中衡精馏塔工艺工艺【设计明细】计算

合集下载

精馏塔的工艺标准计算

精馏塔的工艺标准计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔衡算——精选推荐

精馏塔衡算——精选推荐

精馏塔设计精馏塔T1的设计计算精馏塔内气液两相流量和有关物性的平均值如下:ρL=960.414kg/m3,ρV=0.932kg/m3,L S=6.36×10−3m3/s,V S=8.48m3/s,σ=25dyne/cm一、塔径初选F LV=L SV S∙(ρLρV)0.5=6.36×10−38.48×(960.4140.932)0.5=0.024参考表4-10,取H T=0.5m(板间距)查图4-9得:C20=0.09液泛气速:u f=C20∙ρL−ρVρV 0.5=0.09×960.414−0.9320.9320.5=2.89m/s取泛点百分率为80%,可求出:设计气速:u n′=0.8×2.89=2.31m/s所需气体流通面积A n′=V Su n′=8.482.31=3.67m2参考表4-9选择单流型塔板,取堰长L W=0.7DA f′A T′=A T′−A n′A T′=0.088 A T′=A n′1−0.088=3.670.912=4.02m2D′=4A Tπ=4×4.023.14=2.26圆整到D=2.3mA T=πD24=4.15m2A f=0.088A T=0.365m2A n=A T−A f=3.785m2u n=V SA n=2.24m/s,L w=0.7D=0.7x2.3=1.61m实际泛点百分率为:u nu f =2.242.89=0.775二.塔板详细设计选择平顶溢流堰,参考表4-11,取堰高 w=0.05m采用垂直弓形降液管和普通平底受液盘,取 0=0.04m取W s=W s’=0.07m,W c=0.05m,又从图4-21求出W d=0.145D=0.3335m 于是,可以算出:x=D2−(W d+W s)=0.7465mr=D2−W c=1.1mA a=2(x r2−x2+r2sin−1xr)=3.01m2取d0=6mm,t/d0=3.0,ϕ=A0A a =0.907(t/d0)2=0.1008A0=ϕA a=0.1008x3.01=0.303m2三.塔板校核(1).板压降的校核取板厚δ=3mm,δ/d0=3/6=0.5,A0/(A T−A f)=0.303/(4.15-2x0.365)=0.0886 查图4-14得,C0=0.74,则:d=12g ρVρL(u0C0)2=0.075m液柱由图4-11查得,E=1.025堰上液高: ow=2.84x10−3E(L HL w)2/3=0.017按面积(A T−2A f)计算的气体速度:u a=V sA T−2A f=1.31m/s 相应的气体动能因子:F a=u aρV0.5=1.26由图4-16查得液层充气系数β=0.63液层阻力: L=β( w+ ow)=0.63x(0.05+0.017)=0.042m液柱于是,板压降: f= d+ L=0.075+0.042=0.117m液柱(2).雾沫夹带量的校核按F LV=0.024和泛点百分率0.775,从图4-22查得:Ψ=0.11e V=Ψ1−ΨL sρLV sρv=0.095<0.1(kg液体kg干气体)(3).溢流液泛条件的校核w=0.05m, ow=0.017m,Δ=0, f=0.117mf=0153x(L sL w L0)2=0.0015m故降液管内的当量清液高度H d=0.05+0.017+0.117+0.0015+0=0.1855取φ=0.6,降液管内泡沫层高度:H fd=H dϕ=0.310<0.55不会发生溢流液泛。

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算一、塔径D1、精馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0319.030.28.87792.00015.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SS V L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /45.21时的C0720.02045.21071.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /405.130.230.28.8770720.0max =-⨯=-=ρρρ可取安全系数为,则s m u u /843.0405.160.060.0max =⨯==故m u V D S 179.1843.092.044=⨯⨯==ππ 按标准,塔径圆整为1.2m,则空塔气速。

2、提馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0782.070.20.96041.00017.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SSV L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /92.19时的C ,即0679.02092.19068.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /279.170.270.20.9600679.0max =-⨯=-=ρρρ 可取安全系数为,则s m u u /767.0279.160.060.0max =⨯== 故m u V D S 825.0767.041.044=⨯⨯==ππ 按标准,塔径圆整为1.0m,则空塔气速。

为统一精馏段和提馏段塔径,取为。

2精馏塔的工艺计算

2精馏塔的工艺计算

2精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据(一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯 212.6868Kmol/h ;苯 3.5448 Kmol/h ;甲苯 10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

