0. 1背包问题的多种解法

合集下载

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析0-1背包问题是计算机科学领域的一个经典问题,其解法被广泛应用在算法设计中。

其主要思想是在一定的容量限制下,如何选择一些物品放置到背包中,使得背包的总价值最大化。

在该问题中,每个物品不仅有一个重量,还有一个价值,我们需要在这两个限制因素下做好物品的选择。

该问题的求解方法有好几个,其中最常见的方法是动态规划。

下面,我们来分析一下0-1背包问题的算法决策分析。

1. 问题描述在组织摆市集时,有一块摊位的承重力有限,你有一些物品,每个物品有一个重量和一个价值,你需要将这些物品放入摊位中,并最大化摆摊的总价值,但是不能超过摊位的承重力限制。

2. 动态规划算法动态规划算法是一种高效解决0-1背包问题的方法。

该算法基于一个简单的思想:将问题拆分成小的、重叠的子问题,然后将这些问题组合起来解决原问题。

在这里,我们使用下面的方法来解决动态规划问题:1. 定义状态方程我们需要定义一个状态方程,以确定哪些值需要存储下来,以及如何将它们组合在一起来解决整个问题。

在这里,我们定义一个状态表格,记录放入物品的不同方法,以及每种放置方法的总价值。

2. 初始化状态我们需要初始化状态表格,以确定当没有物品可以放置时的状态。

在这种情况下,状态表格的所有值都应该是0。

3. 递推方程我们需要递推填充状态表格,以确定每一个单元格的最优值。

这需要根据当前单元格的背包限制和当前物品的重量和价值来计算。

4. 计算最终结果我们需要遍历状态表格,以找到摆摊中最大值的那个单元格。

这会告诉我们哪些物品放到了摊位中,以及它们的总价值。

3. 时间复杂度动态规划算法的时间复杂度为O(NW),其中N是物品数量,W是背包的重量限制。

该算法的时间复杂度相对较低,因此它被广泛应用于0-1背包问题的求解。

5. 总结0-1背包问题是一种经典问题,其求解方法多种多样,其中动态规划算法是最常用的方法之一。

该算法的时间和空间复杂度相对较低,因此它可以处理较大规模的问题。

0/1背包问题算法研究

0/1背包问题算法研究

0/1背包问题算法研究0/1背包问题是实际当中经常遇到的一类经典NP难组合优化问题之一.本文分别对贪心法、动态规划、回溯法这三种设计方法进行求解和算法分析,并通过公共测试数据集对各种算法的效果进行了对比,得出了0/1背包问题不同算法的适用范围,为该技术的推广应用奠定了基础。

