函数最值与值域 --高中数学

合集下载

高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1

高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1

(2)存在x0∈I,使 _f_(x_0_)=__M__
结论
M是函数y=f(x)的最 大值
M是函数y=f(x)的 最小值
第五页,共42页。
1.函数 f(x)(-2≤x≤2) 的图象如图所示,则函数 的最大值、最小值分别为
()
A.f(2),f(-2) C.f(12),f(-32) 答案(dáàn): C
第二十页,共42页。
2.已知函数 f(x)=x-a 1(x∈[2,6])的 最大值为 2,求 a 的值. 解析: 首先讨论 f(x)在[2,6]上的单调性: 设 x1,x2∈[2,6],且 x1<x2,则 f(x1)-f(x2)=x1-a 1-x2-a 1 =x1a-x12-xx2-1 1. ∵2≤x1<x2≤6, ∴x2-x1>0,x1-1>0,x2-1>0.
当x=0
最小值
时,y=0是所有函数值中_______.而对于f(x)
=_最__-大__x值_2_来.说,x=0时,y=0是所有函数值中
第三页,共42页。
2.二次函数的最值 二次函数 y=ax2+bx+c(a≠0)的图象为抛物线, 当 a>0 时,ymin=4ac4-a b2, 当 a<0 时,ymax=4ac4-a b2.
第八页,共42页。
3.函数(hánshù)y=x2-4x+5,x∈[0,3]的最大 值为________. 解析: ∵y=(x-2)2+1,x∈[0,3], ∴原函数(hánshù)在[0,2]上为减函数(hánshù), 在[2,2]上为增函数(hánshù). ∴最大值为f(0)与f(3)中的最大者,而f(0)=5, f(3)=2, ∴最大值为5. 答案: 5
第二十八页,共42页。
②当 t≤1≤t+1, 即 0≤t≤1 时, f(x)在区间[t,t+1]上先减再增, 故当 x=1 时,f(x)取得最小值, 此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上单 调递减,

高中数学高频考点——函数最值、值域、恒成立问题知识点总结

高中数学高频考点——函数最值、值域、恒成立问题知识点总结

函数最值、值域、恒成立问题一、函数最值定义1.(1)一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①x I ∀∈,都有()f x M ≤;②0x I ∃∈,使得()0f x M =。

就称M 是函数()y f x =的最大值。

(2)一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①x I ∀∈,都有()f x M ≥;②0x I ∃∈,使得()0f x M =。

就称M 是函数()y f x =的最小值。

2.【注】(1)函数的最值指的是函数值(y 值)的最大值和最小值。

求函数的最值,既要求函数的最大值也要求函数的最小值。

【注】(2)从函数图象上看,函数的最大值对应函数图象最高点的纵坐标;函数的最小值对应函数图象最低点的纵坐标。

二、单调函数的最值1.单调函数的最值在闭区间的端点处取得。

(1)单调递增函数在闭区间的左端点取得最小值,在右端点取得最大值。

(2)单调递减函数在闭区间的左端点取得最大值,在右端点取得最小值。

【注】单调函数在开区间上无最值,即既无最大值,也无最小值。

2.函数值域闭区间的左端点是函数值的最小值,右端点是函数值的最大值。

求函数的值域,往往要求函数的最大值和最小值。

三、分段函数的最值1.分段函数的最大值,是各段函数值最大值中的最大值;2.分段函数的最小值,是各段函数值最小值中的最小值。

四、函数最值的求解方法函数求最值的方法一般有:配方法、换元法、数形结合法(图象法)、结合函数的单调性法等。

五、函数的值域问题函数值域中的最小值往往是函数值的最小值,函数值域中的最大值往往是函数值中的最大值,所以求函数的值域往往需要先求出函数的最大值和最小值。

六、恒成立问题假设()g x 为已知函数,求()f a 的取值范围,则有以下两种情况:(1)()()f a g x ≤恒成立()()min f a g x ⇔≤;(2)()()f a g x ≥恒成立()()max f a g x ⇔≥。

三角函数的最值-高中数学知识点讲解

三角函数的最值-高中数学知识点讲解

三角函数的最值1.三角函数的最值【三角函数的最值】三角函数的最值其实就是指三角函数在定义域内的最大值和最小值,涉及到三角函数的定义域、值域、单调性和它们的图象.在求三角函数最值中常用的手法是化简和换元.化简的原则通常是尽量的把复合三角函数化为只含有一个三角函数的一元函数.【例题解析】3例 1:sin2x﹣sin x cos x+2cos2x=2+2cos(2x +2휋4).解:sin2x﹣sin x cos x+2cos2x =1―푐표푠2푥2―푠푖푛2푥1+푐표푠2푥2+ 2•2=32+12(cos2x﹣sin2x)=32+2cos(2x +2휋4).3故答案为:2+2cos(2x +2휋4).这个题所用到的方法就是化简成一个单一的三角函数,把一个复合的三角函数最后化成了只关于余弦函数的式子,然后单独分析余弦函数的特点,最后把结果求出来.化简当中要熟练的掌握三角函数的转换,特别是二倍角的转换.例 2:函数y=sin2x﹣sin x+3 的最大值是.解:令 sin x=t,可得y=t2﹣t+3,其中t∈[﹣1,1]∵二次函数y=t2﹣t+3 的图象开口向上,对称轴是t =1 2∴当t =12时函数有最小值,而函数的最大值为t=﹣1 时或t=1 时函数值中的较大的那个∵t=﹣1 时,y=(﹣1)2﹣(﹣1)+3=5,当t=1 时,y=12﹣1+3=3∴函数的最大值为t=﹣1 时y 的值即 sin x=﹣1 时,函数的最大值为 5.这个题就是典型的换元,把 sin x 看成是自变量t,最后三角函数看成是一个一元二次函数,在换元的时候要注意到三角函数的定义域和相应的值域.1/ 2【考点点评】求三角函数的最值是高考的一个常考点,主要方法我上面已经写了,大家要注意的是把一些基本的方法融会贯通,同时一定要注意函数的定义域和相对应的值域.2/ 2。

高中数学解题方法系列:函数的值域与最值

高中数学解题方法系列:函数的值域与最值


y

k
b x2
型,可直接用不等式性质,
【及时反馈】

y

3 2 x2
的值域(答: (0,
3]) 2

y

x2
ቤተ መጻሕፍቲ ባይዱ
bx mx
n
型,先化简,再用均值不等式,
【及时反馈】
(2)求函数 y x 2 的值域(答:[0, 1] )
x3
2
③ y x2 mx n 型,可用判别式法或均值不等式法, mx n
(3)、求函数 y x 2 2x 3 在如下区间中的的最值与值域。
ⅰ、 (4,2] ;ⅱ、 (1,2] ;ⅲ、 (3,5) ;ⅳ、 (,)
(4)、求函数 y sin x cos 2x 的最值与值域。(提示:先转化为带有限制条
件的二次型函数的最值与值域的求解)
(5)、若
所示:
定义域
值域
原函数 y f (x)
A
C
反函数 y f 1 (x)
C
A
由上表知,求原函数的值域就是相当于求它的反函数的定义域 ⅱ、求反函数的步骤(“三步曲”)
①求 x ( y) ;②x、y 互换;③通过求原函数的值域得出反函数的定义域
【及时反馈】
(1)、求函数 f (x) 2x 4 的值域 x 1
解: y x x 1 (x 1) x 1 1
令 x 1 t(运用换元法时,要特别要注意新元 t 的范围),易知 t 0(why ?) 所 以 x 1 t 2 , 所 以 y t 2 t 1(t 0) , 欲 求 原 函 数 的 值 域 , 只 需 求 y t 2 t 1(t 0) 的最值与值域即可(解法同上面的【及时反馈】)。

高中数学《函数的最值》基础知识与讲义专题

高中数学《函数的最值》基础知识与讲义专题

高中数学《函数的最值》基础知识与讲义专题一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值 (3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。

例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。

()f x 没有最大值。

(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个。

2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点 (2)极小值点不会是最大值点,极大值点也不会是最小值点 8、最值点的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =−+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤− 二、典型例题: 例1:求函数()xf x xe−=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值 解:()()'1x fx x e −=−,令()'0f x >,解得:1x <()f x ∴的单调区间为:()()max 1f x f e∴==,无最小值 小炼有话说:函数()xf x xe−=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。

