材料力学第十一章
《材料力学 第2版》_顾晓勤第11章第1节 惯性力问题
![《材料力学 第2版》_顾晓勤第11章第1节 惯性力问题](https://img.taocdn.com/s3/m/a9ad3af6336c1eb91b375d96.png)
21.9
MPa
d max Kd st max 26.3 MPa
OB
al
A m
第 1 节 惯性力问题
第十一章 动载荷和疲劳
二、杆件作匀速转动时的应力计算
在设计飞轮时,要求用料少而惯性大,所以常把 飞轮设计成轮缘厚、中间薄的样式。若不考虑轮辐的 影响,可以近似地认为飞轮的质量绝大部分集中在轮 缘上,将飞轮简化为一个绕中心旋转的圆环。
16
第 1 节 惯性力问题
第十一章 动载荷和疲劳
例 11-4 钢质飞轮匀角速转动如图所示,轮缘外径
D 1.8 m,内径 d 1.4 m ,材料密度 7.85 103 kg/m3。 要求轮缘内的应力不得超过许用应力 [ ] 60 MPa,轮
辐影响不计。试计算飞轮的极限转速 n 。
解:由强度条件,得到 轮缘允许的线速度
解:由附表 4 查得 32a 工字钢:
10 a
2m
8m
2m
= 52.717kg/m;加速度 a = 0 时,
每根钢绳的拉力 Fst = mg /2,应力 32a 号工字钢
st
Fst πd 2 / 4
39.5106 N/m2
39.5 MPa
动荷系数:
Kd
1
a g
1
6 9.8
1.612
d Kd st 1.612 39.5 MPa 63.6 MPa
第 1 节 惯性力问第题十一章 动载荷和疲第劳十一章 动载荷和疲劳
静载荷:所加载荷的特点是由零缓慢地增加到某一 数值,以后保持不变,即是静载荷。由静载荷产生 的应力,称为静应力。
动载荷:主要是指随时间而变化的载荷,特别是冲 击载荷。 动应力:凡是由动载荷引起的构件的应力。
材料力学- 第十一章 交变应力
![材料力学- 第十一章 交变应力](https://img.taocdn.com/s3/m/0251abcc08a1284ac8504394.png)
平均应力(mean stress).用sm表示.
sm
s max s min
2
(Alternating Stress)
二、交变应力的分类 (The classification of alternating stress)
1.对称循环 (Symmetrical reversed cycle) 在交变应力下若最大应力与最小应力等值而反号.
Chapter 11 Alternating Stress
(Alternating Stress)
第十一章 交变应力 (Alternating stress)
§11–1 交变应力与疲劳失效(Alternating stress and fatigue failure) §11–2 ห้องสมุดไป่ตู้变应力的循环特征、应力幅和平 均应力(The cycle symbol,stress amplitude and mean stress for alternating stress) §11–3 持久极限(Endurance limit)
1.载荷做周期性变化
(Load changes periodically with time) 2.载荷不变,构件点的位置随时间做周期性的变化
(The point changes his location periodically with time under an unchangeable load)
(2)无论是脆性还是塑性材料,交变应力作用下均表现为脆性断 裂,无明显塑性变形. (3)断口表面可明显区分为光滑区与粗糙区两部分.