标签:0/1背包问题;贪心法;动态规划;回溯法0 引言0/1背包问题[1](knapsack problem)是计算机学科中的一个经典的NP难组合优化问题之一.问题可以描述为:假设给定1个背包,背包内可以容纳n种物品(单个物品的重量是,价值为,),背包的总容量为.0/1背包问题就是求从这n 件物品中选择部分物品且对物品不能重复选择,满足所选择物品的总重量不超过且总价值最大.如果xi表示物品被选择的情况,.当时,表示物品不被选择;当时,表示物品被选择,物品只能被选择一次或者不选.根据问题描述,可以将该问题转化为如下的约束条件(1)(2)和目标函数(3):由式(1-3)可知,0/1背包问题可以转化为寻找在满足约束条件(1)(2)条件下,同时使得目标函数式(3)达到最大的解向量1.贪心法求解0/1背包问题0/1背包问题的三种贪心策略,每种策略都需要经过多个步骤来完成,每一步都要用贪心策略选择一个物品放入背包中.第一种是重量贪心策略,即从剩下的物品中选择重量最轻的装入背包中,一直下去,直到不满足约束条件;第二种是价值贪心策略;第三种是价值重量比vi/wi贪心策略本文对这三种贪心策略进行了测试,并比较了三种策略的优劣.算法步骤如下:(1)所有物品按重量从小到大排序(或按价值从大到小排序或计算每种物品的价值重量比vi/wi,然后按价值重量比从大到小排序);(2)若将某物品装入背包后,物品总重量不超过W,则选择重量次小的(或价值次高的或价值重量比次高的)物品装入背包.(3)以此策略一直进行下去,直到物品总重量超过W,最后一件物品不选择为止.(4)计算放入背包中的所有物品的总价值.2 动态规划求解0/1背包问题(4)根据计算最优值时得到的信息,构造一个最优解.3 回溯法求解0/1背包问题使用回溯法求解0/1背包问题的算法步骤为:(1)排序:将背包内物品按照价值重量比(vi/wi)的非增顺序进行排列.(2)初始化:将当前背包重量w的值设置为0,当前物品的总价值v设置为0,当前搜索深度i为0,当前解向量为x[i]=0,当前最优值v为0.(3)调用函数:调用限界函数.(4)如果返回的物品价值大于当前最优值v,则把物品i装入背包中,直至没有物品可装或装不下物品k为止,并生成部分解.转步骤(5);否则,转步骤(6).(5)如果选择的物品数量k大于或等于物品总数量n,则得到一个可行解,并把该可行解的值作为当前最优值,令i=n,转步骤(3),以便回溯搜索其他可行解;否则,令i=k+1,拒绝物品k,从物品k+1继续装入,转步骤(3).(6)当k>=0且x[k]=0时,令k=k-1,直至条件不成立.(7)如果k<0,算法结束;否则,转步骤8.(8)令x[k]=0,W=W-w[k],v=v-v[k],i=k+1,转步骤(3).4 实验结果及分析4.1实验结果。

0-1背包问题详解二(完全背包问题)

0-1背包问题详解二(完全背包问题)

0-1背包问题详解⼆(完全背包问题)问题描述给定n种物品和⼀个背包。

物品i的重量是w(i),其价值为v(i),背包的容量为c(即最多能够装c重量的物品)。

这n种物品可以重复放置(这是与普通背包问题的不同之处)。

输⼊n=5,c=6.物品容量和价值分别为:2 62 36 55 44 6最后输出时:18问题求解:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}似乎利⽤上⾯那个公式就可以很好的求出解。

这⾥给出另外⼀组公式,该公式和上⽂的公式是⼀样的,只是第⼆个for语句的倒过来。

for i=1..Nfor v=0..Vf[v]=max{f[v],f[v-cost]+weight}为什么这样⼀改就可⾏呢?⾸先想想为什么上⽂中要按照v=V..0的逆序来循环。

这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推⽽来。

换句话说,这正是为了保证每件物品只选⼀次,保证在考虑“选⼊第i件物品”这件策略时,依据的是⼀个绝⽆已经选⼊第i件物品的⼦结果f[i-1][v-c[i]]。

⽽现在完全背包的特点恰是每种物品可选⽆限件,所以在考虑“加选⼀件第i种物品”这种策略时,却正需要⼀个可能已选⼊第i种物品的⼦结果f[i][vc[i]],所以就可以并且必须采⽤v=0..V的顺序循环。

这就是这个简单的程序为何成⽴的道理。

1void compelteKnapsack(){2int c,n;3 cout<<"请输⼊最⼤容量,⼩于100"<<endl;4 cin>>c;5 cout<<"请输⼊背包个数"<<endl;6 cin>>n;7 cout<<"请输⼊各个背包重量和价值"<<endl;8for(int i=1;i<=n;i++){9 cin>>w[i]>>v[i];10 }11for(int i=0;i<=n;i++)12 p[i]=0;13for(int i=1;i<=n;i++)14for(int j=w[i];j<=c;j++)15 p[j]=max(p[j],p[j-w[i]]+v[i]);16 cout<<"结果是"<<p[c]<<endl;17 }View Code版权所有,欢迎转载,但是转载请注明出处:。