由《分离工程》P65式3-23得:LKW Z — X LK ,WD = F -------------1— XHK ,^ — XLK ,W1-0.01-0.005W=F-D=226.8659-13.2434=213.6225Kmol/h表2.1进料和各组分条件编号组分 f i /kmol/hf i /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3乙苯 212.6868 93.7500总计226.8659100HK ,DLK ,W X iK , W/ = 0.0 05X HK . D =0.01 (式 2. 1)D =226.865护空遊8305=13.2434Kmol/h=2 1 36 2 2 50.0 0 5=1.06 8 Kmol/h 2, Wcb = f2 -©2 =10.6 34 31.0 6 8 19.5 6 6 Kmol/hd3 =D X3. D =13.2434X0.01 =0.132434 Kmol/hX3, D03 = f s -d s =212.6868-0.132434 =212.5 54 Kmol/h表2-2 物料衡算表编号组分f i/kmol/h 馏出液d i 釜液⑷i1 苯 3.5448 3.5448 02 甲苯10.6343 9.5662 1.06813 乙苯212.6868 0.1324 212.5544总计226.8659 13.2434 213.62252.2精馏塔工艺计算2.2.1操作条件的确定、塔顶温度纯物质饱和蒸气压关联式(化工热力学P199): ln(P S/P C) =(1 -x)」(Ax + Bx1.5 +Cx3 +D X6)X =1 -T/Tc表2-3 物性参数以苯为例,X =1 -T/T c =1 -318.15/562.2 =0.434 ln(P % ) =(1 -0.434)」x(-6.98273X 0.434 + 1.33213咒 0.4341.5 -2.62863咒0.4343 -3.33399X 0.4346) = -5.1SP S =exp(-5.1) X 48.9 =0.2974 X0.1MPa = P,同理,可得 P 0=0.0985x0.1MPa二、塔顶压力 塔顶压力卩顶=1.013X0.1Mpa 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048表2-3饱和蒸 汽压关联式 数据表2-4试差法结果统计故塔顶温度=1055Cny露点方程:2吕P =-,试差法求塔顶温度P故塔底温度=136 C四、塔底压力 塔底压力卩底=1.013X0.1Mpa 五、进料温度进料压力为P进=1.013x0.1Mpa .n泡点方程:S P i 0X i = pi 二 试差法求进料温度故进料温度=133 C六、相对挥发度的计算 据化学化工物性数据手册,用内插法求得各个数据 t 顶二 105.5 C, a 苯=5.961a 甲苯=2.5 14 a 乙苯=1;试差法求塔底温度n泡点方程: 送P^X j = Pi 4t 进=133 C,(/苯=4.38 a 甲苯=1.97ct 乙苯=1 综上,各个组份挥发度见下表进料温度133 塔顶温度105.5 塔底温度136 平均相对挥发度乙苯据清晰分割结果,计算最少平衡级数。

精馏塔和塔板的主要工艺尺寸的计算

精馏塔和塔板的主要工艺尺寸的计算

塔和塔板的主要工艺尺寸的计算(一)塔径 D 参考下表 初选板间距H T =0.40m,取板上液层高度H L =0.07m 故: ①精馏段:H T -h L =0.40-0.07=0.311220.00231394.3()()()()0.04251.04 3.78s L s V L V ρρ== 查图表 20C =0.078;依公式0.20.22026.06()0.078()0.0733C C σ===;max0.078 1.496/u m s ===,则:u=0.7⨯u =0.7⨯2.14=1.047m/s 故: 1.265D m ===; 按标准,塔径圆整为1.4m,则空塔气速为2244 1.040.78/1.3s V u m s D ππ⨯===⨯ 塔的横截面积2221.40.63644T A D m ππ===②提馏段:11''22''0.002771574.8()()()()0.05070.956 5.14s L s V L V ρρ==;查图20C0.20.222.09()0.0680.069420C C σ⎛⎫==⨯= ⎪⎝⎭; max 1.213/u m s===,'0.70.7 1.2130.849/u u m s =⨯=⨯=;' 1.20D m ===; 为了使得整体的美观及加工工艺的简单易化,在提馏段与精馏段的塔径相差不大的情况下选择相同的尺寸; 故:D '取1.4m塔的横截面积:''2221.4 1.32744T A D m ππ===空塔气速为22440.956'0.720/1.3s V u m s D ππ⨯===⨯ 板间距取0.4m 合适(二)溢流装置采用单溢流、弓形降液管、平形受液盘及平形溢流堰,不设进流堰。

