2017离散数学答案(6--10)(1)

合集下载

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

离散数学 习题问题详解

离散数学 习题问题详解

离散数学 习题 参考答案1、构造公式(p ∧q)∨ (¬p ∧¬q)、p↔q 的真值表。

2、构造公式¬(p ∨q)与¬p ∧¬q 的真值表。

3、构造公式 p 、p ∧p 、p ∨p 的真值表。

4、构造公式 p ∨(q ∧r)、(p ∨q)∧(p ∨r)的真值表。

5、构造公式 p ∨(p ∧r)、p 的真值表。

6、构造公式 p ∧(p ∨r)、p 的真值表。

7、构造公式 p↔q 、¬q↔¬p 的真值表。

8、构造公式(p→q)∧(p→¬q)、¬p 的真值表。

9、构造公式 p 、¬¬p 的真值表。

10、构造公式 p ∨¬p 、p ∧¬p 的真值表 略一、分别用等算演算与真值表法,判断下列公式是否存在主析取式或主合取式,若有,请写出来。

(1)(¬p→q)→(¬q ∨p) (2)(¬p→q)→(q ∧r)(3)(p ∨(q ∧r))→(p ∨q ∨r) (4) ¬(q→¬p)∧¬p (5)(p ∧q)∨(¬p ∨r) (6)(p→(p ∨q))∨r (7)(p ∧q)∨r(8) (p→q)∧(q→r) (9) (p ∧q)→q (10) ¬(r↔p)∧p ∧q存在主析取式=成真赋值对应的小项的析取 =m 00∨m 10∨m 11=(¬p ∧¬q)∨(p ∧¬q)∨(p ∧q)主析取式=成假赋值对应的大项的合取 =M 01=p ∨¬q等值演算:(¬p→q)→(¬q ∨p) ⇔¬ (¬¬p ∨q)∨(p ∨¬q) ⇔¬ (p ∨q)∨(p ∨¬q) ⇔ (¬p ∧¬q)∨(p ∨¬q) ⇔ (¬p ∨(p ∨¬q))∧(¬q ∨(p ∨¬q)) ⇔ (¬p ∨p ∨¬q)∧(¬q ∨p ∨¬q) ⇔ (1∨¬q)∧(p ∨¬q) ⇔ (p ∨¬q)这是大项,故为大项的合取,称为主合取式(¬p→q)→(¬q ∨p) ⇔ (p ∨¬q) ⇔ (p)∨(¬q) ⇔ (p ∧1)∨( 1∧¬q)⇔ (p ∧(q ∨¬q))∨( (p ∨¬p)∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(p ∧¬q)∨(¬p ∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(¬p ∧¬q)因为一个公式的值不是真,就是假,因此当我们得到一个公的取值为真的情况时,剩下的组合是取值为假, 因此当得到小项的析取组成的主析取式后,可以针对剩下的组合写出主合取式。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

《离散数学》部分习题答案

《离散数学》部分习题答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p) ⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1) (2) 主合取范式为: ⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为 0 (3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1 ⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)xF∀,在(a)中为假命题,在(b)中为真命题。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

离散数学形考任务17试题及答案完整版

离散数学形考任务17试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学最全答案 屈婉玲

离散数学最全答案  屈婉玲

第一章 命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;.7.因为p 与q 不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq ,真值为1;(4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1.16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。

(1)p ∨(q ∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r )∧(﹁q ∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p ∧⌝q ∧r )?(p ∧q ∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r ∧s )→(p ∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

离散数学第三版课后习题答案

离散数学第三版课后习题答案

离散数学第三版课后习题答案【篇一:离散数学(第三版)陈建明,刘国荣课后习题答案】念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)a={x | x ∈n∧x是偶数∧ x<15}2)b={x|x∈n∧4+x=3} 3)c={x|x是十进制的数字} [解] 1)a={2,4,6,8,10,12,14}2)b=?3)c={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29} [解] 1){n?n?i?(?m?i)(n=2m+1)};2){n?n?i?n?0?n7};3){p?p?n?p2?p30??(?d?n)(d?1?d?p?(?k?n)(p=k?d))}。