浅谈0-1背包问题的常用算法

浅谈0-1背包问题的常用算法
消 费 电子 Байду номын сангаас
2 0 1 3年 1 0月下 C o n s u me r E l e c t r o n i c s Ma g a z i n e 技 术 交 流
浅谈 0 - 1 背包问题的常用算法
汤赫 男
( 吉林工商学院信息工程学院,长春 1 3 0 0 6 2) 摘 要 :0 -1 背 包问题是典型的 NP ~完全问题 ,无论从 理论 上还是 实践上都有一定的研究意义。本文综述 了几 种0 — 1背包问题的 常用算法 ,分析算法的优劣 ,预 测 0 - 1背包问题的发展方向。 关键 词 :0 — 1背包问题 ;动 态规划法 ;贪心法 ;分支界限法


∑w ,
l {
㈠ { “ } m a x ∑
{ j
二 、常用 的 0 - 1 背 包问题算法 ( 一) 蛮力法。 蛮 力法又称穷举法或枚举法,是一种简单、 直接、有效的方法,是初学者入 门的方法 。蛮力法要求遍历所 有可能情 况一次且仅一次 ,筛选 出符合要求 的解。应用蛮力法 求解 0 - 1 背包 问题, 需要考虑给定的 n 个物品集合的所有子集, 找出所有总重量不超过背包容量的子集 ,计算每个可能子集的 总价值,然后找 出价值最大的子集 。对于一个具有 n个元素的 集合 ,其子集数量是 2 “,所 以,不论生成子集 的算法效率有 多高 ,蛮力法求解 0 - 1 背包 问题都会导致一个 Q ( 2 n )的算法 。 ( 二 )动 态规划法。动态规划 法是一种通用 的算 法设计 技术用来求解 多阶段决策最优 化问题。这类 问题都满 足最优 性原理,即原 问题 的最优 性包含着子 问题 的最优性 。 应用 动态规划法 求解 0 - 1 背包 问题 ,可 以将 0 — 1背包 问 题看 作一个 多阶段决策最 优化 问题 。n个物 品集合 的所 有子 集可 以看 作该 问题 的所有 可行解;这些可行解 都是满足约束 条件 的,可行解可能不止一个,通过 目标 函数找到最优解 。 动态 规划 法求解 0 - 1 背包 问题 的算法描述 : 设V ( n , C )表 示将 n个 物 品装入 容量 为 C的背 包获 得 的 最大价值 。 初 始 状 态 :V ( i , 0 ) = V ( 0 , j ) = 0 , 0≤ i ≤n , 0≤ j≤ C 则V ( i , j )表示 将前 i 个 物 品装入 容量 为 j的背 包获 得

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。

注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。

在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。

2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。

数据结构 背包问题

数据结构 背包问题

数据结构背包问题背包问题是数据结构中一个经典的算法问题,它涉及到在给定的背包容量下,如何选择物品使得背包中的总价值最大化。

在本文中,我将详细介绍背包问题的定义、解决方法以及相关的算法和实例。

一、背包问题的定义:背包问题是指在给定的背包容量和一组物品的重量和价值下,如何选择物品放入背包中,使得背包中物品的总价值最大化。

背包问题可以分为0/1背包问题和分数背包问题两种类型。

1. 0/1背包问题:0/1背包问题是指每个物品要么放入背包中,要么不放入背包中,不能选择部分物品放入。

每个物品有一个固定的重量和价值,背包有一个固定的容量。

目标是选择物品放入背包中,使得背包中物品的总价值最大化,同时不能超过背包的容量。

2. 分数背包问题:分数背包问题是指每个物品可以选择部分放入背包中,可以按照比例放入。

每个物品有一个固定的重量和价值,背包有一个固定的容量。

目标是选择物品放入背包中,使得背包中物品的总价值最大化,同时不能超过背包的容量。

二、背包问题的解决方法:背包问题可以使用动态规划算法来解决。

动态规划算法的基本思想是将问题划分为多个子问题,并保存子问题的解,以便在需要时进行查找。

背包问题的动态规划算法可以分为两种类型:0/1背包问题和分数背包问题的解法略有不同。

1. 0/1背包问题的解决方法:0/1背包问题可以使用二维数组来表示状态转移方程。

假设dp[i][j]表示前i个物品放入容量为j的背包中的最大价值,那么状态转移方程可以定义为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