高中数学-三角函数图像及性质与值域及最值

高中数学-三角函数图像及性质与值域及最值

高中数学总复习-三角函数第5课 三角函数的图像和性质(一)【考点导读】1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质;2 22. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像;3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】动的最小正周期T _____L_;初相 —-2.三角方程2sin(_ - x)=1的解集为4. 要得到函数y sinx 的图象,只需将函数 y cos x______ - ____ 个单位. 【范例解析】例 1.已知函数 f (x) 2sin x(sin x cosx).(I)用五点法画出函数在区间 ——上的图象,长度为一个周期;2’ 2(H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而1.已知简谐运动f(x) 2sin (3X )(2)的图象经过点(0,1),则该简谐运3.函数 y Asin( x )( 0,尹R)的部分图象如图所示,则函数表达为y4si n( x ) 8 4的图象向右平移分析:化为Asin( x )形式.得到•列表,取点,描图:x33588888y11逅1 1 V21故函数y f(x)在区间[-,2]上的图象是:(U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x )4 41的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不4 2变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标4 4伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将4y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到4y 1 - 2 sin(2x -)的图像.1解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得2到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到8解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x2(sin 2x cos —4cos2xs in )4 2sin(2x 4).分析:化为Asin( x )形式.x -)的图像上所有点纵坐标伸长到原来 的2倍(横坐标不变),得到y 、2sin(2x)的图像,再将y 二sin(2x) 44的图像上所有点向上平移1个单位,即得到y 1 ,2sin(2x -)的图像. 4例2.已知正弦函数y Asin( x ) (A 0, 0)的图像如右图所示.(1) 求此函数的解析式f 1(x);(2) 求与fdx)图像关于直线x 8对称的曲线的解析式f 2(x); (3) 作出函数y h(x) f 2(x)的图像的简图.£(x) 一 2sin(gx 4).(2)设函数f 2(x)图像上任一点为M(x,y),与它关于直线x 8对称的对称点为M (x,y),f 2(x)2sin (尹 4)y sin(2x —)的图像,然后把y sin(2 分析:识别图像,抓住关键点. 解:(1)由图知,A 伍,Q 2 将x 2, y 2代入,,即 y 2 sin( x ).88 、、2sin (— ).2,解得一,即(6 2) 16,8得 28,解得y y. 16 x,y.代入 f 1(x) 、2sin( x84-)中,得(3) y f i(x)示.点评:由图像求解析式,A比较容易求解,困难的是待定系数求和,通常利用周期确定,代入最高点或最低点求【反馈演练】1. 为了得到函数y 2sin(°),x R的图像,只需把函数y 2sin x,x R的图3 6像上所有的点①向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);②向右平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);③向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变);④向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变).其中,正确的序号有__③_ .62. 为了得到函数y sin(2x )的图象,可以将函数y cos2x的图象向右平移___ 个单位长度.—3 —65. 下列函数:其中函数图象的一部分如右图所示的序号有y Asin( x ) b(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.n __7.如图,函数y 2cos( x )(x R , >0,0< <-)的图象与y 轴相交于点(0, 3),且该函数的最小正周期为(1)求和的值;(2)已知点A n ,0,点P 是该函数图象上一点,点23.若函数 f(x) 2sin( x ),x R (其中 0, 2)的最小正周期是, 且 f(0)、3,则3_2 ______ 4.在0,2 内,使sin x5 4盲cosx 成立的x 取值范围为 ________① y sin x —6② y sin 2x③ y cos 4x — 3④ y cos 2x6. 如图,某地一天从6时至14时的温度变化曲线近似满足函数解:(1)由图示,这段时间的最大温差是 30 10 20 °C(2)图中从6时到14时的图象是函数yAsin( x )b 的半个周期• •• 1 — 14 6,解得21由图示,A —(30 10)2101 b 2(1030) 2020这时,y 10sin(8x )将x 6,y10代入上式,可取3 4综上,所求的解析式为y 10si n( —x —) 8 420 ( x [6,14])第6题第7题当y 。

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

高中数学必修一第二章:函数.第一节:值域

高中数学必修一第二章:函数.第一节:值域

高中数学(人教B 版)必修一:第二章 函数2.1.1 函数函数的值域一.值域:在函数y=f(x)中,由所有函数值构成的集合:{y |y=f(x),y ∈A},叫做这个函数的值域。

值域即因变量y 的取值范围,是函数的象的集合。

二.基本函数的值域: ①.一次函数y=kx+b [ y ∈R 或(-∞,+∞) ]②.二次函数y=ax 2+bx+c (a >0) ( , +∞)③.二次函数y=ax 2+bx+c (a <0) (-∞, ) ④.反比例函数y= [ y ≠0或(-∞,0) ∪(0,+∞)] 二.求函数的值域的方法:方法一.观察法:例一:求函数y= 的值域.例二:求函数y= 的值域.规律总结:当x ≥2时, = 。

当x ≤2时, = 。

当x ≥-2时, = 。

当x ≤-2时, = 。

方法二.分离常数法:——适用于分式。

例三:求函数y= 的值域.4a 4ac-b 2 4a 4ac-b 2 k x 1 1 x 2+1 x 2-1 x 1 x 1 x 1 x 1 2x-1 x+1例四:求函数y= 的值域.方法三.反表示法:用y 表示f(x).——适用于形如y= 的函数。

例五:求函数y= 的值域.方法四.二次函数配方法:配方、画图、截断——适用于形如F(x)=af(x)2+bf(x)+c 的函数。

例六:求函数y=x 2-4x+5的值域.方法五.换元法:——适用于带根号且根号下为一次式的函数。

例七:求函数y=x+ 的值域.方法六.判别式法:——适用于二次分式函数。

例八:求函数y= 的值域.x 2-1 x 2+1 af(x)+b cf(x)+d 2x-1 x+1 2x+1 x 2-3x+4 x +3x+4。

高中数学 函数定义域,值域,解析式的求法及最值

高中数学 函数定义域,值域,解析式的求法及最值

课题函数教学目标函数的定义域、值域、最值以及解析式的求法重点、难点函数的最值以及解析式的求法考点及考试要求函数的最值以及解析式的求法教学内容(一)函数值域的概念:函数的值域就是我们通常说的y的范围,它是一个集合{y︱y=2x+1} 值域一定要与函数的定义域联系起来。

(二)函数的值域与最值的联系:注意:(三)常见函数的值域:考题8例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3. 例2(1)求函数f (x )=229)2(1x x x g --的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]1.(1)已知f (12+x)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x ,①把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2. 求下列函数的定义域: (1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x ).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25).例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[+∞). (2)设f (x )=ax 2+bx +c(a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3. 例2(1)求函数f (x )=229)2(1xx xg --的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]例4 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x(1)画出函数的图象;(2)求f (1),f (-1),f [f (-1)]的值. 解 (1)分别作出f (x )在x >0,x =0, x <0段上 的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x①把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2. 求下列函数的定义域:(1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x ).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25). 一、填空题1.设函数f 1(x )=x 21,f 2(x )=x -1,f 3(x )=x 2,则[]))0072((123f f f = .答案 007212.(2008·安徽文,13)函数f (x )=)1(log 1|21|2---x 的定义域为 .答案 []+∞,3 3.若f (x )=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f (-1)的值为 .答案 3 4.已知f (2211)11xx x x +-=+-,则f(x )的解析式为 . 答案 f (x )=212x x +5.函数f (x )=xx -132 +lg(3x +1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=则f (-3)= . 答案 68.已知函数ϕ (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(=16, ϕ (1)=8,则ϕ(x )= .答案 3x +x 5二、解答题9.求函数f (x )=21)|lg(|x x x --的定义域.解 由,11010||2⎩⎨⎧<<-<⎪⎩⎪⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f (x )是定义在实数集R 上的函数,满足f (0)=1,且对任意实数a 、,f (a -b )=f (a )-b (2a -b +1),求f (x );(2)函数f (x ) (x ∈(-1,1))满足2f (x )-f (-x )=lg(x +1),求f (x ). 解 (1)依题意令a =b =x ,则 f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有 ①2f (-x )-f (x )=lg(1-x ) ②2f (x )-f (-x )=lg(1+x )两式联立消去f (-x )得 3f (x )=lg(1-x )+2lg(1+x ),∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1).。