(Alternating Stress)
粗糙区
光滑区
材料发生破坏前,应力随时间变化经过多次重复,其循环次数
材料力学(刘鸿文)第十一章 交变应力ppt课件
![材料力学(刘鸿文)第十一章 交变应力ppt课件](https://img.taocdn.com/s3/m/09a1bac777232f60dccca15b.png)
不稳定的交变应力
max min 不是常量 a 为变化的
不等幅交变应力;
(1)对称循环: 火车轮轴横截面边缘上点的弯曲正应力随时间作周期性变化
ω
A ωt
σ t
maxmin
m 0
a ma xmin
r 1
(2)非对称循环:
ωt
σ σm
t 静平衡位置
ma x min 0
具体过程如下:
(1)、原因
由于构件的形状变化、材料不均匀、表面加工质量等 原因,使得构件内某局部区域的应力偏高,形成高应 力区;
(2)、微观裂纹形成 构件长期在交变应力的作用下,在最不利或较弱的晶
体,沿最大切应力作用面形成滑移带,滑移带开裂形成 微观裂纹;
(3)、宏观裂纹 分散的微观裂纹经过集结沟
平均应力:
m
maxm
2
in
应力幅:
a
m
axm
2
in
循环特征:
r min , max
且 1r1
以上五个特征值中,只有二个是独立的。满足
max ma
minma
★具体描述一种交变应力,可用最大应力 max 和循环特性r, 或用平均应力 m 和应力幅值 a 。
2、几种典型的交变应力 稳定的交变应力: max min 均不变,
§11–1 概述 §11–2 交变应力的几个名词术语 §11–3 材料持久限及其测定
§11–4 构件持久限及其计算 §11–5 对称循环下构件的疲劳强度计算 §11–6 持久极限曲线 §11–7 非对称循环下的疲劳强度计算 §11–8 提高构件疲劳强度的措施
§11–1 交变应力与疲劳失效
一、交变应力:构件内一点处的应力随时间作周期性变化。
材料力学第11章——交变应力
![材料力学第11章——交变应力](https://img.taocdn.com/s3/m/85ab4d18227916888486d771.png)
用尺寸因数
或
表示。
1d , 1d 为光滑大试件 且 1, 1 ,d 越大, 越小, r 愈小。
其中: 1 , 1 为光滑小试件
材料力学
第十一章 交变应力
构件表面质量的影响
构件上的最大应力常发生于表层,疲劳裂纹也多生成于 表层。故构件表面的加工缺陷(划痕、擦伤)等将引起应力 集中,降低疲劳极限。
2
max
1
3
4
1
min
t
车轴每转一周,某点处的材料即经历一次由拉伸到压缩的 应力循环。
材料力学
第十一章 交变应力
④电机转子偏心惯性力引起强迫振动梁上的危险点正 应力随时间作周期性变化。
st
的静应力,最大应力和最小应力分别表示梁在最大和 最小位移时的应力。
st 表示电机的重力W以静载方式作用于梁上引起
第十一章 交变应力
min r 1 max
2
max
1
m
min
3
4
1
t
1 max min 0 2
1 a max min max 2
如:机车车轴
材料力学
2.脉动循环
min 0
第十一章 交变应力
1 1 m max min max 2 2 1 max min 1 max a 2 2
第十一章 交变应力
a a
max min
o
m
min 循环特征:r max
m
t
1 a max min 2
1 max min 2
max m a
材料力学-第十一章组合变形(讲稿)
![材料力学-第十一章组合变形(讲稿)](https://img.taocdn.com/s3/m/7349d2c26edb6f1afe001f4e.png)
第十一章组合变形一、教学目标1、掌握组合变形的概念。
2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。
3、正确区分斜弯曲和平面弯曲。
4、了解截面核心的概念、常见截面的截面核心计算。
二、教学内容1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。
2、举例介绍斜弯曲和平面弯曲的区别。
3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。
4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。
5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。
6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。
7、简单介绍截面核心的概念和计算。
三、重点难点重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。
难点:1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形:斜弯曲——分解为两个形心主惯性平面内的平面弯曲;弯曲和扭转组合变形——分解为平面弯曲和扭转;拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计);偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。