通过遍历所有物品和背包容量的组合,可以求得dp[n][C],即前n个物品放入容量为C的背包中的最大价值。

2. 分数背包问题的解决方法:分数背包问题可以使用贪心算法来解决。

贪心算法的基本思想是每次选择当前最优的解,然后将问题规模缩小,继续求解子问题。

求解0—1背包问题算法综述

求解0—1背包问题算法综述

0-1背包问题是一种常见的动态规划问题,其目标是在给定背包容量和物品集合的情况下,选择某些物品放入背包,使得背包内物品的总价值最大。

以下是求解0-1背包问题的算法综述:
1. 定义变量和参数:
* 物品集合:包括每个物品的重量和价值。

* 背包容量:表示背包能够容纳的最大重量。

* dp数组:用于存储每个状态下的最大价值,dp[i][j]表示前i个物品、背包承重为j时的最大价值。

2. 初始化dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为0;否则,令dp[i][j]为负无穷。

3. 递推计算dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为当前物品的价值加上前i-1个物品、背包容量为j-w[i]时的最大价值,即dp[i][j] = dp[i-1][j-w[i]] + p[i];否则,
令dp[i][j]为前i-1个物品、背包容量为j时的最大价值,即dp[i][j] = dp[i-1][j]。

4. 返回dp数组的最后一个元素,即为所求的最大价值。

以上是求解0-1背包问题的算法综述,实际实现时可以根据具体情况进行优化,以提高算法的效率和性能。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

0-1背包问题的递归方法

0-1背包问题的递归方法

0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。

定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。

递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。

1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。

代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。

0-1背包问题的各种算法求解

0-1背包问题的各种算法求解

一.动态规划求解0-1背包问题/************************************************************************/ /* 0-1背包问题:/* 给定n种物品和一个背包/* 物品i的重量为wi,其价值为vi/* 背包的容量为c/* 应如何选择装入背包的物品,使得装入背包中的物品/* 的总价值最大?/* 注:在选择装入背包的物品时,对物品i只有两种选择,/* 即装入或不装入背包。

不能将物品i装入多次,也/* 不能只装入部分的物品i。

/*/* 1. 0-1背包问题的形式化描述:/* 给定c>0, wi>0, vi>0, 0<=i<=n,要求找到一个n元的/* 0-1向量(x1, x2, ..., xn), 使得:/* max sum_{i=1 to n} (vi*xi),且满足如下约束:/* (1) sum_{i=1 to n} (wi*xi) <= c/* (2) xi∈{0, 1}, 1<=i<=n/*/* 2. 0-1背包问题的求解/* 0-1背包问题具有最优子结构性质和子问题重叠性质,适于/* 采用动态规划方法求解/*/* 2.1 最优子结构性质/* 设(y1,y2,...,yn)是给定0-1背包问题的一个最优解,则必有/* 结论,(y2,y3,...,yn)是如下子问题的一个最优解:/* max sum_{i=2 to n} (vi*xi)/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1/* (2) xi∈{0, 1}, 2<=i<=n/* 因为如若不然,则该子问题存在一个最优解(z2,z3,...,zn),/* 而(y2,y3,...,yn)不是其最优解。

那么有:/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c/* 进一步有:/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c/* 这说明:(y1,z2,z3,...zn)是所给0-1背包问题的更优解,那么/* 说明(y1,y2,...,yn)不是问题的最优解,与前提矛盾,所以最优/* 子结构性质成立。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析0-1背包问题是一个经典的组合优化问题,也是计算机科学和数学领域中的一个重要问题。