高中数学 2.2函数的单调性与最值

高中数学 2.2函数的单调性与最值

高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值思维升华确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法.(2)复合函数法,复合函数单调性的规律是“同增异减”.(3)图象法,图象不连续的单调区间不能用“∪”连接.(4)具有单调性函数的加减.高中数学导学案 | 《 第二章:函数 》 第二课时:函数的单调性与最值姓名: 学校: 年级: 备课人:题型二 函数的最值(值域)1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关2.设函数f (x )=log 2x +ax +b (a >0),若存在实数b ,使得对任意的x ∈[t ,t +2](t >0)都有|f (x )|≤1+a ,则t 的最小值是( )A .2B .1 C.34 D.233.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x -6,x >1,则f (x )的最小值是________.4.若函数f (x )=⎩⎪⎨⎪⎧a 2+ln x ,x >1,2x +a ,x ≤1的值域为R ,则实数a 的取值范围是________.题型三 函数单调性的应用命题点1 比较大小例3 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c 命题点2 解函数不等式例4 若f (x )是定义在(0,+∞)上的单调增函数,且满足f (xy )=f (x )+f (y ),f (3)=1,则当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8) 命题点3 求参数范围(或值)例5 (1)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,1 (2)已知e x +x 3+x +1=0,1e3y -27y 3-3y +1=0,则e x +3y 的值为________.跟踪训练2 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.求函数最值的五种常用方法及其思路 (1)单调性法:(2)图象法:(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”后用基本不等式求出最值. (4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.单调性应用的类型 (1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.求解与抽象函数有关的不等式时,利用函数的单调性将“f ”符号脱掉,转化为不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数. ①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间(2)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则不等式f (19log x )>0的解集为________________.1.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上单调递减,那么实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥5 2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( )A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( ) A.⎝⎛⎦⎤0,13 B.⎣⎡⎦⎤13,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎦⎤14,13 4.已知f (x )是(0,+∞)上的增函数,若f ()f (x )-ln x =1,则f (e)等于( ) A .2 B .1 C .0 D .e5.已知定义在R 上的奇函数f (x )在[0,+∞)上单调递减,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( )A.⎝⎛⎭⎫-∞,134 B .(-∞,-3) C .(-3,+∞) D.⎝⎛⎭⎫134,+∞ 6.若函数f (x )=⎩⎪⎨⎪⎧x 2-2x +4,x ≤3,2+log ax ,x >3(a >0,且a ≠1)的值域为[3,+∞),则实数a 的取值范围为( )A .(1,3]B .(1,3)C .(3,+∞)D .[3,+∞)7.已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f ()log 24.1,c =f (20.8),则a ,b ,c 的大小关系为________________. 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.9.函数f (x )=4-2x +x 的值域为________.10.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是__________________.[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值10.已知函数f(x)=2x高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值。

最新人教A版高中数学必修一课件:3.2.1 第二课时 函数的最大(小)值

最新人教A版高中数学必修一课件:3.2.1 第二课时 函数的最大(小)值
答案:[2,4]
2.已知二次函数f(x)=x2-2x+3. (1)当x∈[-2,0]时,求f(x)的最值; (2)当x∈[-2,3]时,求f(x)的最值; (3)(定轴动区间)当x∈[t,t+1]时,求f(x)的最小值g(t). 解:f(x)=x2-2x+3=(x-1)2+2,其对称轴为x=1,开口向上. (1)当x∈[-2,0]时,f(x)在[-2,0]上是减函数, 故当x=-2时,f(x)有最大值f(-2)=11; 当x=0时,f(x)有最小值f(0)=3.
上最低点的纵坐标.
【学透用活】 [典例 1] 已知函数 f(x)=x3--3x,2,xx∈∈[2-,15,]. 2], (1)在直角坐标系内画出 f(x)的图象; (2)根据函数的图象写出函数的单调区间和值域. [解] (1)图象如图所示.
(2)由图象可知f(x)的单调递增区间为[-1,0],[2,5];单调递减区间为(0,2), 值域为[-1,3].
[方法技巧] 利用单调性求函数的最大(小)值的一般步骤
(1)判断函数的单调性. (2)利用单调性求出最大(小)值. 提醒:(1)求最值勿忘求定义域. (2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错 误,求解时一定注意.
【对点练清】
已知函数 f(x)=1-6 x+3(x∈[2,4]),求函数 f(x)的最大值和最小值. 解:设 x1,x2 是[2,4]上任意两个实数,且 x1<x2, 所以 f(x1)-f(x2)=1-6 x1+3-1-6 x2+3 =1-6x1-1-6 x2=61- 1-x2x1-16-1x-2x1=1-6xx11-1x-2x2, 因为 2≤x1<x2≤4,所以 x1-x2<0,1-x1<0,1-x2<0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以 f(x)在[2,4]上是增函数, 所以 f(x)max=f(4)=1,f(x)min=f(2)=-3.

高一上学期期末复习:三角函数的值域和最值问题-【新教材】人教A版(2019)高中数学必修第一册

高一上学期期末复习:三角函数的值域和最值问题-【新教材】人教A版(2019)高中数学必修第一册

专题七 三角函数的值域和最值问题【题型1】 利用y=Asin(ωx+φ)+k 求解1、已知()()sin ,,,22f x x x x R ππϕϕ⎛⎫=++∈∈-⎪⎝⎭的图像过,42π⎛⎫ ⎪⎝⎭点,求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.2、设函数()sin 2f x x =,()y f x =的图像向左平移8π个单位,再将图像上所有点的横坐标不变纵坐标变为原来3倍得到()y g x =的图像,求()y g x =在[,]124ππ-上的最大值。

【题型2】 分离常量法或利用三角函数的有界性求解3、求3sin 1sin 2x y x +=+的最大值和最小值.4、求函数sin 2sin 1x y x -=-的值域.【题型3】 可化为sinx 或cosx 的二次三项式型5、知4x π≤,求函数()2cos sin f x x x =+的最小值。

【题型4】 可借助判别式处理型6、求函数22tan tan 1tan tan 1x x y x x -+=++的值域.【题型5】 利用换元法求最值7、求函数sin cos sin cos y x x x x =+-;3[,]44x ∈ππ的值域8、求函数()cos 2|sin |f x x x =+的值域.9、求函数(sin 2)(cos 2)y x x =+的最大值和最小值.答案解析1、【解析】由42f π⎛⎫= ⎪⎝⎭,有sin 422ππϕ⎛⎫++= ⎪⎝⎭,得sin 2ϕ=-,而,22ππϕ⎛⎫∈- ⎪⎝⎭,∴()(),sin 3cos 4sin 5sin 44f x x x x x x ππϕθ⎛⎫=-=-+=+=+ ⎪⎝⎭,其中34sin ,cos 55θθ==,故64ππθ<<,由0,2x π⎡⎤∈⎢⎥⎣⎦知,02x πθθ≤+≤+,故()35sin 5sin 5x θθ=≤+≤,即()f x 的值域为[]3,5,2、【解析】函数()sin 2f x x =将()y f x =的图像向左平移8π个单位,可得()sin 2sin 284f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭;再将图像上所有点的横坐标不变纵坐标变为原来的3倍可得()3sin 24g x x π⎛⎫=+ ⎪⎝⎭ 因为,124x ππ⎡⎤∈-⎢⎥⎣⎦,则32,4124x πππ⎡⎤+∈⎢⎥⎣⎦ 所以当242x ππ+=,即8x π=时取得最大值最大值为()max 3sin 32g x π==, 3、解:3sin 1sin 2x y x +=+=3(sin 2)1653sin 2sin 2x x x ++-=-++. 因为1sin 1x -≤≤,所以sin 1x =时,max 54333y =-=. 当sin 1x =-时,min 53212y =-=--+.4、由题意可得:sin 2sin 1x y x -=-=11sin 1x -- sin [1,1),sin 1[2,0)x x ∈-∴-∈-11[,)sin 12x ∴-∈+∞-3[,)2y ∴∈+∞ 综上所述,函数sin 2sin 1x y x -=-的值域为3[,)2+∞ 5、解:()2cos sin f x x x =+22151sin sin sin 24x x x ⎛⎫=-+=--+ ⎪⎝⎭。

