面2221x y z ++=的外侧. 四、证明题(四、证明题(66分)1、证明(3sin )(cos )x y dx x y dy ++是全微分,并求原函数(,)u x y得 分分 阅卷人阅卷人 考生答题不得过此线密封线任课教师:教学班号:姓名:学号:装订线得 分分 阅卷人阅卷人第 7 页 共 6 页1、求曲面22z x y =+与22z x y =+所围立体的体积 解:设所求体积为V,V,则则2222[()]xyD V x y x y dxdy =+-+òò,其中,22:1xy D x y +£(3分),令cos ,sin x r y r q q ==,则xy D 可表示为:02,01r q p ££££(4分),所以,,所以, 21200()V d r r rdr pq =-òò(5分)=6p (8分)分)2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域解:令sin cos ,sin sin ,cos x r y r z r j q j q j ===(2分), 则V 可表示为:02,,0cos 2r pq p j p j ££££££-(4分),所以, 222VI x y z dxdydz =++òòò=2cos 3002sin d d r dr ppjp q j j -òòò(5分) =10p(8分)3、利用二重积分计算椭圆面:22221x y a b+£的面积解:设所求面积为S,则Ds dxdy =òò,其中D 为:22221x y a b +£(2分),令cos ,sin x ar y br q q ==(3分),则D 可表示为:02,01r q p ££££(4分),所以, 2100S d abrdr pq =òò(5分),所以S ab p =(7分). 4、计算第二型曲面积分:1S I dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧解:记1S 为椭球面0z ³的一侧,2S 为椭球面0z £的一侧,则的一侧,则12111S S SI dxdy dxdy dxdy z z z ==+òòòòòò(2分),则12,S S 在xoy 面上的投影都是2222:1xy x y D a b +£(3分),所以222222221111xyxyDD I dxdy dxdy x y x y c c aba b =------òòòò22221x y c a b --21dr c r-=4ab cp(,则221x y z z ++=22x y =+,则2212x y z z ++=(22222)+2)+=(12)2p +23Sxdydz ydzdx +òò235Sxdydz ydzdx =++òò分),所以10I =D 44033p p ´=分)分)则y x ==¶¶,所以第 9 页 共 6 页则00(,)(3sin )(cos )3cos x yM Mu x y x y dx x y dy xdx x ydy =++=+òòòò(5分)分)=23sin 2x x y +(6分)(说明:原函数可以直接观察得出!)五、应用题(五、应用题(77分) 一页长方形白纸,要求印刷面积占2Acm ,并使所留页边空白为:上部与下部宽度之和为:a b h +=cm,左部与右部宽度之和为:c d r +=cm (A,r,h 为已知数),求页面的长(y)和宽(x),使它的面积最小.解:由题意,目标函数与约束条件分别为xy S =与.))(( , ,A h y r x h y r x =-->>(1分)作Lagrange 函数],))([(A h y r x xy L ---+=l (2分)则有分)则有ïîïíì=---==-+==-+=.0))(( ,0)( ,0)(A h y r x L r x x L h y y L yx l l l (3分)分) 由此解得由此解得, , 111r h Ah x y r l l l l l æö===-+ç÷ç÷++èø(5分)分) 于是有于是有. ,h rAhy r h Arx +=+=(6分)分)根据问题的实际意义知,此时页面的面积是最小的根据问题的实际意义知,此时页面的面积是最小的..(7分)分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析下册期末模拟试卷及参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)
1、已
知u =则u x
∂=∂ ,u y ∂=∂ ,du = 。

2、设22L y a +=2:x ,则L
xdy ydx -=⎰ 。

3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L
(x +y )= 。

4、改变累次积分32dy f dx ⎰⎰3
y (x ,y )的次序为 。

5、设1D x y +≤:
,则1)D
dxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)
1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )
点p 00(x ,y )必存在一阶偏导数。

( )
2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。

( )
3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则
必有 0000(,)(,)x y y x f x y f x y =。

( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。

( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )
在D 上可积。

( )
三、计算题 ( 每小题9分,共45分)
1、 用格林公式计算曲线积分
(sin 3)(cos 3)x x AO I e y y dx e y dy =
-+-⎰ ,
其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

、计算三重积分
22()V x
y dxdydz +⎰⎰⎰,
是由抛物面22z x y =+与平面4z =围成的立体。

、计算第一型曲面积分
S
I d S =⎰⎰ ,
其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。

4、 计算第二型曲面积分
22()()S I y x z dydz x dzdx y xz dxdy =-+++⎰⎰,
其中S 是立方体[][][]0,0,0,V b b b =⨯⨯的外表面。

