tda7294负反馈功放电路
tda7294功放电路图
tda7294功放电路图:电路如图1所示,推动级采用了意法(SGS-THOMSON)公司的新品TDA7294,该芯片内部推动级和输出级均使用了DMOS场效应管,用±40V供电,输出功率可达70W(RMS/8Ω)、低失真(0.005%),音色细腻、听感极佳,乃近年来屈指可数的优秀芯片。
功率输出VT1、VT2采用山肯大功率对管2SA1394、2SC3858(VCM=200V,ICM=15A,PCM≥200W,fT=30MHz)。
电路原理如下:信号经C1、R1输入IC正相输入端③脚。
R7和IC第②脚的R3、C3、C4构成负反馈网络,本放大器的闭环增益约34倍。
⑨、⑩脚分别是待机、静音端,由于第⑩脚R、C网络时间常数比第⑨脚大,使得开关机均在静音下进行,避免了开关冲击声,C7为自举电容。
图2为印板图(一声道),制作要点:1.IC的金属帽与散热片之间要加绝缘云母片(金属帽与⑧脚相通)。
2.电源变压器用环形300W双20V的,50V/10000μF的滤波电容四只、50V/100μF两只、100V/0.1μF两只。
对电源部分要单独测试,先不接功放,测量电源正、负输出电压是否对称,误差应在0.6V以内。
3.试机时,为安全起见,应先使用较低的电压实验(如±25V),不加信号,测输出端对地直流电压,正常应在20mV以内。
4.由R8、R9、R10、D1组成了末级偏置电路,这种偏置使得输出管VT1、VT2在工作时均不截止,因此静态电流可取得较小(约5mA)。
5.功率管要严格配对(3%以内)并选用正品。
输出端电阻R14采用5W无感型的,电感L则用∮1.5mm漆包线在R14上密饶10匝而成。
TDA7294使用60mm×85mm×20mm十二槽的散热片,输出对管则要用专业散热片。
印板上有大电流的路段要进行滚锡处理,这于放音的透明度和力度极有益处。
功放电路图。
免调试胆味大功率功放电路图
免调试胆味大功率功放电路图
著名的SGS-THOMSON意法微电子公司曾推出一款Hi-Fi大功率DMOS功放电路TDA7294,其音质极具胆味,这缘于其内部电路从输入到输出都是场效应器件,音色圆润温和,柔暖细腻。
但用其组装的功放,单只TDA7294输出功率也只有70W,BTL接法也在100W上下,总觉得功率余量不大。
笔者经多次试验,采用TDA7294作推动级,直接驱动1?4对大功率三极管并联工作,输出强劲的电流,输出功率达400W(单声道),且电路简洁,无需要调试即能可靠工作,基本上保持了原IC的音色与性能。
如左下图所示,R6为反馈电阻,笔者在调试中取值22kΩ较合适,R6也决定本电路的增益,值大增益将增大。
功率管静态电流取决于R7、R8,当其值在10kΩ以下时,电路将处于甲类状态,静态电流可调至100mA?2A,笔者取30kΩ时,电路工作于乙类且相当稳定,功率管不装散热器,在2/3音量时,推动10英寸音箱10分钟后,功率管也不觉得烫手,音质相当厚实有力。
笔者在试验功率对管T1、T2时,曾用过A1943/C5200、K1530/J201、A1302/C3281,其中K1530/J201音质最好,特别柔和耐听。
采用图中参数,输出功率达200W,在乙类工作时,用很小的散热器(笔者用14cm×5cm×3cm)即可满足其散热需要。
本电路无需调试,一装即响。
tda7294
TDA7294功率放大器的制作TDA7294是目前性能最好、功率最大的单片音频放大器之一。
它由欧洲SGS-THOMSON 意法公司根据分立元件甲乙类音频功放经典电路设计而成。
其前级采用低噪声、低失真的双极性晶体管电路,末级采用高耐压、大电流DMOS管缓冲输出,故既有双极性电路的音色纯正优点,又有场效应管高压大电流驱动输出特点。
自1998年TDA7294介绍到国内至今,许多发烧友都为TDA7294细腻、自然的音色而着迷。
该芯片的设计具有耐高压、低噪音、低失真度、重放音色极具亲和力等特色;并且具有静音待机功能,短路电流及过热保护功能使其性能更完善。