高中数学-三角函数图像及性质与值域及最值

高中数学-三角函数图像及性质与值域及最值

高中数学总复习- 三角函数第5课 三角函数的图像和性质(一) 【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=______6π____.2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达为_)48sin(4π+π-=x y _.4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移______π6____个单位.【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到.{2,}3x x k k Z ππ=±∈分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x .列表,取点,描图:x 83π- 8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x =的图像,再把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来,得到)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.分析:识别图像,抓住关键点.解:(1)由图知,A =22(62)16πω=⨯+=Q ,8πω∴=,即sin()8y x πϕ=+. 将2x =,y =代入,得sin()4πϕ+=,解得4πϕ=,即1()sin()84f x x ππ=+.(2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''',得8,2.x x y y '+⎧=⎪⎨⎪'=⎩解得16,.x x y y '=-⎧⎨'=⎩代入1()sin()84f x x ππ''=+中,得2()sin()84f x x ππ=-.(3)12()()sin()sin()2cosy f x f x x x x πππππ=+=+--=,简图如图所示.点评:由图像求解析式,A 比较容易求解,困难的是待定系数求ω和ϕ,通常利用周期确定ω,代入最高点或最低点求ϕ.【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点 ①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变); ②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变); ③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______.2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则ω=__2____;ϕ=__________.4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数:①sin 6y x π⎛⎫=+ ⎪⎝⎭; ②sin 26y x π⎛⎫=- ⎪⎝⎭;③cos 43y x π⎛⎫=- ⎪⎝⎭; ④cos 26y x π⎛⎫=- ⎪⎝⎭.其中函数图象的一部分如右图所示的序号有_____④_____.6.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ= 综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x )7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是的中点,第6题 3π 5,44ππ⎛⎫ ⎪⎝⎭第5题y x 3O PA第7题当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=.又因为该函数的最小正周期为π,所以2ω=,因此2cos 26y x π⎛⎫=+ ⎪⎝⎭.(2)因为点02A π⎛⎫⎪⎝⎭,,00()Q x y ,是PA 的中点,02y =,所以点P 的坐标为022x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭因为02x ππ≤≤,所以075194666x πππ-≤≤,从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第6课 三角函数的图像和性质(二) 【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)y =______________________________; (2)sin 2cos x y x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________. 【范例解析】例1.求下列函数的定义域: (1)sin tan xy x =+(2)y = 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈ {663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0) 10ω-≤<(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩故函数的定义域为(0,)[,4]2ππ⋃. 点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.例2.求下列函数的单调减区间:(1)sin(2)3y x π=-; (2)2cos sin()42x y x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈. (2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈,又2cos 4sin()24sin()42x x y x ππ==+-, 所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈. 点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期:(1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ .解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=. (2)sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+2111cos 2sin cos cos sin 222422x x x x x +=+=+1sin(2)23x π=++ T π∴=. 点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.【反馈演练】1.函数x x y 24cos sin +=的最小正周期为_____________.2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是________________.4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos 2xf x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π124()πsin 2x f x x ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z .故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===.从而π124()πsin 2f ααα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ 2π[,0]6π-32π [,]3ππ 2[,]63ππ,75[,]63ππππ1cos2cos sin2sin44cosααα⎫++⎪⎝⎭=21cos2sin22cos2sin coscos cosααααααα+++==142(cos sin)5αα=+=.7.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像解:(Ⅰ))(8xfyx==是函数πΘ的图像的对称轴,,1)82sin(±=+⨯∴ϕπ,.42k k Zππϕπ∴+=+∈.43,0πϕϕπ-=<<-Θ(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=xy因此由题意得.,2243222Zkkxk∈+≤-≤-πππππ所以函数.],85,8[)432sin(Zkkkxy∈++-=πππππ的单调增区间为(Ⅲ)由知)32sin(π-=xy故函数上图像是在区间],0[)(πxfy=第7课 三角函数的值域与最值 【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________. 4.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值.(2)求函数sin cos sin cos y x x x x =⋅++的最大值. 分析:可化为二次函数求最值问题.解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈-Q ,则2sin [,1]3x ∈-.22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当2sin 3x =-时,2sin cos y x -有最小值49.(2)设sin cos x x t +=(t ≤≤,则21sin cos 2t x x -⋅=,则21122y t t =+-,当t =时,y有最大值为12点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.43(,1][1,)-∞-⋃+∞例2.求函数2cos (0)sin xy x xπ-=<<的最小值. 分析:利用函数的有界性求解.解法一:原式可化为sin cos 2(0)y x x x π+=<<,得)2x ϕ+=,即sin()x ϕ+=1≤,解得y ≥y ≤,所以y 解法二:2cos (0)sin xy x xπ-=<<表示的是点(0,2)A 与(sin ,cos )B x x -连线的斜率,其中点B 在左半圆221(0)a b a +=<上,由图像知,当AB 与半圆相切时,y 最小,此时AB k =y点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.例3.已知函数2π()2sin 24f x x x ⎛⎫=+- ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,.(I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力. 【反馈演练】1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于____-1_______.2.当04x π<<时,函数22cos ()sin sin xf x x xx =-的最小值是______4 _______.3.函数sin cos 2xy x =+4.函数cos tan y x x =⋅的值域为 .5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭, 32(1,1)-故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.。

高一数学函数的值域与最值

高一数学函数的值域与最值
再见!
王新敞 特级教师 源头学子小屋 wxckt@ 新疆奎屯
·2007·
新疆 王新敞
奎屯
人教A版高中数学·必修 章节复习
书客吧/书客吧
hoq362egk
笼罩下,远远望去像披着了一层薄薄的绿纱,透着几分宁静、几分典雅、几分柔美。马启明满眼温情地看着妻子,觉得幸福像电视特写 镜头里的花儿一样慢慢绽放着,甚至都能听得见“啪啪啪啪”的花开声,顿时对未来的生活和工作有了更多的期望,他知道自己的人 生又翻开了新的篇章。6引 子|1990年7月,一个烈日炎炎的夏日,天空纯净的没有一片云,也没有一丝风,火辣辣的烈日烤得大地滚 烫滚烫的,柏油马路似乎都要化掉了;路两边的白杨树也都无精打采地矗立在那里,树叶垂头丧气地耷拉着脑袋,庄稼地里的玉米苗 蔫头耷脑地忍受着烈日炽热的煎烤,叶子都卷了边,田头的草儿懒洋洋地趴在地上;知了躲在树枝中“热死了热死了!”地使劲叫着, 仿佛在诅咒着这令人懊恼的炎热;往日东窜西跑的小碎孩、狗儿、猫儿全没了身影。就在这样一个炽热的夏季,马启明从陕西一所大 学毕业了。他下车的时候头脑快要爆炸了,用手遮着眼睛、望着毒毒的太阳烦躁地在想:太热了!简直都透不过气来了,现在这里要 瞬间变成寒冷的南极,或者来场甘霖就好了。那年代毕业的大学生都要绝对服从组织的分配,就算做梦都不可能出现择业自由的幻景。 毕业分配一旦公布,个人档案等关系立即送到分配单位所在地,今生今世,想要自己调换工作比登天还难。在那个年代,档案就像一 个人的平面复制品一样相当重要,不是有一部电影《秘密档案》,更增添了档案的神秘性。按照当时国家分配政策,马启明被分配到 家乡的一个白酒厂,他的女友刘丽娟则回到了远在两千里之外她的家乡。遥远的距离并没有隔断彼此的思念和恋情,反而像马启明所 学的发酵专业一样---发酵得越来越浓厚香醇。鸿雁传书、电话费猛增那是自然的,马启明也长途奔波去看他的女友,一来二去,不觉 间已过了两年多。工作之余会走到铁路边,他觉得火车驶向的地方就是远方的女朋友、就是他的爱所在的地方,有事没事他望着西去 的火车,想着女朋友发呆发愣、越是望、越是想!蓦然间,马启明远远地看到女朋友刘丽娟向他飘来,他想拉住她,但川流不息的人 群淹没了她的身影。他无奈地摇了摇头,想,这又是幻觉。马启明的父母觉得儿子也老大不小了,便催促他赶快结婚。新婚蜜月之际, 刘丽娟幽幽地对马启明说:“我们现在这样两边跑,挣的几个工资全贡献给铁路和电信部门了,总不是长久之计,要么你就调到我们 单位去,要么我就调到你们单位来,你看怎么样?”一提起这个话,马启明胸膛里顿时觉得有一股热热的东西在涌淌,搅得他心烦意 乱。他在床上煎了一天“烧饼”,觉得两个相爱的人能够厮守在一起,幸福亦不过如此。一想到新婚的妻子马上要和他分离,去遥远 的远方,他的心如同刀割一般,难舍难离。他不想过牛郎织女般的

对数函数的值域与最值-高中数学知识点讲解(含答案)

对数函数的值域与最值-高中数学知识点讲解(含答案)