在实际应用中,0-1背包问题通常用于优化问题的求解,比如资源分配、货物装载等方面。

在这篇文章中,我们将对0-1背包问题的算法决策进行分析,并探讨不同算法的优缺点。

0-1背包问题的描述很简单,假设有n件物品和一个容量为W的背包。

每件物品的重量为w[i],价值为v[i]。

现在需要选择一些物品装入背包,使得背包中的物品价值最大,同时不能超过背包的容量。

这个问题可以用一个0-1的决策变量来表示,即选择物品装入背包或者不选择。

这个问题被称为0-1背包问题。

对于0-1背包问题,有多种解法和算法可以求解。

常见的算法包括贪心算法、动态规划算法、回溯算法等。

在下面的内容中,我们将对这些算法进行具体的分析和比较。

贪心算法贪心算法是一种简单而有效的算法,它通过每一步的局部最优选择来构建全局最优解。

在0-1背包问题中,可以使用贪心算法按物品的单位价值(即每单位重量所能获得的价值)从大到小的顺序选择物品放入背包。

贪心算法的优点是简单、高效,时间复杂度低。

贪心算法并不一定能够得到最优解。

因为贪心算法只关注当前的局部最优解,而忽略了全局最优解的可能性。

在某些情况下,贪心算法无法得到最优解。

动态规划算法动态规划算法是求解0-1背包问题的经典算法之一。

动态规划算法将问题分解为子问题,并使用递推的方式求解子问题,最终得到全局最优解。

在0-1背包问题中,可以使用动态规划算法构建一个二维数组dp[i][j],表示前i件物品在背包容量为j时所能获得的最大价值。

动态规划算法的优点是能够得到最优解,并且在一定程度上能够减小时间复杂度。

动态规划算法的空间复杂度较高,且在某些情况下需要额外的优化。

动态规划算法需要注意状态转移方程和边界条件的设计,需要一定的技巧和功底。

回溯算法回溯算法是一种穷举搜索算法,它通过遍历所有可能的解空间来求解问题。

背包问题系列算法详解

背包问题系列算法详解

背包问题系列算法详解背包问题是一个关于最优解的经典问题。

通常被讨论的最多的,最经典的背包问题是0-1背包问题(0-1 Knapsack Problem)。

它是一切背包问题及相关背包问题的基础。

本篇博文将详细分析0-1背包问题,并给出0-1背包问题的几种解法,同时也对0-1背包问题的内涵进行延伸,丰富其外延至完全背包问题和多重背包问题,并给出背包问题的算法实现过程,希望对大家有帮助。

一、0-1背包问题有N件物品和一个容量为V的背包。

第i件物品(每个物品只有一件)的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

(1)递归求解算法如下:#include "iostream"#define CAPACITY 10#define GOODSNUM 6using namespace std;int nVol[GOODSNUM];int nValue[GOODSNUM];int knapsack(int itemIndex,int vol);void main(){int i=0,j=0;while(i<GOODSNUM){cout<<"input the "<<i+1<<"th item(volume and value):";cin>>nVol[i]>>nValue[i];i++;}cout<<"The max value is: "<<knapsack(GOODSNUM,CAPACITY)<<endl;}int knapsack(int itemIndex,int vol){if (itemIndex==0||vol==0){return 0;}else if (vol>=nVol[itemIndex] &&knapsack(itemIndex-1,vol)<knapsack(itemIndex-1,vol-nVol[itemIndex])+nValue[itemIndex ]){return knapsack(itemIndex-1,vol-nVol[itemIndex])+nValue[itemIndex];}elsereturn knapsack(itemIndex-1,vol);}分析:递归求解,求解过程中的绝大部分变量存在重复求解的过程,算法的效率较低,有待改进;那怎么改进呢?最有效的是用数组保存每次计算的结果,不用重复计算,于是有二维数组求解。

0-1背包问题解说

0-1背包问题解说

0-1背包问题:有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这个问题的特点是:每种物品只有一件,可以选择放或者不放。

算法基本思想:利用动态规划思想,子问题为:f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} //这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

解释一下上面的方程:“将前i件物品放入容量为v的背包中”这个子问题,如果只考虑第i 件物品放或者不放,那么就可以转化为只涉及前i-1件物品的问题,即1、如果不放第i件物品,则问题转化为“前i-1件物品放入容量为v的背包中”;2、如果放第i件物品,则问题转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”(此时能获得的最大价值就是 f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i])。