各计算如下: ①精馏段:1、溢流堰长 w l 为0.7D ,即:0.7 1.40.91w l m =⨯=;2、出口堰高 h w h w =h L -h ow 由l w /D=0.91/1.4=0.7, 2.5 2.58.2810.480.91h w L l m ==查手册知:E 为1.03 依下式得堰上液高度:22332.84 2.848.281.030.013100010000.91h ow w L h E m l ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 故:L ow h -h 0.070.0130.057w h m ==-=3、 降液管宽度d W 与降液管面积f A有/w l D =0.7查手册得/0.14,/0.08d fT W D A A ==故:d W =0.14D=0.14 ⨯1.3=0.182m2220.080.08 1.30.106244f A D m ππ==⨯⨯=()0.10620.418.55,0.0023f T s A H s s L τ⨯===>符合要求4、降液管底隙高度0h取液体通过降液管底隙的流速0u =0.1m/s 依式计算降液管底隙高度0h , 即:000.00230.0250.910.1s w L h m l u ===⨯ ②提馏段:1、 溢流堰长'w l 为0.7'D ,即:'0.7 1.40.91w l m =⨯=;2、出口堰高'w h ''w L ow h =h -h ;由 '/D=0.91/1.4=0.7w l ,'2.5 2.59.9812.630.91h w L l m ==查手册知 E 为1.04依下式得堰上液高度:2233''2.84 2.849.981.040.0146100010000.91h oww L h E ml ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭0.070.01460.0554w h m =-=。

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔的工艺计算2、1精馏塔的物料衡算2、1、1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212、6868Kmol/h;苯3、5448 Kmol/h;甲苯10、6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。

2、1、2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x ,005.0=W LK x ,表2、1 进料与各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2、 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226、8659-13、2434=213、6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500总计226、86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2、2精馏塔工艺计算2、2、1操作条件的确定 一、塔顶温度纯物质饱与蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0、1Mpa,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544总计226、865913、2434213、6225组份 相对分子质量临界温度C T 临界压力C P 苯 78 562、2 48、9 甲苯 92 591、841、0 乙苯106617、236、0名称A B C D表2-3饱与蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105、5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6、98273 1、33213 -2、62863 -3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯-7、48645 1、45488-3、37538-2、23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α;133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

2 精馏塔地实用工艺计算

2  精馏塔地实用工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 乙苯 -7.486451.45488-3.37538-2.23048泡点方程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔得工艺计算2、1精馏塔得物料衡算2、1、1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212、6868Km ol/h;苯3、5448 Kmol/h;甲苯10、6343Kmo l/h 。

(三)分离要求:馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。

2、1、2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

表2、1 进料与各组分条件由《分离工程》P65式3-23得: ﻩKm ol /hW=F-D =226、8659-13、2434=213、6225Kmol/h Km ol/h K mo l/h K mol/h Kmo l/h表2-2 物料衡算表 2、2精馏塔工艺计算2、2、1操作编号 组分 /kmol/h /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500总计226、8659100编号 组分 /km ol/h 馏出液 釜液 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544总计226、865913、2434213、6225条件得确定 一、塔顶温度纯物质饱与蒸气压关联式(化工热力学 P199):表2-3 物性参数注:压力单位0、1Mp a,温度单位K表2-3饱与蒸汽压关联式数据 以苯为例,.033213.1434.098273.6()434.01()(1⨯+⨯-⨯-=-CSP PIn 同理,可得露点方程:,试差法求塔顶温度表2-4 试差法结果统计二、塔顶压力 塔顶压力 三、塔底温度泡点方程: 试差法求塔底温度组份 相对分子质量临界温度 临界压力 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 AB C D 苯-6、982731、33213-2、62863-3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯 -7、486451、45488 -3、37538-2、23048故塔底温度=136℃ 四、塔底压力 塔底压力 五、进料温度进料压力为,泡点方程: 试差法求进料温度六、相对挥发度得计算据化学化工物性数据手册,用内插法求得各个数据 ℃, ; ℃, ; ℃,综上,各个组份挥发度见下表 据清晰分割结果,计算最少平衡级数。