对数函数的值域与最值(北京习题集)(教师版)一.选择题(共7小题)1.(2006•丰台区一模)已知全集U R =,集合0.5{|log A y y x ==,2}x >,{|2x B y y ==,2}x >,则()(UA B)A .(-∞,4]B .[1-,4]C .(1,4)-D .[1,)+∞2.(2006•西城区二模)函数12()log (1)([2,5])f x x x =-∈的最大值与最小值之和是( )A .2-B .1-C .0D .13.(2004秋•丰台区期末)三个数0.10.431log ,3,34的大小关系是( )A .0.40.131log 334<< B .0.10.431log 334<< C .0.40.1313log 34<< D .0.10.43133log 4<< 4.(2018秋•海淀区校级期中)设2log 5a =,3log 5b =,3log 2c =,则a ,b ,c 的大小关系为( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>5.(2015秋•北京校级期中)函数2log 3y x =+的值域是( ) A .[2,)+∞B .(3,)+∞C .[3,)+∞D .(,)-∞+∞6.(2010•海淀区校级模拟)下列函数中,值域是R +的函数是( ) A .21y x x =++B .12x y -= C .23(1)y x =+D .2|log |y x =7.(2010•丰台区二模)已知函数2()log f x x =,若|()|1f x ,则实数x 的取值范围是( ) A .(-∞,1]2B .[2,)+∞C .(0,1][22,)+∞D .(-∞,1][22,)+∞二.填空题(共5小题)8.(2013秋•朝阳区期中)函数2log (1),01()2,10x x f x x x +⎧=⎨-<⎩的值域是 .9.(2013•北京)函数12,1()2,1x log x x f x x ⎧⎪=⎨⎪<⎩的值域为 .10.(2011秋•朝阳区期末)若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,[1x ∈,2]与函数2y x =,[2x ∈-,1]-即为“同族函数”.下面函数中,解析式能够被用来构造“同族函数”的有 (填入函数对应的序号)①223y x x =-+; ②3y x =; ③2log y x =; ④2x xe e y -+=; ⑤|21|x y =-11.(2008秋•西城区校级月考)若函数2(34)y lg ax x =++的值域为R ,则实数a 的取值范围是 .12.(2005•西城区校级一模)设函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈使12()()(2f x f x C C +=为常数)成立,则称函数()f x 在D 上的均值为C .给出下列四个函数:(1)2y x =,(2)sin y x =,(3)y lgx =,(4)3x y =,则均值为2的函数为 . 三.解答题对数函数的值域与最值(北京习题集)(教师版)参考答案与试题解析一.选择题(共7小题)1.(2006•丰台区一模)已知全集U R =,集合0.5{|log A y y x ==,2}x >,{|2x B y y ==,2}x >,则()(UA B)A .(-∞,4]B .[1-,4]C .(1,4)-D .[1,)+∞【分析】先通过求对数函数和指数函数的值域,将集合A 、B 转化为数集,再利用集合运算性质运算即可 【解答】解:0.5{|log A y y x ==,2}{|1}x y y >=<-,{|2x B y y ==,2}{|4}x y y >=>,{|1A B y y ∴=<-或4}y > (){|14}[1UAB y y ∴=-=-,4]故选:B .【点评】本题考查了指数函数与对数函数的值域,描述法表示集合,集合的运算性质 2.(2006•西城区二模)函数12()log (1)([2,5])f x x x =-∈的最大值与最小值之和是( )A .2-B .1-C .0D .1【分析】因为对数函数的底数小于1,所以在定义域上是减函数,则2,5分别对应其最大值和最小值,然后再求解. 【解答】解:对数函数的底数小于1∴函数12()log (1)([2,5])f x x x =-∈是减函数∴最大值与最小值之和即为:(21)(51)1122log log 2--+=- 故选:A .【点评】本题主要考查对数函数的最值,解决最值问题要先研究单调性,同时还要注意定义域. 3.(2004秋•丰台区期末)三个数0.10.431log ,3,34的大小关系是( )A .0.40.131log 334<< B .0.10.431log 334<< C .0.40.1313log 34<< D .0.10.43133log 4<< 【分析】根据对数函数3log y x =是增函数,得到31log 4是负数,再根据指数函数3x y =是增函数,得到0.10.4133<<,从而得到正确选项.【解答】解:函数3log y x =是增函数∴331log log 104<= 又函数3x y =是增函数 00.10.4333∴<< 0310=>∴0.10.43101334log <<<< 故选:B .【点评】本题着重考查了指数函数与对数函数的单调性、用函数的单调性比较实数的大小等知识点,属于基础题. 4.(2018秋•海淀区校级期中)设2log 5a =,3log 5b =,3log 2c =,则a ,b ,c 的大小关系为( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>【分析】a ,b 分别为log x a y =,log x b y =,在5x =时的函数值,借助图象比大小,b ,c 借助3log x y =的单调性比较大小. 【解答】解:由题意知a ,b 分别为2log x y =,3log x y =,在5x =时的函数值,由图象知a b >.因为3log x y =是增函数,所以b c >.故选:B .【点评】本题考查对数函数图象,属于简单题.5.(2015秋•北京校级期中)函数2log 3y x =+的值域是( ) A .[2,)+∞B .(3,)+∞C .[3,)+∞D .(,)-∞+∞【分析】根据对数函数的图象和性质,得到2log 3(,)y x =+∈-∞+∞,可得答案. 【解答】解:2log (,)y x =∈-∞+∞,2log 3(,)y x ∴=+∈-∞+∞,即函数2log 3y x =+的值域是(,)-∞+∞, 故选:D .【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键. 6.(2010•海淀区校级模拟)下列函数中,值域是R +的函数是( ) A .21y x x =++B .12x y -= C .23(1)y x =+D .2|log |y x =【分析】根据二次函数的图象和性质,可以求出A 答案中函数的值域;根据对数函数的图象和性质,可以求出B 答案中函数的值域;根据幂函数函数的图象和性质,可以求出C 答案中函数的值域;根据对数函数的图象和性质,可以求出D 答案中函数的值域,进而得到答案.【解答】解:由二次函数的性质可得,函数21y x x =++的值域为3[4,)+∞;由指数函数的性质及左右平移不改变函数的值域,可得函数12x y -=的值域为(0,)+∞;由幂函数23y x =的值域R ,函数23(1)y x =+的图象可由23y x =的向左平移一个单位得到,其值域与幂函数23y x =的值域相等均为[0,)+∞;由对数函数的性质及函数图象对折变换法则,可得函数2|log |y x =的值域为[0,)+∞; 故值域是R +的函数仅由12x y -=, 故选:B .【点评】本题考查的知识点是对数函数的值域,指数函数的值域,幂函数的值域及二次函数的值域,其中熟练掌握基本初等函数的图象和性质,及函数图象变换对函数性质的影响是解答本题的关键. 7.(2010•丰台区二模)已知函数2()log f x x =,若|()|1f x ,则实数x 的取值范围是( ) A .(-∞,1]2B .[2,)+∞C .(0,1][22,)+∞D .(-∞,1][22,)+∞【分析】由函数2()log f x x =,将|()|1f x 转化为2|log |1x ,再去绝对值求解. 【解答】解:函数2()log f x x =, |()|1f x ∴,即:2|log |1x , 2log 1x ∴或2log 1x -102x∴<或2x 故选:C .【点评】本题主要考查绝对值不等式,对数不等式的解法,绝对值不等式一般有两种解法,一是利用绝对值的意义,二是等价转化;对数不等式求解,则多用对数函数的单调性. 二.填空题(共5小题)8.(2013秋•朝阳区期中)函数2log (1),01()2,10x x f x x x +⎧=⎨-<⎩的值域是 [2-,1] .【分析】根据分段函数的解析式,分两段进行求解,当01x 时,利用复合函数的单调性的判断法则,可以得到函数()f x 为单调增函数,即可求得()f x 的取值范围即值域,当10x -<时,判断出()f x 为单调递增函数,利用单调性求出()f x 的取值范围,即可得()f x 的值域,最后取两个值域的并集,可以求得()f x 的值域. 【解答】解:函数2log (1),01()2,10x x f x x x +⎧=⎨-<⎩,①当01x 时,2()log (1)f x x =+,1y x =+在[0,1]上单调递增,而2log y x =在其定义域上为单调递增函数, 2()log (1)f x x ∴=+在[0,1]上单调递增,(0)()f f x f ∴(1), 即22log (01)()log (11)f x ++, 22log 1()log 2f x ∴,0()1f x ∴,()f x ∴的值域为[0,1];②当10x -<时,()2f x x =是[1-,0)上的单调递增函数, (1)()(0)f f x f ∴-<,即2()0f x -<,()f x ∴的值域为[2-,0).综合①②可得,()f x 的值域为[2-,1].【点评】本题考查了对数函数的值域与最值,求函数的值域要注意考虑定义域的取值,再根据函数的解析式进行判断该使用何种方法求解值域.对于分段函数一般选用数形结合和分类讨论的数学思想进行解题.属于中档题. 9.(2013•北京)函数12,1()2,1x log x x f x x ⎧⎪=⎨⎪<⎩的值域为 (,2)-∞ .【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域. 【解答】解:当1x 时,1122()10f x log x log ==;当1x <时,10()222x f x <=<=.所以函数12,1()2,1x log x x f x x ⎧⎪=⎨⎪<⎩的值域为(,2)-∞.故答案为(,2)-∞.【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.10.(2011秋•朝阳区期末)若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,[1x ∈,2]与函数2y x =,[2x ∈-,1]-即为“同族函数”.下面函数中,解析式能够被用来构造“同族函数”的有 ①④⑤ (填入函数对应的序号)①223y x x =-+; ②3y x =; ③2log y x =; ④2x xe e y -+=; ⑤|21|x y =-【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调.由此判断各个函数在其定义域上的单调性,即可得到①④⑤中的函数是符合题意的,而②③中的两个函数在其定义域上是增函数,不符合题意.【解答】解:根据题意,“同族函数”需满足:对于同一函数值,有不同的自变量与其对应. 因此,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调. 函数223y x x =-+在(,1)-∞上是减函数,在(1,)+∞上是增函数,223y x x ∴=-+能够被用来构造“同族函数”,故①正确; 函数3y x =在(,)-∞+∞上是增函数,3y x ∴=不能够被用来构造“同族函数”,故②不正确; 函数2log y x =在(0,)+∞上是增函数;2log y x ∴=不能够被用来构造“同族函数”,故③不正确; 函数2x xe e y -+=在(,0)-∞上是减函数,在(0,)+∞上是增函数,∴2x xe e y -+=能够被用来构造“同族函数”,故④正确;函数|21|x y =-在(,0)-∞上是减函数,在(0,)+∞上是增函数,|21|x y ∴=-能够被用来构造“同族函数”,故⑤正确. 综上所述,能够被用来构造“同族函数”的函数有①④⑤ 故答案为:①④⑤【点评】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查了基本初等函数的单调性的知识点,属于中档题.11.(2008秋•西城区校级月考)若函数2(34)y lg ax x =++的值域为R ,则实数a 的取值范围是 [0,9]16. 【分析】本题中函数2(34)y lg ax x =++的值域为R 故内层函数234ax x ++的值域要取遍全体正实数,当0a =时符合条件,当0a >时,可由△0保障2(34)y lg ax x =++的内层函数234ax x ++的值域能取遍全体正实数,故解题思路明了.【解答】解:当0a =时符合条件,故0a =可取; 当0a >时,△9160a =-,解得916a ,故9016a <, 综上知实数a 的取值范围是[0,9]16, 故答案为:[0,9]16. 【点评】本题考点是对数函数的值域与最值,考查对数函数的定义其定义域为全体实数的等价条件的理解,本题是一个易错题,应依据定义厘清转化的依据.12.(2005•西城区校级一模)设函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈使12()()(2f x f x C C +=为常数)成立,则称函数()f x 在D 上的均值为C .给出下列四个函数:(1)2y x =,(2)sin y x =,(3)y lgx =,(4)3x y =,则均值为2的函数为 (3) .【分析】对于函数2y x =,可直接取任意的1x R ∈,验证求出两个的2x =,即可得到成立.故错;对于函数②sin y x =,根据值域得到明显不成立,对于函数y lgx =,定义域为0x >,值域为R 且单调,显然成立.对于函数3x y =,特殊值法代入验证不成立成立.即可得到答案.【解答】解:对于函数2y x =,取任意的1x R ∈,221212()()222f x f x x x ++==,2x =2x D ∈.故不满足唯一存在的条件.对于函数sin y x =,明显不成立,正弦函数的值域是[1-,1],故不满足条件; 对于函数y lgx =,定义域为0x >,值域为R 且单调,显然必存在唯一的2x D ∈,使12()()22f x f x +=成立.故成立.对于函数3x y =定义域为R ,值域为0y >.对于13x =,1()27f x =. 要使12()()22f x f x +=成立,则2()23f x =-,不成立.综上可知只有(3)正确, 故答案为:(3)【点评】本题主要考查对新定义的概念的理解,考查平均值不等式在函数中的应用.对于新定义的问题,需要认真分析定义内容,本题解题的关键是充分理解各基本初等函数的定义域和值域,本题是一个中档题目.三.解答题。