3. 确定下列各命题的真假性: 1) 2)?∈? 3)??{?} 4)?∈{?}5){a,b}?{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}?{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。

因为空集是任意集合的子集; 2)假。

因为空集不含任何元素; 3)真。

因为空集是任意集合的子集; 4)真。

因为?是集合{?}的元素;5)真。

因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。

因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。

因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。

因为{a,b}不是集合{a,b,{{a,b}}}的元素。

4. 对任意集合a,b,c,确定下列命题的真假性: 1)如果a∈b∧b∈c,则a∈c。

2)如果a∈b∧b∈c,则a∈c。

3)如果a?b∧b∈c,则a∈c。

[解] 1)假。

例如a={a},b={a,b},c={{a},{b}},从而a∈b∧b∈c但a∈c。

2017离散数学答案(1--5).pdf

2017离散数学答案(1--5).pdf

02任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1,3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f?gB. g?fC. f?fD. g?g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}02任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

离散数学课后习题答案

离散数学课后习题答案

第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。

分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。

本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。

其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。

又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。

(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。

这里的“且”为“合取”联结词。

在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是… … ”、“不仅……,而且… … ”、“一面……,一面… … ”、“……和… … ”、“……与……”等。

但要注意,有时“和”或“与”联结的是主语,构成简单命题。

例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。

1.2 (1)p : 2是无理数,p 为真命题。

(2)p : 5能被2 整除,p 为假命题。

(6)p →q 。

其中,p : 2是素数,q:三角形有三条边。

由于p 与q 都是真命题,因而p →q 为假命题。

(7)p →q ,其中,p:雪是黑色的,q:太阳从东方升起。

由于p 为假命题,q 为真命题,因而p →q 为假命题。

(8)p : 2000年10 月1 日天气晴好,今日(1999 年2 月13 日)我们还不知道p 的真假,但p 的真值是确定的(客观存在的),只是现在不知道而已。

(9)p:太阳系外的星球上的生物。

它的真值情况而定,是确定的。

离散数学第三版课后习题答案

离散数学第三版课后习题答案
反之,对任x∈(A\C)\(B\C),可知x∈A\C,xB\C。由x∈A\C,可知x∈A,xC。又因为xB\C及xC,可知xB。所以,x∈(A\B)\C。因此(A\B)\C(A\B)\C。
由此可得(A\B)\(B\C)(A\B)\C。
3)方法一:(A\C)\C
=A\(B∪C)(根据1))
=A\(C∪B)(并运算交换律)
4)真。因为是集合{}的元素;
5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;
6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;
7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;
8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4.对任意集合A,B,C,确定下列命题的真假性:
A′∪B=(A∪A′)∪B(∪的交换律)
A′∪B=X∪B(互补律)
A′∪B=X(零壹律)
方法三:因为A′X且BX,所以根据定理2的3)就有A′∪BX;
另一方面,由于BA′∪B及根据换质位律可得B′A′A′∪B,因此,由互补律及再次应用定理2的3),可得X=B∪B′A′∪B,即XA′∪B;
所以,A′∪B=X。
=(A\C)\B(根据1))
方法二:对任一元素x∈(A\B)\C,可知x∈A,xB,xC。由为x∈A,xC,所以,x∈A\C。又由xB,x∈(A\C)\B。所以,(A\B)\C(A\C)\B。
同理可证得(A\C)\B(A\B)\C。
9.设A、B是Ⅹ全集的子集,证明:
ABA′∪B=XA∩B′=
[解](采用循环证法)
离散数学辅助教材
概念分析结构思想与推理证明
第一部分
集合论
离散数学习题解答