2--精馏塔的工艺计算

2--精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 乙苯 -7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔设备工艺标准计算资料

精馏塔设备工艺标准计算资料

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /%1 苯 3.5448 1.56252 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 乙苯 -7.486451.45488-3.37538-2.23048泡点方程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔塔设计及相关计算

精馏塔塔设计及相关计算

2011板式精馏塔设计任务书板式精馏塔的设计选型及相关计算设计计算满足生产要求的板式精馏塔,包括参数选定、塔主题设计、配套设计及相关设计图目录板式精馏塔设计任务 (3)一.设计题目 (3)二.操作条件 (3)三.塔板类型 (3)四.相关物性参数 (3)五.设计内容 (3)设计方案................................... 错误!未定义书签。

一.设计方案的思考 (6)二.工艺流程 (6)板式精馏塔的工艺计算书 (7)一.设计方案的确定及工艺流程的说明...............................二.全塔的物料衡算...............................................三.塔板数的确定.................................................四.塔的精馏段操作工艺条件及相关物性数据的计算...................五.精馏段的汽液负荷计算.........................................六.塔和塔板主要工艺结构尺寸的计算...............................七.塔板负荷性能图............................................... 筛板塔设计计算结果...................... 错误!未定义书签。

22 附属设备的的计算及选型. (25)设计感想 (26)苯-氯苯精馏塔的工艺设计一.设计题目苯-氯苯连续精馏塔的设计二. 设计任务及操作条件1. 进精馏塔的原料液含苯38%(质量%,下同),其余为氯苯;2. 产品含苯不低于97%,釜液苯含量不高于2%;3. 生产能力为96 吨/day(24h)原料液。

4. 操作条件(1)塔顶压强4kPa(表压);(2)进料热状态自选;(3)回流比自选;(4)塔底加热蒸汽压力:0.5MPa(5)单板压降≤ 0.7kPa。

精馏塔的工艺计算

精馏塔的工艺计算

精馏塔的工艺计算精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。

计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q ü?=-?-?y?=?-?t??4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫,()()HK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。

精馏塔的设计计算

精馏塔的设计计算

第2章精馏塔的设计计算2.1 进料状况设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下回流至塔内该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.7倍。

塔釜采用间接蒸汽加热具体如下:塔型的选择本设计中采用浮阀塔。

2.2 加料方式和加料热状况加料方式和加料热状况的选择:加料方式采用泵加料。

虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取泡点进料。

2.3 塔顶冷凝方式塔顶冷凝采用全冷凝器用水冷却。

甲醇和水不反应而且容易冷却,故使用全冷凝器,塔顶出来的气体温度不高冷凝回流液和产品温度不高无需进一步冷却,此分离也是为了得到甲醇故选用全冷凝器。

2.4 回流方式回流方式可分为重力回流和强制回流,对于小型塔冷凝器一般安装在塔顶。

其优点是回流冷凝器无需支撑结构,其缺点是回流控制较难。

需要较高的塔处理或因为不易检修和清理,这种情况下采用强制回流.故本设计采用强制回流。

2.5加热方式加热方式为直接加热和间接加热。

直接加热由塔底进入塔内。

由于重组分是水故省略加热装置。

但在一定的回流比条件下,塔底蒸汽对回流有稀释作用,使理论板数增加,费用增加,间接蒸汽加热器是塔釜液部分汽化维持原来浓度,以减少理论板数。

本设计采用间接蒸汽加热。

2.6工艺流程简介连续精馏装置主要包括精馏塔,蒸馏釜(或再沸器),冷凝器,冷却器,原料预热器及贮槽等.原料液经原料预热器加热至规定温度后,由塔中部加入塔内.蒸馏釜(或再沸器)的溶液受热后部分汽化,产生的蒸汽自塔底经过各层塔上升,与板上回流液接触进行传质,从而使上升蒸汽中易挥发组分的含量逐渐提高,至塔顶引出后进入冷凝器中冷凝成液体,冷凝的液体一部分作为塔顶产品,另一部分由塔顶引入塔内作为回流液,蒸馏釜中排出的液体为塔底的产品。