新人教版高中数学必修一函数的最大值最小值课件

新人教版高中数学必修一函数的最大值最小值课件
-m2-15,0≤m≤2.
本例的条件不变,试求函数 g(x)的最大值.
【解析】当 m≤1 时,g(x)max=g(2) =-4m-11;
当 m>1 时 g(x)max=g(0)=-15. 综上所述,g(x)max=- -415m,-m11>,1. m≤1,
含参数的一元二次函数的最值
以一元二次函数图象开口向上、对称轴为 x=m 为例,区间为[a,b] ,则有
函数 f(x)=-x2 的定义域为 R,存在实数 1,∀ x∈R,都有 f(x)≤1.那么 1 是函数 f(x)=-x2 的最大值吗?为什么?
提示:不是.因为不存在 x0∈R,使得 f(x0) =-x20 =1.
1.任何函数都有最大值、最小值吗? 2.如果函数有最大值,那么最大值是唯一的吗?
3.如果一个函数 f(x)是区间[a,b] 上的减函数,那么函数的最大值是 f(a) 还是
月产量. (1)将利润表示为关于月产量的函数 f(x); (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成 本+利润)
【问题 1】要求公司所获利润最大,需要研究函数的哪个性质? 【问题 2】对于函数 R(x),要求函数的最值需要用到什么知识? 【问题 3】我们学习过哪些求二次函数最值的方法?
点拨:考查对称轴与区间的关系.
不含参数的最值问题 首先配方,确定对称轴,考查对称轴与区间的关系, (1)当对称轴不在区间上时,该区间是单调区间,最值在端点处取到; (2)当对称轴在区间上时,最值在对称轴、距离对称轴较远的端点处取得.
含参数的最值问题 【典例】已知 g(x)=x2-2mx-15,求函数 g(x)在 x∈[0,2]上的最小值.
2 3 ,当且仅当-x=-3x ,x=- 3 时等号成立.所以函数 f(x)=x+x3 的值域为(-∞,-2 3]

专题 函数:高中常见函数的单调性与值域、最值-高一数学热点题型归纳与分阶培优练(原卷版)

专题 函数:高中常见函数的单调性与值域、最值-高一数学热点题型归纳与分阶培优练(原卷版)