2、组合变形的强度计算,可归纳为两类:⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可;⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。
四、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
五、计划学时5学时六、讲课提纲(一)斜弯曲引言:*何谓平面弯曲?梁的弯曲平面与外力作用平面相重合的这种弯曲称为平面弯曲(或者说:梁的挠曲线是形心主惯性平面内的一条平面曲线)**平面弯曲与斜弯曲的比较(a) (b) (c)项目平面弯曲斜弯曲受力特点p F 平面与过y轴(形心主惯性轴)的纵平面重合pF平面过形心(这里也是弯心)但不与过y轴的纵平面重合。
材料力学 第十一章 连续分段独立一体化积分法
![材料力学 第十一章 连续分段独立一体化积分法](https://img.taocdn.com/s3/m/6e2bc433bd64783e09122ba6.png)
第11章电脑求解弯曲变形 的一种快速解析法
提出了一种求解复杂载荷作用下梁弯曲变形 问题的连续分段独立一体化积分法。连续分段独 立一体化积分法首先将梁进行分段,独立建立具 有4阶导数的挠曲线近似微分方程,然后分段独 立积分4次,得到挠度的通解。根据边界条件和 连续性条件,确定积分常数,得到剪力、弯矩、 转角和挠度的解析函数,同时绘出剪力图、弯矩 图、转角图和挠度图。工程实例表明,连续分段 独立一体化积分法建立方程简单,计算编程程式化, 利用计算机求解速度快,与有限元法相比其优点 是可以得到精确的解析解。
图11-1复杂载荷作用下的简支梁
解:利用连续分段独立一体化积分法求解步骤为:
第一步:本题分为两段 n 2,各段的挠曲线近似微分方程如下:
d 4v1 0, 0 x L 4 dx d 4v2 q , L x 2L 4 dx EI
(1a)
(1b)
第二步:对(1)式各段的挠曲线近似微分方程分别积分四次, 得到剪力、弯矩、转角和挠度的通解。在通解中,包含有 8个积分常数 Ci i 1,2,,8。
(11-5)
(iii)利用位移边界条件、力边界条件和连续性条件建立 4n
个边界条件约束方程
f Ci , j 0
i 1,2,, n, j 1,2,3,4
(11-6)
(iv)将积分常数 Ci, j i 1,2,, n, j 1,2,3,4
代入(11-2)~(11-5)式就可得到剪力、弯矩、转角和挠度 的解析表达式。
1 x 0
解得 x 0.963L ,代入第一段挠度函数 v1 x , 即得最大挠度。 求出剪力、弯矩、转角和挠度的最大值如下:
材料力学-第11章 压杆稳定new
![材料力学-第11章 压杆稳定new](https://img.taocdn.com/s3/m/5007a71b6c85ec3a87c2c549.png)
引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr
材料力学 第11章 超静定结构
![材料力学 第11章 超静定结构](https://img.taocdn.com/s3/m/1cd3f8e4534de518964bcf84b9d528ea81c72f41.png)
心有所信,方能行远。
本课件部分图片来源网络,仅供教学使用
材料力学
11.3 对称及对称性质的应用
一、对称结构的对称变形与反对称变形 结构几何尺寸、形状,构件材料及约束条件均对称于某一
轴,则称此结构为对称结构。 若外力对称于结构对称轴, 结构将产生对称变形。 若外力反对称于结构对称轴,结构将产生反对称变形。
X
2
8EI
0
⑥求其它支反力
由平衡方程得其它支反力, 全部表示于图中。
X
1
1 qa() 28
X
2
3 7
qa()
A
q B
冯康 (1920-1993)
【人物介绍】
冯康,浙江绍兴人 ,出生于 江苏省南京市,数学家、中国有限 元法创始人、计算数学研究的奠基 人和开拓者。
1965年发表名为《基于变分 原理的差分格式》的论文,这篇论 文被国际学术界视为中国独立发展 “有限元法”的重要里程碑 。
3. 在结构外部和内部均存在多余约束,即支反力和内 力都是超静定的。
四. 超静定结构的分析方法 1.力法:以未知力为基本未知量的求解方法。
2.位移法:以未知位移为基本未知量的求解方法。
材料力学
外力超静定
内力超静定 外力和内力超静定
材料力学
11.2 用力法解超静定结构
一、力法的基本思路(举例说明)
a A
a
②选取并去除多余约束,代以多 q 余约束反力。
③建立力法正则方程
B q
A X1 X2
④计算系数dij和自由项DiP
B
用莫尔定理求得
材料力学
A x1 q
x2
B
A
x2
x1 1
材料力学:第11章:组合变形
![材料力学:第11章:组合变形](https://img.taocdn.com/s3/m/4ece5be80975f46527d3e165.png)
2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直
材料力学-第十一章交变应力