则f[i][v]的值就是1、2中最大的那个值。

(注意:f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。

所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。

)优化空间复杂度:以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

上面f[i][v]使用二维数组存储的,可以优化为一维数组f[v],将主循环改为:for i=1..Nfor v=V..0f[v]=max{f[v],f[v-c[i]]+w[i]};即将第二层循环改为从V..0,逆序。

解释一下:假设最大容量M=10,物品个数N=3,物品大小w{3,4,5},物品价值p{4,5,6}。

当进行第i次循环时,f[v]中保存的是上次循环产生的结果,即第i-1次循环的结果(i>=1)。

背包问题的各种求解方法

背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。

因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。

则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。

如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。

这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。

1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。

则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。

由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。

因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。

0_1背包问题的多种解法

0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

回溯法01背包问题例题

回溯法01背包问题例题

回溯法是一种解决0-1背包问题的有效方法。

以下是使用回溯法解决0-1背包问题的具体步骤和例题:1.定义问题:假设有N件物品,每件物品有一定的重量Wi和价值Vi,背包能够承受的最大重量为W。

目标是选择一些物品放入背包,使得背包中物品的总价值最大,同时不超过背包的最大承重。

2.使用回溯法求解:回溯法的核心是深度优先搜索,通过尝试每一种可能性来找到最优解。

o初始化:将所有物品按照价值从大到小排序。

o递归函数:▪如果当前选择的物品重量超过了背包的承重,则返回(因为无法放入背包)。

▪如果当前选择的物品价值大于之前所有选择物品的总价值,则更新当前最大价值。

▪标记当前选择的物品为已选(例如,使用一个布尔数组表示)。

▪递归地尝试下一个物品。

o回溯:如果递归到最后一个物品,并且没有超过背包的承重,则将最后一个物品加入背包,并更新最大价值。

然后回溯到上一个物品,尝试不放入背包中。

3.求解步骤:o初始状态:未选择任何物品,总价值为0。

o递归函数:对于每个物品i,如果未选择(即第i个物品的布尔数组标记为false),则执行递归函数。

如果选择了第i个物品,并且总价值大于当前最大价值,则更新最大价值。

标记第i个物品为已选。

然后递归地尝试下一个物品。

o回溯:如果尝试了所有物品都没有超过背包的承重,并且总价值大于当前最大价值,则将最后一个选择的物品加入背包,并更新最大价值。

然后回溯到上一个物品,尝试不放入背包中。

4.例题:假设有3件物品,重量分别为20、15、10,价值分别为20、30、25,背包的承重为25。

根据回溯法求解的步骤如下:o首先尝试第一个物品(重量20,价值20)。

由于20>25,所以无法放入背包。

o接下来尝试第二个物品(重量15,价值30)。

由于15+20=35>25,所以也无法放入背包。

o然后尝试第三个物品(重量10,价值25)。

由于10+20=30<25,所以可以放入背包中。

此时的最大价值为25+25=50。

背包问题的多种解法

背包问题的多种解法

一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+ni iiW yw x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

解决01背包问题算法比较

解决01背包问题算法比较

回溯法解决0/1背包问题
三个对象的背包问题的解空间
1
B
A
0
C
1
D
0
E F
1 0
K
0
G
1
H I
0
1
J
1
L
0
M
1
N
0
Q
回溯法解决0/1背包问题
运用回溯法解题通常包含以下三个步骤: a. 针对所给问题,定义问题的解空间; b. 确定易于搜索的解空间结构; c. 以深度优先的方式搜索解空间,并 且在搜索过程中用剪枝函数避免无效搜索;
分枝定界法解决0/1背包问题
3. 常见的两种分枝限界法
(1)队列式(FIFO)分枝限界法 按照队列先进先出(FIFO)原则选取下一个节点为扩 展节点。 (2)优先队列式分枝限界法 按照优先队列中规定的优先级选取优先级最高的节点 成为当前扩展节点。
分枝定界法解决0/1背包问题
0-1背包问题 背包问题 算法的思想 首先,要对输入数据进行预处理,将各物品依其单位重量价 值从大到小进行排列。 在下面描述的优先队列分支限界法中,节点的优先级由已装 袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的 价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该 左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。 当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足 上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点 时为问题的最优值
回溯法解决0/1背包问题
void Knap::Backtrack(int i) { if(i>n) { if(bestp<cp) { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestp=cp; } return; } if(cw+w[i]<=c) //搜索左子树 { x[i]=1; cw+=w[i]; cp+=p[i]; Backtrack(i+1); cw-=w[i]; cp-=p[i]; } if(Bound(i+1)>bestp)//搜索右子树 { x[i]=0; Backtrack(i+1); } }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+ni ii W yw x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