精馏塔的工艺计算样本

精馏塔的工艺计算样本

2 精馏塔的工艺计算2.1精馏塔的物料衡算 2.1.1基础数据 ( 一) 生产能力:10万吨/年, 工作日330天, 每天按24小时计时。

( 二) 进料组成:乙苯212.6868Kmol/h; 苯3.5448 Kmol/h; 甲苯10.6343Kmol/h 。

( 三) 分离要求:馏出液中乙苯量不大于0.01, 釜液中甲苯量不大于0.005。

2.1.2物料衡算( 清晰分割)以甲苯为轻关键组分, 乙苯为重关键组分, 苯为非轻关键组分。

01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.8659100,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ ( 式2. 错误!未定义书签。

)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h0681.1005.06225.21322=⨯==W X W ,ωKmol/h5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算 2.2.1操作条件的确定 一、 塔顶温度纯物质饱和蒸气压关联式( 化工热力学 P199) :CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225注: 压力单位0.1Mpa, 温度单位K表2-3饱和蒸汽压关联式数据以苯为例, 434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CSP PIn01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理, 可得MPa P b 1.00985.00⨯=露点方程: ∑==ni ii p p y 101, 试差法求塔顶温度 组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶三、塔底温度泡点方程: p x p ni i i =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底五、进料温度进料压力为Mpa p 1.0013.1⨯=进, 泡点方程: p x p ni i i =∑=10试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册, 用内插法求得各个数据5.105=顶t ℃, 961.5=苯α514.2=甲苯α1=乙苯α; 136=底t ℃, 96.1=甲苯α1=乙苯α; 133=进t ℃, 38.4=苯α97.1=甲苯α1=乙苯α综上, 各个组份挥发度见下表组份 进料温度133塔顶温度105.5 塔底温度136 平均相对挥发度苯 4.38 5.9615.1705 甲苯 1.97 2.5141.962.148 乙苯1111据清晰分割结果, 计算最少平衡级数。

精馏塔的简洁计算公式

精馏塔的简洁计算公式

精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。

在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。

在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。

1. 精馏塔的传质效率公式。

精馏塔的传质效率是评价其性能的重要指标之一。

传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。

其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。

2. 精馏塔的塔板压降公式。

塔板压降是精馏塔运行中需要考虑的重要参数之一。

塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。

其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。

3. 精馏塔的塔顶温度计算公式。

精馏塔的塔顶温度是其操作中需要重点关注的参数之一。

塔顶温度的计算公式如下:T = T0 + ΔT。

其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。

4. 精馏塔的塔板液体高度计算公式。

塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。

塔板液体高度的计算公式如下:H = H0 + ΔH。

其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。

5. 精馏塔的塔板塔顶气体速度计算公式。

塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。

塔板塔顶气体速度的计算公式如下:V = Q / A。

其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。

总结。

精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。

本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。

当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。

化工原理课程设计精馏塔工艺设计计算

化工原理课程设计精馏塔工艺设计计算

第一章 精馏塔工艺设计计算本设计任务为分离乙醇-丙醇混合物。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用气液混合进料,将原料通过预热器加热至指定温度后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分作为产品冷却后送至储罐。

随着全球能源紧缺,国家节能降耗方案的提出。

故操作回流比取最小回流比的 1.5倍。

以减少塔釜的加热负荷。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

1.1原料液及塔顶,塔底产品的摩尔分率0.2980.9180.018F D W x x x === 1.2 物料衡算总物料衡算:W D F += 即100D W += ……………………………………………(1-1) 易挥发组分物料衡算:Fw D Fx Wx Dx =+即 0.9180.0180.298D W F ⨯+⨯=⨯ …………………………………(1-2)1112 =31.111 kmol/h =68.889kmol/h D W --解()()得,46.07kg kmol 60.10kg kmol A B M M ==乙醇的摩尔质量丙醇的摩尔质量x =0.298Fx =0.918Dx 0.018F =1.3 相对挥发度的计算0.298y 0.464F F ==由X , 0.46410.464==2.0400.29810.298F α--得0.918y 0.955W D ==由X , 0.95510.955==1.8960.91810.918D α--得0.018y 0.034W W ==由X , 0.03410.034==1.9200.01810.018W α--得精馏段的平均相对挥发度:1= 1.9682F Dααα+=提馏段的平均相对挥发度:2= 1.9802F Wααα+=1.4 最小回流比的确定气液相平衡方程为 1.9681(1)1(1.9681)n nn n nx x y x x αα==+-+-得 1.9680.968nn ny x y =-0.298F X ==q 由泡点进料:q=1,X 代入上式解得: 0.455q y =min 0.9180.4552.9500.4550.298D q q qx y R y x --===--取操作回流比为 min 1.52 2.950 4.425R R ==⨯=1.5 操作线方程的确定 精馏段操作线方程:111+++=+R x x R Ry Dn n得:10.8160.169n n y x +=+提馏段操作线方程:1111n n W R F D F D y x x R R ++-=-++0.9180.0183.2140.2980.018D W F W x x F D x x --===-- 1 1.4080.007n n y x +=-111121α0.976,0.9180.863,1(α-1)D x y x y x y x =====+由由相平衡方程得由精馏段操作线方程得同理求以下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速,u =(0.6~0.8) (3-3) VVL Cu ρρρ-=max (3-4) 式中 L ρ–––––液相密度,3V ρ–––––气相密度,3C –––––负荷因子,2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,L σ–––––操作物系的液体表面张力, 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,。