![材料力学-第十一章交变应力](https://img.taocdn.com/s3/m/fab606bc50e2524de4187e0a.png)
在一定的循环特征 r 下:
max , N ; max , N
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最
大应力值,记作
N r
(
N r
)
。
无限寿命疲劳极限或持久极限 r :
当
m
a
不超过某一极限值,材料可以经受“无数次”应力
x
循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
r 1
(2)脉动循环:如齿轮
max 2 m 2 a min 0
r 0
max
a
m in
t
max m
a t
材料力学 2019/10/30
8
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:
max min 0
甚至小于屈服极限 s 。
2、破坏时,不论是脆性材料和塑性材料,均无明显的塑性变形, 且为突然断裂,通常称疲劳破坏。
3、疲劳破坏的断口,可分为光滑区及晶粒粗糙区。在光滑区可 见到微裂纹的起始点(疲劳源),周围为中心逐渐向四周扩 展的弧形线。
材料力学 2019/10/30
3
材料力学 2019/10/30
劳极限),疲劳曲线不出现水平渐近线。
步骤:
max
min
M W
Pa/ 2
1 d 3
16Pa
d 3
32
材料力学 2019/10/30
11
材料力学 2019/10/30
12
步骤:
材料力学课件第11章 交变应力zym
![材料力学课件第11章 交变应力zym](https://img.taocdn.com/s3/m/d69a3713cc7931b765ce15e0.png)
( 1 )d k ( 1 )k
(11.5)
二、构件尺寸的影响: 1、影响趋势: •构件的持久极限随尺寸的增 大而降低。 2、修正因数:
( 1 )d
1
(11.6)
•
( 1 )d
k
1
1 n
• n 构件在弯曲单独作用时的工作安全系数 • n 构件在扭转单独作用时的工作安全系数
整理上三式得:
n n n n
2 2
n
或:
n
n n n n
2 2
n
(11.19)
二、强度计算步骤: 1、确定工作应力; 2、确定修正因数; 3、强度条件计算; 4、结论。
第十一章
交变应力
§11—1 交变应力与疲劳失效 一、交变应力 •随时间作周期变化的应力称为交变应力或循环应力。
2 3 4 2 3 1 4 1
二、疲劳失效 1、疲劳失效的定义: •构件在交变应力作用下发生的脆性 断裂失效称为疲劳失效或称为疲劳 破坏。 2、疲劳失效的特点: (1)破坏时名义应力值远小于静荷载 作用下的强度极限值; (2)呈脆性断裂;
•结构构件持久极限: r , r
4、持久极限的确定: •试件的持久极限由试验确定。 •构件的持久极限由材料持久极限修正确定。
二、标准试件对称循环弯曲正应力持久极限的测定
1、试验装置: 2、试件:
d 7 10mm
3、试验方法: •应力-寿命曲线。 •循环基数: 钢制试件: 0 107 N 应力-寿命曲线
§11—3 持久极限 一、持久极限的概念 1、定义: •杆件在无限次应力循环作用下而不发生疲劳破坏的最大应 力称为杆件的疲劳极限或持久极限。 2、影响持久极限的因素: •应力循环类型、外形、尺寸和表面质量等等。 3、持久极限的表示符号: •材料持久极限(光滑小试件持久极限): r , r(r为循环特征) •非标准试件持久极限: 如光滑大试件: ( 1 ) d
材料力学
![材料力学](https://img.taocdn.com/s3/m/4dc7b78fad51f01dc281f1fd.png)
y max
Mmax y I
2.9Fp 1000 15
304
170
64
Fp 155.4 N 即Fp的容许值为155.4N
解题指导:
如果采用max=(M1*y/I)+(M2*y/I)计算, 是错误的。因为M1所引起的最大正应力在a 点, M2所引起的最大正应力在b点。显然不 能将两个不同点处的正应力相加作为该截面 上的最大正应力。
4
d3
4 32
d 3
32
MT Wp
m
d3
3 16
d 3
16
r3
2 4 2
4 32
d 3
2
4
3 16
d 3
2
160
d 3
100MPa
d 80mm
取 d 80mm
解题指导:
弯扭组合变形的最大特点是:其危险点属于二 向受力状态,危险点上的正应力并不在其横截面 上,因而必须应用强度理论进行强度计算。
11.3 直径为d的等截面折杆,位于水平面内,杆的
A端承受垂直向下的荷载Fp力作用,已知[]。试求: (1)指出危险截面的位置;
(2)求危险截面上的最大弯曲正应力max和 最大扭转剪应力τmax;
(3)用第三强度理论求许可荷载[Fp]
a
B
C
A
Fp
a
解: (1)固定端C截面为危险截面
(2)内力图
xy
r3
2 x
材料力学第11章 压杆稳定
![材料力学第11章 压杆稳定](https://img.taocdn.com/s3/m/59e89f7b770bf78a64295448.png)
长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔
柔
度度