背包物品1物品2物品3物品4(a)四个物品和一个容量为10的背包(b)用回溯法求解0-1背包问题的过程递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。

每次的递归调用都会判断两种情况:(1)背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解;(2) 背包放不下第n 个物品,则x[n]=0,并继续递归调用背包容量为W ,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。

递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。

用递归法解0-1背包问题可以归结为下函数:⎩⎨⎧+---=][])[,1(),1(),(n v n w m n KnapSackm n KnapSackm n KnapSack n n 选择了物品没有选择物品第一个式子表示选择物品n 后得到价值][])[,1(n v n w m n KnapSack+--比不选择物品n 情况下得到的价值),1(m n KnapSack-小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n 后的价值][])[,1(n v n w m n KnapSack +--不小于不选择物品n 情况下得到了价值),1(m n KnapSack -,所以最终选择物品n 。

在递归调用的过程中可以顺便求出所选择的物品。

下面是标记物品被选情况的数组x[n]求解的具体函数表示:⎩⎨⎧=10][n x][])[,1(),(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack m n KnapSack +--=-= 在函数中,递归调用的主体函数为KnapSack ,m 表示背包的容量,n 表示物品的数量,x[n]表示是否选择了第n 个物品(1—选,0—不选)。

每个物品的重量和价值信息分别存放在数组w[n]和v[n]中。

具体的代码见《递归法》文件夹。

贪心法:0-1背包问题与背包问题类似,所不同的是在选择物品)1(n i i ≤≤装入背包时,可以选择一部分,而不一定要全部装入背包。

这两类问题都具有最优子结构性质,相当相似。

但是背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。

贪心法之所以得不到最优解,是由于物品不允许分割,因此,无法保证最终能将背包装满,部分闲置的背包容量使背包单位重量的价值降低了。

事实上,在考虑0-1背包问题时,应比较选择物品和不选择物品所导致的方案,然后做出最优解。

由此导出了许多相互重叠的子问题,所以,0-1背包问题可以用动态规划法得到最优解。

在这里就不再用贪心法解0-1背包问题了。

动态规划法分析:0-1背包问题可以看作是寻找一个序列),........,,,(321n x x x x ,对任一个变量i x 的判断是决定i x =1还是i x =0.在判断完1-i x 之后,已经确定了),........,,,(1321-i x x x x ,在判断i x 时,会有两种情况: (1) 背包容量不足以装入物品i ,则i x =0,背包的价值不增加; (2) 背包的容量可以装下物品i ,则i x =1,背包的价值增加i v 。

这两种情况下背包的总价值的最大者应该是对i x 判断后的价值。

令),(j i C 表示在前i )1(n i ≤≤个物品中能够装入容量为j )1(W j ≤≤的背包的物品的总价值,则可以得到如下的动态规划函数:)2(}),1(),,1(max{),1(),()1(0),0()0,(⎩⎨⎧>+---<-===i i i iw j v w j i C j i C w j j i C j i C j C i C 式(1)说明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0.式(2)第一个式子说明:如果第i 个物品的重量大于背包的容量,则装入第i 个物品得到的最大价值和装入第i-1个物品得到的最大价值是相同的,即物品i 不能装入背包中;第二个式子说明:如果第i 个物品的重量小于背包的容量,则会有两种情况:(1)如果把第i 个物品装入背包,则背包中物品的价值就等于把前i-1个物品装入容量为i w j -的背包中的价值加上第i 个物品的价值i v ;(2)如果第i 个物品没有装入背包,则背包中物品的价值就是等于把前i-1个物品装入容量为j 的背包中所取得的价值。