专题7 常见函数的单调性与值域、最值目录【题型一】单调性定义 .............................................................................................................................................. 1 【题型二】1:反比例函数 ........................................................................................................................................ 2 【题型三】2:一元二次函数 .................................................................................................................................... 3 【题型四】3:分段函数 ............................................................................................................................................ 4 【题型五】4:“对勾”函数 ...................................................................................................................................... 5 【题型六】5:“双刀”函数(双曲函数) .............................................................................................................. 6 【题型七】6:无理函数 ............................................................................................................................................ 6 【题型八】7:max 与min 函数 ................................................................................................................................. 7 【题型九】8:“放大镜”函数 .................................................................................................................................. 8 【题型十】9:取整函数(高斯函数) .................................................................................................................... 9 培优第一阶——基础过关练 ...................................................................................................................................... 8 培优第二阶——能力提升练 .................................................................................................................................... 11 培优第三阶——培优拔尖练 (12)【题型一】单调性定义【典例分析】下列说法错误的是( )A .函数()f x 的定义域为(),a b ,若()12,,x x a b ∀∈,当12x x <时,()()21f x f x <,则函数()f x 是(),a b 上的减函数B .函数()f x 的定义域为(),a b ,若()12,,x x a b ∃∈,当12x x <时,()()21f x f x <,则函数()f x 不是(),a b 上的增函数C .若函数()f x 在[],a b 上是增函数,在(],b c 上也是增函数,则函数()f x 在[],a c 上是增函数D .若函数()f x 在[],a b 上是增函数,在[],b c 上也是增函数,则函数()f x 在[],a c 上是增函数1.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( ) A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠2.下列有关函数单调性的说法,不正确的是( )A .若()f x 为增函数,()g x 为增函数,则()()f x g x +为增函数B .若()f x 为减函数,()g x 为减函数,则()()f x g x +为减函数C .若()f x 为增函数,()g x 为减函数,则()()f x g x +为增函数D .若()f x 为减函数,()g x 为增函数,则()()f x g x -为减函数3.下列函数f x ()中,满足“对任意()120x x ∈+∞,,,且12x x <都有()()12f x f x >”的是( )A .f x =()B .2f x x x=-() C .22f x x x =+-() D .3f x x =-()【题型二】1:反比例函数【典例分析】()f x =,*N x ∈,则()f x 取得最大值时的x 值为______.1.关于函数3125x y x -=-,下列说法正确的是( ) A .若x N ∈,则函数只有最大值没有最小值 B .若x N ∈,则函数只有最小值没有最大值 C .若x N ∈,则函数有最大值没有最小值 D .若x N ∈,则函数有最小值也有最大值2.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值753..已知函数31()1x f x x -=-,其定义域是[4-,2)-,则( ) A .()f x 有最大值73-,最小值135-B .()f x 有最大值73-,无最小值C .()f x 有最大值135-,最小值73-D .()f x 有最小值135-,无最大值【题型三】2:一元二次函数【典例分析】若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -( )A .有最大值,但无最小值B .既有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值1.函数y = ) A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--2..已知2()2a f x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .23.若函数2()45f x x mx =-+在区间[1,)-+∞上是增函数,则(2)f 的最小值是 A .8 B .8- C .37 D .37-【题型四】3:分段函数【典例分析】.已知函数()21,=,2x c f x x x x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( )A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞1.已知()32f x x =-,()22g x x x =-,若()()()()()()(),,g x f x g x Fx f x f x g x ⎧≥⎪=⎨<⎪⎩,则()F x 的最值是( )A .最大值为3,最小值1-B .最大值为7-C .最大值为3,无最小值D .无最大值,最小值为1-2..函数2,[1,0]()1,(0,1]x x f x x x⎧∈-⎪=⎨∈⎪⎩的最值情况为( ).A .最小值0,最大值1B .最小值0,无最大值C .最小值0,最大值5D .最小值1,最大值5【题型五】4:“对勾”函数【典例分析】.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( ) A .103B .152C .3D .41.若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( )A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦,C .51023⎡⎤⎢⎥⎣⎦,D .556⎡⎤⎢⎥⎣⎦,2.设0a >,函数100()f x x x=+在区间(0,]a 上的最小值为m 1,在区间[,)a +∞上的最小值为m 2,若122020m m =,则a 的值为( )A .1B .2C .100D .1或1003..函数()()2404xf x x x x x =++>+的最小值为( )A .2B .103C .174D .2654..函数2y =的最小值为( ) A .2 B .52C .1D .不存在【题型六】5:“双刀”函数(双曲函数)【典例分析】已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为( ) A .13a >B .13a <C .14a >D .14a <1.函数y =x -1x在[1,2]上的最大值为( )A .0B .32C .2D .32..函数()12f x x x=-在区间[]1,2上的最小值是( )A .72- B .72 C .1D .-13.已知0x >,则92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭的最小值为A .B .48C .79316D .60【题型七】6:无理函数【典例分析】若()f x =()g x =0a >)的最大值相等,则a 的值为( )A .1BC .2D .1.函数y =A .⎡⎣B .(C .(-∞D .)⎡+∞⎣2.已知函数()f x x =()f x 有( )A .最小值1,无最大值B .最大值32,无最小值C .最小值32,无最大值 D .无最大值,无最小值3.关于函数y = )A .既没有最大值也没有最小值B CD .既有最小值0【题型八】7:max 与min 函数【典例分析】()()()()()()}{21,1,,max ,,f x x g x x x R M x f x g x =+=+∈=则函数()M x 的最小值是__________.1.设{}2()min 2,16,816(0)x f x x x x x =--+≥,其中{}min ,,a b c 表示a ,b ,c 三个数中的最小值,则()f x 的最大值为 A .6 B .7 C .8 D .92.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( ) A .-1B .0C .1D .43.已知{}max ,,a b c 表示a ,b ,c 中的最大值,例如{}max 1,2,33=,若函数(){}2max 4,2,3f x x x x =-+-++,则()f x 的最小值为( ) A .2.5 B .3C .4D .5【题型九】8:“放大镜”函数【典例分析】定义域为R 的函数()f x 满足()()122f x f x -=,且当[)2,0x ∈-时,()22f x x x =--,则当[)2,4x ∈时,()f x 的最大值为( ) A .4 B .2C .12D .141.定义域为R 的函数()f x 满足(1)3()f x f x +=,且当(0,1]x ∈时,()4(1)f x x x =-,则当[2,1)x ∈--时,()f x 的最小值是( )A .181- B .127-C .19-D .02..定义域为R 的函数()f x 满足()()12f x f x +=,且当(0,1]x ∈时,()2f x x x =-,则当(]2,1x ∈--时,()f x 的最小值为( )A .116- B .18- C .14- D .03.已知定义在R 上的函数()y f x =满足()2(1)f x f x =+,且当(0,1]x ∈时,2()f x x x =-,则当(1,0]x ∈-时,函数()y f x =的最小值为( ).A .18- B .14- C .12- D .1-【题型十】9:取整函数(高斯函数)【典例分析】世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子"美誉的高斯提出了取整函数[][],y x x =表示不超过x 的最大整数,例如][1.11, 1.12⎡⎤=-=-⎣⎦.已知()()()21,,32,1x f x x x ∞∞-⎡⎤=∈--⋃+⎢⎥+⎣⎦,则函数()f x 的值域为( ) A .{}0,1,2 B .{}1,2,3 C .{}2,3,4 D .{}2,3【提分秘籍】 基本规律 取整函数[][],y x x =表示不超过x 的最大整数,又叫做“高斯函数”,可参考图像如下图。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1、 已知,试求。

解:设,则,代入条件式可得:,t ≠1。

故得:。

说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得, 由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。

(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ① 用代替得 ② 解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。

若函数程中同时出现,,则一般将式中得用代替,构造另一程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的最值与值域【考纲要求】1. 会求一些简单函数的定义域和值域;2. 理解函数的单调性、最大(小)值及其几何意义;3. 会运用函数图象理解和研究函数的性质.4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值.【知识网络】【考点梳理】考点一、函数最值的定义1.最大值:如果对于函数()f x 定义域D 内的任意一个自变量x ,存在0x D ∈,使得0()()f x f x ≤成立,则称0()f x 是函数()f x 的最大值.注意:下面定义错在哪里?应怎样订正.如果对于函数()f x 定义域D 内的任意一个自变量x ,都有()f x M ≤,则称M 是函数()f x 的最大值.2.最小值的定义同学们自己给出. 考点二、函数最值的常用求法1.可化为二次函数的函数,要特别注意自变量的取值范围.2.判别式法:主要适用于可化为关于x 的二次方程,由0∆≥(要注意二次项系数为0的情况)求出函数的最值,要检验这个最值在定义域内是否有相应的x 的值.3.换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换.4.不等式法:利用均值不等式求最值.5.利用函数的性质求函数的最值6.含绝对值的函数或分段函数的最值的求法7.利用导数求函数的最值。