(2) 踏板设计开孔区面积a A :⎪⎪⎭⎫⎝⎛+-=-r x r x r x A a 1222sin 1802π (3-11)式中 ()s d W W Dx +-=2 c W Dr -=2开孔数n :2155.1t A n a=(3-12) 式中 a A –––––鼓泡区面积,m 2; t –––––筛孔的中心距离,m 。

200907.0⎪⎭⎫⎝⎛==t d A A a φ (3-13)3.1.3筛板流体力学验算(1) 塔板压降g h P L P P ρ=∆ (3-14) σh h h h l c P ++= (3-15) 式中 c h –––––与气体通过筛板的干板压降相当的液柱高度,m 液柱;l h –––––与气体通过板上液层的压降相当的液柱高度,m 液柱; σh –––––与克服液体表面张力的压降相当的液柱高度,m 液柱。

⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=L V c cu h ρρ2051.0 (3-16) 式中 0h –––––气体通过筛孔的速率,; 0c –––––流量系数。

()OW W L l h h h h +==ββ (3-17) fT sa A A V u -=(3-18)V a u F ρ=0 (3-19) 式中 0F –––––气相动能因子,()121m s kg ⋅a u –––––通过有效传质区的气速,; T A –––––塔截面积,m 2。

04gd h L Lρσσ=(3-20) (2) 液沫夹带2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Ta L V h H u e σ (3-21) 式中 V e –––––液沫夹带量,液体气体; f h –––––塔板上鼓泡层高度,m 。

(3) 漏液()VL L h h C u ρρσ-+=13.00056.04.40min ,0 (3-22)min,00u u K =(3-23)式中 K –––––稳定系数,无因次。

K 值的适宜范围是1.5~2。

(4) 液泛d L P d h h h H ++= (3-24) 式中 d H –––––降液管中清液层高度,m 液柱;d h –––––与液体流过降液管的压降相当的液柱高度。

()203'153.0153.0u hl L h W sd =⎪⎪⎭⎫ ⎝⎛= (3-25) 式中 u 0ˊ–––––液体通过底隙时的流速,。

()W T d h H H +≤ϕ (3-26)式中 ϕ–––––安全系数,对易发泡物系,ϕ=0.3~0.5。

3.2 设计计算3.2.1精馏塔的塔体工艺尺寸计算由模拟结果知全塔的气相、液相平均物性参数如表3-1。

表3-1 物性参数表1. 塔径的计算查5-1史密斯关联图[6],图的横坐标为:1203.0685.3427.8324604.236000197.036002121=⎪⎭⎫⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛V L L L Vh ρρ取塔板间距0.50m ,板上液层高度L h =0.08m ,则L T h H - =0.50-0.006=0.42m查图[6]5-1的C 20=0.09,由式3-5得:0878.020675.179.0202.02.020=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=L C C σ由式3-4得:32.1685.3685.3427.8320878.0max =-⨯=-=V V L Cu ρρρ() 取安全系数[6]为0.7,由式3-3得空塔气速为: 0.70.7×1.32=0.924( ) 由式3-2得塔径为:84.1924.014.34604.244=⨯⨯==uV D Sπ(m )按标准塔径圆整后为: 2.000m 塔截面积为: 14.34414.342=⨯==D A T π(m 2) 实际空塔气速为: 784.014.34604.2===T S A V u () 2. 精馏塔有效高度的计算模拟结果20,由式3-1得有效塔高为:5.195.015.020)1(=⨯⎪⎭⎫⎝⎛-=-=T T T H E N Z (m ) 3.2.2 塔板主要工艺尺寸的计算1. 溢流装置的计算因塔径2.0 m ,可选用单溢流弓形降液管,采用凹形受液盘[6]。