度
压压
压
杆杆
杆
可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800
材料力学第11章能量方法
![材料力学第11章能量方法](https://img.taocdn.com/s3/m/8cce8edb360cba1aa811dacb.png)
M ( x) M ( x) U P0 U P x) dx l EI
莫尔积分
其中:M(x):只在实际载荷作用下的弯矩方程 : )x ( M 只在在单位力作用下的弯矩方程
单独产生的变形
1 1 1 dU N ( x)d (l ) M ( x)d T ( x)d 2 2 2
N 2 ( x)dx M 2 ( x)dx T 2 ( x)dx U l l l 2GI 2EA 2EI P
计算变形能的方法:(1)求内力
例题
(2)利用公式
21
§11.4 互等定理
例:轴向拉压杆 外力作的功:
dw=P· d(Δl)
W P d (l )
0
l
4
W P d (l )
1 P l 2
在线弹性范围内
0
l
1 U W P l 2
当:
Pl l EA
2
N l U 2 EA
5 变形比能:
dU u dV 1 dU u d 0 dV
63 例:用能量法的方法求图示刚架B点水平位移。EI=常 数,略去轴力、剪力对变形的影响。 解: ⑴在真实载荷作用下 求支反力
R A RB
列内力方程:
m a
BC:
AC:
m M ( x1 ) x1 a
M ( x2 ) 0
64 ⑵B点加一水平单位力 求支反力 R A RB 3 2 列内力方程:
n
2 i i
变形比能
1 u 2 2.剪切:
变形比能
材料力学课件第十一章应力状态分析和强度理论
![材料力学课件第十一章应力状态分析和强度理论](https://img.taocdn.com/s3/m/0fec963f3968011ca30091ee.png)
n
薄壁圆筒的横截面面积
πD 2 F p 4
′
p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN
O
FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3
F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,
x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态
z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F
k
F
k n
p cos cos
2
F
沿截面切线方向的切应力
k pα
x
p sin
2
sin2
pα
材料力学(单辉祖)第十一章压杆稳定问题
![材料力学(单辉祖)第十一章压杆稳定问题](https://img.taocdn.com/s3/m/400d4dc82cc58bd63186bd77.png)
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −
⎣
1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l
−
x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
max
max
min
t
r= -1 时的交变应力,称为对称循环交变应力.
a max
m 0
2.非对称循环
r 1 时的交变应力,称为非对称循环。分三种情况:
(1)若 非对称循环交变应力中的最小应力等于零( min)
脉动循环
r min 0
max
max
O
min=0
t
r=0 的交变应力,称为脉动循环 交变应力
在拉,压或弯曲交变应力下
r min
max
在扭转交变应力下 r min
max
3、应力幅度
一个应力循环
最大应力和最小应力的
差值的的二分之一,称为交
max
变应力的 应力幅度.用σa 表示
a
max
min
2
O
min
a a
t
4、平均应力
最大应力和最小应力代数和的一 半,称为交变应力的平均应力。用 m
• 粗糙区
• 光滑区
• 裂纹 源
(2) 裂纹扩展 裂纹尖端的严重应力集中,促使裂纹逐渐扩展, 由微观变为宏观。裂纹尖端一般处于三向拉伸应力状态下,不 易出现塑性变形。
(3)构件断裂 当裂纹逐步扩展到一定限度时,便可能骤然迅 速扩展,使构件截面严重削弱,最后沿严重削弱了的截面发生 突然脆性断裂。从上述解释与疲劳破坏断面的特征较吻合,故 较有说服力。
§11.10 提高构件疲劳强度的措施
本章重点
(1) 疲劳破坏的特点, (2) S-N曲线及材料的疲劳极限, (3) 交变应力参数及计算, (4) 影响构件疲劳极限的主要因素。
本章难点
疲劳的概念,影响构件疲劳极限的主要因素
§11.1 交变应力与疲劳失效 一、交变应力
构件内一点处的应力随时间作周期性变化,这种应力称为交变应力.
用手折断铁丝,弯折一次一般不断,但反复来回弯折多次后, 铁丝就会发生裂断,这就是材料受交变应力作用而破坏的例子.
因疲劳破坏是在没有明显征兆的情况下突然发生的,极易 造成严重事故.据统计,机械零件,尤其是高速运转的构件的破坏, 大部分属于疲劳破坏.