离散数学课后答案全集

离散数学课后答案全集

第1章 命题逻辑P7 习题1. 给出下列命题的否定命题: (1)大连的每条街道都临海。

否命题:不是大连的每条街道都临海。

(2)每一个素数都是奇数。

否命题: 并非每一个素数都是奇数。

2. 对下述命题用中文写出语句: (1)()P R Q ⌝∧→如果非P 与R ,那么Q 。

(2)Q R ∧Q 并且R 。

3. 给出命题P Q →,我们把Q P →、P Q ⌝→⌝、Q P ⌝→⌝分别称为命题P Q →的逆命题、反命题、逆反命题。

(1)如果天不下雨,我将去公园。

解:逆命题:如果我去公园,则天不下雨; 反命题:如果天下雨,则我不去公园;逆反命题:如果我不去公园,则天下雨了。

(2)仅当你去我才逗留。

解:(此题注意:p 仅当q 翻译成p q →) 逆命题:如果你去,那么我逗留。

反命题:如果我不逗留,那么你没去。

逆反命题:如果你没去,那么我不逗留。

(3)如果n 是大于2的正整数,那么方程nn n xy z +=无整数解。

解:逆命题:如果方程nn n xy z +=无整数解,那么n 是大于2的正整数。

反命题:如果n 不是大于2的正整数,那么方程nn n x y z +=有整数解。

逆反命题:如果方程nn n xy z +=有整数解,那么n 不是大于2的正整数。

(4)如果我不获得更多的帮助,那么我不能完成这项任务。

解:逆命题:如果我不完成任务,那么我不获得更多的帮助。

反命题:如果我获得了更多的帮助,那么我能完成任务。

逆反命题:如果我能完成任务,那么我获得了更多的帮助。

4. 给P 和Q 指派真值T ,给R 和S 指派真值F ,求出下列命题的真值。

(1)(()(()()))P Q R Q P R S ⌝∧∨⌝∨↔⌝→∨⌝=(()(()()))T T F T T F F ⌝∧∨⌝∨↔⌝→∨⌝ =()T F T ⌝∨→ =T F ∨ =T(2)()Q P Q P ∧→→ =()T T T T ∧→→ =T T T ∧→ =T T →=T(3)((()))()P Q R P Q S ∨→∧⌝↔∨⌝=((()))()T T F T T F ∨→∧⌝↔∨⌝ =(())T T F T ∨→↔ =T T ↔ =T(4)()()P R Q S →∧⌝→ =()()T F T F →∧⌝→=()F F F ∧→=F5. 构成下来公式的真值表: (1)()Q P Q P ∧→→(2)()()()P Q R P Q P R ⌝∨∧↔∨∧∨(3)()P Q Q P P R ∨→∧→∧⌝(4)()P P Q R Q R ⌝→∧⌝→∧∨⌝6. 使用真值表证明:如果P Q ↔为T ,那么P Q →和Q P →都是T ,反之亦然。