要点诠释:函数的最值与值域 函数的值域函数的最大值函数的最小值(1)求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值; (2)一些能转化为最值问题的问题:()f x A >在区间D 上恒成立⇔函数min ()()f x A x D >∈ ()f x B <在区间D 上恒成立⇔函数max ()()f x B x D <∈在区间D 上存在实数x 使()f x B <⇔函数min ()()f x B x D <∈ 在区间D 上存在实数x 使()f x A >⇔函数max ()()f x A x D >∈【典型例题】类型一、通过转化或换元的方法求解函数的值域或最值 例1.求函数22()xx x f x e me e -=-+-x me -的最值.【解析】22()()xx x x f x ee m e e --=+-+2()()2xx xxe e m e e --=+-+-令x xt e e -=+(注意t 的范围),这样所求函数就变为二次函数.【总结升华】当式子中同时出现22x x -+和1x x -±时,都可以化为二次式. 举一反三:【变式】求函数13y x x =-++的值域.解:平方再开方,得42(1)(3),[3,1]y x x x =+-+∈-[2,22]y ∴∈类型二、函数值的大小比较,求函数值域,求函数的最大值或最小值 例2. 求下列函数值域: (1)2-12x y x =+; 1)x ∈[5,10]; 2)x ∈(-3,-2)∪(-2,1); (2)y=x 2-2x+3; 1)x ∈[-1,1]; 2)x ∈[-2,2]. 【解析】 (1)2(2)-5-5-522x y y x x x+===++Q +2可看作是由左移2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,919[(5),(10)][,]712y f f ∈即; 2)1(-,(1))((-3),)(-)(7)3y f f ∈∞⋃+∞∞⋃+∞即,,; (2)画出草图1)y ∈[f(1),f(-1)]即[2,6]; 2)[(1),(-2)][2,11]y f f ∈即. 举一反三:【变式】已知函数13xf (x)13x+=-.(1)判断函数f(x)的单调区间;(2)当x ∈[1,3]时,求函数f(x)的值域. 【解析】(1)13x (3x 1)22f (x)113x 13x 3x 1+--++===----- 1f (x)(-)3∴∞在,上单调递增,在1(,)3+∞上单调递增;(2)1[1,3](,)3⊆+∞故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值5f (3)4=-∴x ∈[1,3]时f(x)的值域为5[2,]4--.类型三、含参类函数的最值与值域问题例3. 已知二次函数f(x)=x 2-(a-1)x+5在区间1(,1)2上是增函数,求: (1)实数a 的取值范围; (2)f(2)的取值范围. 【解析】(1)∵对称轴-12a x =是决定f(x)单调性的关键,联系图象可知 只需-11222a a ≤∴≤; (2)∵f(2)=22-2(a-1)+5=-2a+11又∵a ≤2,∴-2a ≥-4 ∴f(2)=-2a+11≥-4+11=7[)f(2)7,+∴∈∞.举一反三:【变式】已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.【解析】2()(2)f x x x=≥单调递减且值域(0,1],3()(1)(2)f x x x =-<单调递增且值域为(,1)-∞,由图象知,若()f x k =有两个不同的实根,则实数k 的取值范围是(0,1).类型四、抽象函数的最值与值域问题例4.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]3【答案】B【解析】令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t=+∈ 举一反三:【变式】设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1()(2)f f 的值为( ) A .1516B .2716-C .89D .18【答案】A【解析】∵2(2)2224f =+-=, ∴211115()()1()(2)4416f f f ==-=.类型五:函数、导数、不等式知识在最值方面的综合应用例5.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1) 求a 、b 的值及函数()f x 的单调区间;(2) 若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.【解析】322(1)(),()32f x x ax bx c f x x ax b '=+++=++ 由2124()0,(1)320393f a b f a b ''-=-+==++= 得1,22a b =-=- 2()32(32)(1)f x x x x x '=--=+-,函数()f x 的单调区间如表:所以函数()f x 的递增区间为(,)3-∞-与(1,)+∞;递减区间为(,1)3-. (2)321()22f x x x x c =--+ []1,2x ∈- ,当23x =-时,22()27f x c =+为极大值 而(2)2f c =+,则(2)2f c =+为最大值,要使2()f x c <([]1,2x ∈-)恒成立,只须2(2)2c f c =+>,解得1c -<或2c >.【总结升华】本题重点考查函数的导数,函数,函数极值的判定,给定区间上二次函数的最值等基础知识的综合运用,考查数形结合的数学思想分析问题,解决问题的能力.举一反三:【变式】设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f(x)的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.【解析】(Ⅰ)221ln 11ln ()(1)(1)1(1)x xf x x x x x x x '=--+=-++++.故当(01)x ∈,时,()0f x '>,(1)x ∈+,∞时,()0f x '<. 所以()f x 在(01),单调递增,在(1)+,∞单调递减.由此知()f x 在(0)+,∞的极大值为(1)ln 2f =,没有极小值.(Ⅱ)(ⅰ)当0a ≤时,由于[]ln(1)ln(1)ln (1)ln(1)ln ()011x x x x x x x x f x x x+++-++-==>++,故关于x 的不等式()f x a ≥的解集为(0)+,∞.(ⅱ)当0a >时,由ln 1()ln(1)1x f x x x=+++知ln 21(2)ln(1)122n nn nf =+++,其中n 为正整数, 且有22211ln(1)1log (1)222n nn n a e n e +<⇔<-⇔>--.又2n ≥时,ln 2ln 2ln 22ln 2(1)121(11)12n n nn n n n n =<=-+++-,且2ln 24ln 2112a n n n <⇔>+-. 取整数0n 满足202log (1)n n e >--,04ln 21n a>+,且02n ≥, 则0000ln 21(2)ln(1)12222nn n n a af a =++<+=+,即当0a >时,关于x 的不等式()f x a ≥的解集不是(0)+,∞.综合(ⅰ)(ⅱ)知,存在a ,使得关于x 的不等式()f x a ≥的解集为(0)+,∞, 且a 的取值范围为(]0-∞,.类型六:函数、不等数与数列知识在最值方面的综合应用例6.设数列{}n a 的前n 项和为n S ,点*(,)()nS n n N n∈均在函数32y x =-的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有*n N ∈都成立的最小正整数m .【解析】(I )依题意得,32,nS n n=-即232n S n n =-. 当2n ≥时,()221(32)312(1)65n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦;当1n =时,2113121615a S ==⨯-==⨯-. 所以65()n a n n N *=-∈.(II )由(I )得[]131111()(65)6(1)526561n n n b a a n n n n +===--+--+, 故1111111111(1)()...()(1)277136561261nn b n n n T =⎡⎤-=-+-++-=-⎢⎥-++⎣⎦∑. 因此,使得()11(1)26120m n N n *-<∈+成立的m 必须满足1220m ≤,即10m ≥, 故满足要求的最小整数m 为10.【总结升华】与数列知识结合的函数、不等式,解题时往往以不等式和数列知识结合为工具, 结合函数知识,通过计算和推理来解决问题.举一反三:【变式1】已知函数f(x)=a 1x+a 2x 2+…+a n x n(n∈N *),且a 1,a 2,a 3,…,a n 构成数列{a n },又f(1)=n 2.(1)求数列{a n }的通项公式; (2)求证:1)31(<f . 【解析】(1)由题意:f(1)=a 1+a 2+…+a n =n 2,(n∈N *)n=1时,a 1=1n≥2时,a n =(a 1+a 2+…+a n )-(a 1+a 2+…+a n-1)=n 2-(n-1)2=2n-1 ∴对n∈N *总有a n =2n-1,即数列{a n }的通项公式为a n =2n-1. (2)21111()13(21)3333nf n =⨯+⨯++-⋅L =)31(31f 1231)12(31)32(311+-+-++⋅n n n n Λ ∴2312111111()12()(21)3333333n n f n +=⋅+++--L 11111213(21)139313n n n -+-=+⋅---1222,33n n ++=- ∴11()1133n n f +=-<【变式2】已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L ,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,2112()1(1)3n na x x x --++≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .【解析】 (Ⅰ)1321n n n a a a +=+Q ,112133n n a a +∴=+,11111(1)3n na a +∴-=-, 又1213n a -=,1{1}n a ∴-是以23为首项,13为公比的等比数列. ∴112121333n n n a --=⋅=,332n n n a ∴=+.(Ⅱ)由(Ⅰ)知3032nn na =>+, 2112()1(1)3n x x x --++2112(11)1(1)3n x x x =-+--++ 2111[(1)]1(1)nx x x a =--+++ 2112(1)1n a x x =-⋅+++211()1n n n a a a x=--++n a ≤, ∴原不等式成立.【另解】设2112()()1(1)3nf x x x x =--++, 则222222(1)()2(1)2()133()(1)(1)(1)n n x x x x f x x x x -+--⋅+-'=--=+++ 0x >Q ,∴当23n x <时,()0f x '>;当23nx >时,()0f x '<, ∴当23n x =时,()f x 取得最大值21()2313n n n f a ==+.∴原不等式成立.由(Ⅱ)知,对任意的0x >,有122222112112112()()()1(1)31(1)31(1)3n na a a x x x x x x x x x +++--+--++--++++++L L ≥221222()1(1)333nn nx x x =-+++-++L . ∴令22220333n nx +++-=L ,则221(1)12221133()(1)13333(1)3n n nx n n n -=+++==--L , ∴2212111111(1)133n n n n n n n a a a x n n n +++==>+++-+-L ≥.∴原不等式成立.类型五:解析几何在最值方面的综合应用例7.设A (0,0),B (4,0),C (t+4,4),D (t ,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解析】当t ≠0时,直线AD 的方程为4y x t=, 分别与直线y=1,y=2,y=3交于点1(,1)4t M ,2(,2)2t M 33(,3)4M t 。

相关文档
最新文档