5、设{}222(,)D x y x y R =+≤. 求以圆域D 为底,以曲面22()x y z e -+=为顶的曲顶柱体的体积。

四、证明题(每小题7分,共14分) 1、验证曲线积分 222(2)(2)(2)L x y z d x y x z d y z x y d z -+-+-⎰, 与路线无关,并求被积表达式的一个原函数(,,)u x y z 。

2、证明:若函数f (x ,y )
在有界闭区域D 上连续,则存在(,),D ξη∈ 使得
(,)(,)D D f x y d f S σξη=⋅⎰⎰ ,这里D S 是区域D 的面积。

参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、22x x y +;22y x y +;2222
x y dx dy x y x y +++。

2、22a π;
3、54π ;
4、322(,)X
dx f x y dy ⎰⎰ ;5、1)。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)
1、×;
2、○;
3、×;
4、× ;
5、○ .
三、计算题 ( 每小题9分,共45分)
1、 解:补上线段:0,0OA y x a =≤≤ 与弧22:(0)AO x y ax y +=≥构成封闭曲线,由格林公式,有
(sin 3)(cos 3)(sin 3)(cos 3)x x x x OA OA AO I e y y dx e y dy e y y dx e y dy +=
-+---+-⎰⎰
----------------------------------------------------------------------------------------------6分 =
220:(0)cos (cos 3)0a
x x D x y ax y e y e y dxdy dx +≤≥⎡⎤---⎣⎦⎰⎰⎰-----------------------------8分 =2338
D dxdy a π=
⎰⎰--------------------------------------------------------------------9分 2、 解:作柱面坐标变换:cos ,sin ,x r y r z z θθ===,
则(,,)J r z r θ= 且
2:4,02,02V V r z r θπ'⇒≤≤≤≤≤≤---------------------------------------------4分 222222
4300()683293
V
V r x y dxdydz
r rdrd dz d r dr dz πθθπ'
∴+=⋅--------------------=
--------------------=-------------------------⎰⎰⎰⎰⎰⎰⎰⎰⎰分
分分
3
、解:22S Z R a =∈≤-22:x ,y )D :x +y .
dS =
=
S D I dS ∴==⎰⎰--------------------------4分
作极坐标变换:cos x r θθ=,y=rsin , 则 J θ(r ,)=r ,
且0D D r θπ'⇒≤≤≤≤::02
D I θ'=
=200d π
⎰-----------------------------------7分
2R π=(R-a )
----------------------------------------------9分
4、解:用高斯公式,得
I dxdydz
=⎰⎰⎰V
(y+0+x )------------------------------------6分 =dx dy dz ⎰⎰⎰b b b 000
(x+y )----------------------------------8分 =4b --------------------------------------------------9分
5、解:曲顶柱体的体积22x y D V e dxdy -
+=⎰⎰()-----------------4分
作极坐标变换:cos sin x r y r θθ==,,则 J θ(r ,)=r , 且 002D D r R θπ'⇒≤≤≤≤:, ,于是,有
2
r D V e rdrd θ-'
=⎰⎰
=2
200R r d e rdr πθ-⎰⎰--------------------------------------8分
=π2
-R (1-e )-----------------------------------------------9分 四、证明题(每小题7分,共14分)
1、证明:222222P x yz Q y xz R z xy =-=-=-,,
222P Q R Q P R z x y y x y z z x
∂∂∂∂∂∂==-=-==-∂∂∂∂∂∂,,,∈3(x ,y ,z )R . ∴曲线积分与路线无关。

-----------------------------------4分 取000x y ==,则
00
y z
u P dx Q dy R dz =++⎰⎰⎰x 0(x ,y ,z )(x ,0,0)(x ,y ,0)(x ,y ,z )
=22000
y x
z x dx y dy dz ++⎰⎰⎰2(z -2xz )-------------------7分 =13
=333(x +y +z )-2xyz --------------------------9分 1、证明:由 最值定理,函数f (x ,y )
在有界闭区域D 上存在最大值M 和最小值m ,且∀∈(x ,y )
D ,有 m f M ≤≤(x ,y ),
上式各端在D 上积分,得
D D D
mS f d MS σ≤≤⎰⎰(x ,y ),
或 f d m M σ≤≤⎰⎰D D (x ,y )S , 其中D S 为D 的面积。

根据介质性定理,存在D ξη∈(,),使得 f d f f σξησξη=
=⋅⎰⎰⎰⎰D D D D (x ,y )(,),即f (x ,y )d (,)S S。

相关文档
最新文档