各项计算如下: (1) 堰长W l4.10.27.07.0=⨯==D l W (m )(2) 溢流堰高度W h由式3-7得堰上液层高度OW h 为:039.04.136000197.0110004.2810004.283232=⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎪⎭⎫⎝⎛=WhOWl L E h (m )由式3-6得溢流堰高度为:041.0039.008.0=-=-=OW L W h h h (m )(3) 弓形降液管宽度和截面积f A由D l w=0.7,查图[6]5-7 弓形降液管的参数图得: 088.0=Tf A A 15.0=D W d2763.014.3088.0088.0=⨯=⨯=T f A A (m 2)30.0215.015.0=⨯=⨯=D W d (m )依式3-8验算液体在降液管中的停留时间,即01.736000197.05.02763.036003600=⨯⨯⨯==hTf L H A θ(s )>5(s )故降液管设计合理。

(4) 降液管底隙高度0h由式3-10得降液管底隙高度0h 为:035.04.04.136000197.03600'360000=⨯⨯⨯==u l L h W h (m )由式3-9得:006.0035.0041.00=-=-h h W (m )故降液管底隙高度设计合理。

2. 塔板布置(1) 塔板的分块因D≥800,故塔板采用分块式。

查[6]表5-3得,塔板分为5块。

(2) 边缘区宽度确定取′=0.08m ,0.05m 。

(3) 开孔区面积计算由式3-11可算得开孔区面积如下:()()62.008.03.020.22=+-=+-=s d W W D x (m ) 95.005.020.22=-=-=c W D r (m )()212221222175.295.062.0sin 18095.014.362.095.062.02sin 1802m r x r x r x A a =⎪⎪⎭⎫ ⎝⎛⨯+-⨯⨯=⎪⎪⎭⎫⎝⎛+-=--π (4) 筛孔计算及其排列本次设计所处理的物系无腐蚀性,可选用δ=4 碳钢板,取筛孔直径d 0=5 。

筛孔按三角形排列,取孔中心距t 为[6]:155330=⨯==d t ()由式3-12得筛孔数目n 为:11165015.0175.2155.1155.122=⨯==t A n a 个 由式3-13得开孔率为:%1.10101.0015.0005.0907.0907.02200==⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛==t d A A a φ气体通过阀孔的气速为:2.11175.2101.04604.200=⨯==A V u S () 3.2.3 筛板的流体力学验算1. 塔板压降(1) 干板阻力c h 的计算由式3-16得干板阻力c h 为:d 0/δ=5/3=1.67,查图[6]5-10得,C 0=0.76,由式3-16得干板阻力c h 为:415.0427.832685.3772.02.11051.0051.022=⨯⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=L V c cu h ρρ m 液柱 (2) 气体通过液层的阻力l h 计算由式3-18得:8592.02763.014.34604.2=-=-=f T s a A A V u ()由式3-19得:7.1685.38592.00=⨯==V a u F ρ ()2121m s kg ⋅ 查图[6]5-11得,β=0.53 由式3-17得l h 为:()042.008.053.0=⨯=+==OW W L l h h h h ββ m 液柱(3) 液体表面张力的阻力计σh 算由式3-20得σh 为:0017.0005.081.9427.83210675.174430=⨯⨯⨯⨯==-gd h L L ρσσ m 液柱由式3-15得气体通过每层塔板的总阻力为:0852.00017.0042.00415.0=++=++=σh h h h l c P m 液柱由式3-14得气体通过每层塔板的压降为:8.69581.9427.8320852.0=⨯⨯==∆g h P L P P ρ<700(设计允许值)2. 液面落差对于筛板塔,液面落差很小,因此可以忽略液面落差的影响。

3. 液沫夹带根据设计经验,f h =2.5 2.5×0.08=0.2 m 由式3-21得液沫夹带量为:0094.02.05.08592.010675.17107.5107.52.3362.36=⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎪⎭⎫⎝⎛-⨯=---f Ta L V h H u e σV e =0.0094 液体气体<0.1 液体气体故在本设计中液沫夹带量V e 在允许范围内。

相关文档
最新文档