显然,取二者中价值较大者作为把前i 个物品装入容量为j 的背包中的最优解。

我们可以一步一步的解出我们所需要的解。

第一步,只装入第一个物品,确定在各种情况下背包能得到的最大价值;第二步,只装入前两个物品,确定在各种情况下的背包能够得到的最大价值;一次类推,到了第n 步就得到我们所需要的最优解了。

最后,),(W n C 便是在容量为W 的背包中装入n 个物品时取得的最大价值。

为了确定装入背包的具体物品,从),(W n C 的值向前寻找,如果),(W n C >),1(W n C -,说明第n 个物品被装入了背包中,前n-1个物品被装入容量为n w W -的背包中;否则,第n 个物品没有装入背包中,前n-1个物品被装入容量为W 的背包中。

依此类推,直到确定第一个物品是否被装入背包为止。

由此,我们可以得到如下的函数:⎩⎨⎧->-=-==),1(),(,1),1(),(0j i C j i C w j j j i C j i C x i i .根据动态规划函数,用一个)1()1(+⨯+W n 的二维数组C 存放中间变量,]][[j i C 表示把前i 个物品装入容量为j 的背包中获得的最大价值。

设物品的重量存放在数组w[n]中,价值存放在数组v[n]中,背包的容量为W ,数组]1][1[++W n C 存放迭代的结果,数组x[n]存放装入背包的物品,动态规划解0-1背包问题的源代码在文件夹《动态规划法》中。

回溯法分析:用回溯法解0_1背包问题时,会用到状态空间树。

在搜索状态空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。

当右子树有可能包含最优解时才进入右子树搜索,否则将右子树剪去。

设r 是当前剩余物品价值总和;cp 是当前价值;bestp 是当前最优价值。

当cp+r ≤bestp 时,可剪去右子树。

计算右子树中解的上界可以用的方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。

由此得到的价值是右子树中解的上界,用此值来剪枝。

为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考察各物品即可。

在实现时,由MaxBoundary 函数计算当前结点处的上界。

它是类Knap 的私有成员。

Knap 的其他成员记录了解空间树种的节点信息,以减少函数参数的传递以及递归调用时所需要的栈空间。

在解空间树的当前扩展结点处,仅当要进入右子树时才计算上界函数MaxBoundary ,以判断是否可以将右子树减去。

进入左子树时不需要计算上界,因为其上界与父结点的上界相同。

在调用函数Knapsack 之前,需要先将各物品依其单位重量价值从达到小排序。

为此目的,我们定义了类Objiect 。

其中,<=运算符与通常的定义相反,其目的是为了方便调用已有的排序算法。

在通常情况下,排序算法将待排序元素从小到大排序。

在搜索状态空间树时,由函数Backtrack 控制。

在函数中是利用递归调用的方法实现了空间树的搜索。

具体的代码见《回溯法》文件夹。

限界分支法:在解0-1背包问题的优先队列式界限分支法中,活结点优先队列中结点元素N 的优先级由该结点的上界函数MaxBoundary计算出的值uprofit给出。

该上界函数在0-1背包问题的回溯法总已经说明过了。

子集树中以结点N为根的子树中任一个结点的价值不超过N.profit。

因此我们用一个最大堆来实现活结点优先队列。

堆中元素类型为HeapNode,其私有成员有uprofit,profit,weight,level,和ptr。

对于任意一个活结点N,N.weight 是活结点N所相应的重量;N.profit是N所相应的价值;N.uprofit是结点N的价值上界,最大堆以这个值作为优先级。

子集空间树中结点类型为bbnode。

在分支限界法中用到的类Knap与0-1背包问题的回溯法中用到的类Knap很相似。

相关文档
最新文档