离散数学课后习题答案

离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。

由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。

充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。

由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档

则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04任务_0006试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( ).A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的2. 设无向图G的邻接矩阵为,则G的边数为( ).A. 1B. 6C. 7D. 143. 设无向图G的邻接矩阵为,则G的边数为( ).A. 6B. 5C. 4D. 34. 无向简单图G是棵树,当且仅当( ).A. G连通且边数比结点数少1B. G连通且结点数比边数少1C. G的边数比结点数少1D. G中没有回路.5. 图G如图三所示,以下说法正确的是( ) .A. {(a, d)}是割边B. {(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集D. {(b, d)}是边割集6. 若G是一个汉密尔顿图,则G一定是( ).A. 平面图B. 对偶图C. 欧拉图D. 连通图7. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e-v-2D. e+v+28. 无向完全图K4是().A. 欧拉图B. 汉密尔顿图C. 非平面图D. 树9. 设图G=<V, E>,v V,则下列结论成立的是 ( ) .A. deg(v)=2|E|B. deg(v)=|E|C.D.10. 以下结论正确的是( ).A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边04任务_0007试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 图G如图三所示,以下说法正确的是( ) .A. {(a, d)}是割边B. {(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集D. {(b, d)}是边割集2. 如图所示,以下说法正确的是 ( ).A. e是割点B. {a,e}是点割集C. {b, e}是点割集D. {d}是点割集3. 设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( ).A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的4. 设无向图G的邻接矩阵为,则G的边数为( ).A. 1B. 6C. 7D. 145. 如图一所示,以下说法正确的是( ) .A. {(a, e)}是割边B. {(a, e)}是边割集C. {(a, e) ,(b, c)}是边割集D. {(d, e)}是边割集6. 无向完全图K4是().A. 欧拉图B. 汉密尔顿图C. 非平面图D. 树7. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 8B. 5C. 4D. 38. 无向图G存在欧拉回路,当且仅当().A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点9. 以下结论正确的是( ).A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边10. 无向简单图G是棵树,当且仅当( ).A. G连通且边数比结点数少1B. G连通且结点数比边数少1C. G的边数比结点数少1D. G中没有回路.04任务_0008试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e-v-2D. e+v+22. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 8B. 5C. 4D. 33. 若G是一个欧拉图,则G一定是( ).A. 平面图B. 汉密尔顿图C. 连通图D. 对偶图4. 图G如图二所示,以下说法正确的是( ).A. a是割点B. {b,c}是点割集C. {b, d}是点割集D. {c}是点割集5. 如图所示,以下说法正确的是 ( ).A. e是割点B. {a,e}是点割集C. {b, e}是点割集D. {d}是点割集6. 若G是一个汉密尔顿图,则G一定是( ).A. 平面图B. 对偶图C. 欧拉图D. 连通图7. 无向图G存在欧拉回路,当且仅当().A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点8. 设图G=<V, E>,v V,则下列结论成立的是 ( ) .A. deg(v)=2|E|B. deg(v)=|E|C.D.9. 以下结论正确的是( ).A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边10. 图G如图三所示,以下说法正确的是( ) .A. {(a, d)}是割边B. {(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集D. {(b, d)}是边割集04任务_0009试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 无向完全图K4是().A. 欧拉图B. 汉密尔顿图C. 非平面图D. 树2. 已知无向图G的邻接矩阵为,则G有().A. 5点,8边B. 6点,7边C. 6点,8边D. 5点,7边3. 图G如图二所示,以下说法正确的是( ).A. a是割点B. {b,c}是点割集C. {b, d}是点割集D. {c}是点割集4. 设图G=<V, E>,v V,则下列结论成立的是 ( ) .A. deg(v)=2|E|B. deg(v)=|E|C.D.5. 无向图G存在欧拉回路,当且仅当().A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点6. 以下结论正确的是( ).A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边7. 若G是一个欧拉图,则G一定是( ).A. 平面图B. 汉密尔顿图C. 连通图D. 对偶图8. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 8B. 5C. 4D. 39. 若G是一个汉密尔顿图,则G一定是( ).A. 平面图B. 对偶图C. 欧拉图D. 连通图10. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e-v-2D. e+v+204任务_0010试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设无向图G的邻接矩阵为,则G的边数为( ).A. 1B. 6C. 7D. 142. 无向图G存在欧拉回路,当且仅当().A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点3. 设图G=<V, E>,v V,则下列结论成立的是 ( ) .A. deg(v)=2|E|B. deg(v)=|E|C.D.4. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e-v-2D. e+v+25. 若G是一个汉密尔顿图,则G一定是( ).A. 平面图B. 对偶图C. 欧拉图D. 连通图6. 以下结论正确的是( ).A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边7. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 8B. 5C. 4D. 38. 设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A. (a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的9. 图G如图二所示,以下说法正确的是( ).A. a是割点B. {b,c}是点割集C. {b, d}是点割集D. {c}是点割集10. 无向树T有8个结点,则T的边数为( ).A. 6B. 7C. 8D. 9。

相关文档
最新文档