疲劳破坏的解释(三阶段):
(1)裂纹萌生 由于构件的形 状和材料不均匀等原因,构件 某些局部区域的应力特别高。 在长期交变应力作用下,于上 述应力特别高的局部区域,逐 步形成微观裂纹。
2 σm表示。
max
min
五个特征值:
循环特征r 应力幅度σa
平均应力αm
最大应力σmax 最小应力σmin
以上五个特征值中,只有二个是独立的。满足
max m a min m a
•具体描述一种交变应力,可用最大应力 max和循环应力r, 或用平均应力 m 和应力幅值 a 。
2、几种典型的交变应力情况
增加Δst,但不增加σst 改变构件尺寸
第十二章 交变应力
目录
§11.1 交变应力与疲劳失效 §11.2 交变应力的循环特征、应力幅和平均应力
§11.3 §11.4
§11.5 §11.6
§11.7
持久极限 影响持久极限的因素
对称循环下构件的疲劳强度计算 持久极限曲线
不对称循环下的疲劳强度计算
§11.8 弯扭组合交变应力的强度计算 §11.9 变幅交变应力的强度计算
§11.2 交变应力的循环特征、应力幅和平均应力
交变应力的疲劳破坏与静应力下的破坏有很大 差异,故表征材料抵抗交变应力破坏能力的强度指 标也不同.
一、基本参数
1.应力循环
应力每重复变化一次,称 为一个应力循环
一个应力循环
max
2.循环特征
O
min
t
最小应力和最大应力的比值称为循环特征。用r 表示.
a
m
max
2
(2)r > 0 为同号应力循环; (3) r < 0 为异号应力循环.
3 静应力视作交变应力的一种特例。
构件在静应力下, 各点处的应力保持恒定,即:
m =max= min .
循环特征: 应力幅度: 平均应力:
r 1
a 0
m max
O
σ
min
max
t
4 稳定交变应力:
交变应力的最大应力和最小应力的值,在工作过程中 始终保持不变,称为稳定交变应力。
第十章 知识结构图
动荷载 构件有加速度
用动静法
自用落 体冲击
2h
Kd 1
1 st
时的应力计算 解决问题
能量法解 冲击问题
强度问题
动荷因数
Fd Kd P d Kd st
突加载荷 h 0 Kd 2
水平冲击
Kd
v2 g st
垂直向上匀加 速直线运动
Kd
1
a g
d Kd st
提高抗冲击能力的措施
稳定的交变应力: max 、 min 均不变, a为常数
(等幅情况);
不稳定的交变应力: max 、 min 不是常量, a 为变化的
(不等幅情况)。
二、交变应力的分类
1、对称循环
在交变应力下若最大应力与最小应力等值而反号.
min= - max
或 min= - max
r min 1
max st min
t
例题 火车轮轴上的力来自车箱.大小,方向基本不变.
即弯矩基本不变.
P
P
假设轴以匀角速度 转动.
横截面上 A点到中性轴的距 离却是随时间 t 变化的.
y r sint
A
t
z
A的弯曲正应力为
M y M r sint
2
I
I
3
O 1
1
t
是随时间 t 按正弦曲线变化的
P A σ
t
二、产生的原因
1、载荷做周期性变化
2、载荷不变,构件点的位置随时间做周期性的变化
例题1 一简支梁在梁中间部分固接一电动机,由于电动机的 重力作用产生静弯曲变形,当电动机工作时,由于转子的偏心 而引起离心惯性力.由于离心惯性力的垂直分量随时间作 周期性的变化,梁产生交变应力.ωt Nhomakorabeaωt
静平衡位置
(3)断口表面可明显区分为光滑区与粗糙区两部分. 粗糙区 域与脆性材料(铸铁)构件在静载下脆性破坏的断口相似。
(4) 光滑区有明显的裂纹源。
(5) 材料发生破坏前,应力随时间变化经过多次重复,其循 环次数与应力的大小有关。应力愈大,循环次数愈少。
粗糙区
光滑区 裂纹缘
材料发生破坏前,应力随时间变化经过多次重复,其循环次 数与应力的大小有关.应力愈大,循环次数愈少.
4
疲劳破坏
特点: 1、最大应力远小于静荷强度 2、破坏方式:脆性断裂 3、破坏断口:光滑区+粗糙区
三、疲劳破坏
材料在交变应力作用下的破坏习惯上称为疲劳破坏
1.疲劳破坏的特点
(1)交变应力的破坏应力值一般低于静载荷作用下的强度 极限值,有时甚至低于材料的屈服极限.
(2)无论是脆性还是塑性材料,交变应力作用下均表现为 脆性断裂,断裂前无明显塑性变形.