有关电器参数如下:工作电压范围:(VCC+VEE)=80V输出功率:高达100W电压范围:|VCC|+|VEE|=20V-80V静态电流:30MA输出功率:|VCC|=|VEE|=35V ,RL=8欧时为70W总谐波失真(THD):0.01%(典型值)转换速率(SR): 10V/us 开环增益:80dB各端脚作用如下:1脚为待机端; 2脚为反相输入端;3脚为正相输入端; 4脚接地;5、11、12脚为空脚; 6脚为自举端;7脚为+Vs(信号处理部分); 8脚为-Vs(信号处理部分);9脚为待机脚; 10脚为静音脚;13脚为+Vs(末级); 14脚为输出端;15脚为-Vs(末级)。
电路使用其官方的典型应用电路:制作简单介绍如下:接成如图电路闭环增益为30dB,增大R3或减小R2可以提高放大器增益,反之增益下降;TDA7294的⑨脚静音控制端,当该脚低于2.5V时,TDA7294执行静音操作,输出端无信号输出,⑩脚为待机模式控制端,当该脚低于2.4V时,TDA7294工作在待机模式,内部电路停止工作。
使待机和关机过程均在静音状态下进行,保证了放大器开关机无噪声。
1. 电源变压器选用一般的环形变压器,双18伏绕组,额定功率应该接近100瓦。
2. 为保证两个声道的一致,电阻从多个电阻中用万用表挑选两个阻值接近的电阻而不直接根据标称值随便取两个使用。
透明功放机箱的TDA7294
透明功放机箱的TDA7294淘宝热销的TDA7294-2.1功放板制作的成品功放机欣赏,上图下载 (55.12 KB)2012-5-9 00:30下载 (67.19 KB)2012-5-9 00:31下载 (108.93 KB)2012-5-9 00:31下载 (69.08 KB)2012-5-9 00:32下载 (56.32 KB)2012-5-9 00:32下载 (63.33 KB)2012-5-9 00:32TDA7294-2.1功放板,功率80 80 160W二个风扇可以更好的让空气流通,还有,风扇采用了温度控制系统,当散热器温度到了55度以上才开始工作,50度以内又停止工作,完全不怕噪音问题风扇对音质没有一丝影响,不共用电源,还有在电压方面也经过了优化,让风扇的转速也在合理的范围内。
还采用了智能温度控制了,也不怕噪音。
还有,谁的功放机是拿来摔的?还有要在上面站人吗?呵呵,透明的就是要看到里面内容,不怕被国产的坑装二个风扇是因为对称,风扇采用了智能温度控制,基本小音量是不工作的,只有散热器的温度到了55度才会工作,不怕噪音了!电路板的布线我认为是最合理的,就拿这块板而言,我不相信还有更好的布线方式!效果是,把所有音量开到最大都没有一点电流声,(注意,是没有一点电流声,而不是说电流声好小哟,一点都没有)音质相当好!我个人认为,外观是相当的重要的,就如同女人,我不光要能生孩子的,还要外表好看的,难道你不这样认为吗?风扇是给整个机箱内部通风作用,并不是为了哪个加风扇!散热器的下面和上面都是进气孔,这样,两个风扇一启动的时候,就可以让机箱里面空气流动起来,从而达到散热效果!(责任编辑:admin)。
7294各电路
TDA7294/TDA7293电流/电压动态负反馈功放电路(最新更新于2004/10/13)TDA7294是ST意法公司一款新型DMOS大功率音频功放集成电路,它具有较宽范围的工作电压,(VCC+VEE)=80V;较高的输出功率(高达100W的音乐输出功率),并且具有静音待机功能,很小的噪声和失真以及过热、短路保护功能,有关电气参数如下:电压范围:|VCC|+|VEE|=20V-80V静态电流:30MA输出功率:|VCC|=|VEE|=35V ,RL=8欧时为70W总谐波失真(THD):0.01%(典型值)转换速率(SR): 10V/us开环增益:80dB典型推荐应用电路如下:PCB图如下BTL接法如下TDA7294的封装参数如下图以下是笔者参照有关推荐电路设计的TDA7294X2 前后级电路图,以及用PROTEL99设计的PCB电路板图。
上图为前级放大部分,为了获得较好的效果,电源用运放和外围元件构成松下伺服电源,以拓宽电源的响应速度,该电路只有在输出电压和输入电压差值大于5V的情况下才能发挥作用,由于采用前后级共用一组电源,后级功放电源的电压较高,本机用正负32V 供电,用Rx ,RY作限流后完全能达到上述条件。
线性放大部分采用发烧级运算放大集成电路AD827,或更好的AD812等,或者用大S的NE5532,设置放大倍数为10,其中R4为阻抗匹配电阻,同时能有效的减少干挠,反馈回路中省去电容,以拓宽频率范围,对电路的稳定没有影响,下图是后级功放部分,采用典型的推荐电路,只不过为了后级扬声器的保护功能,还有应用直流伺服电路,以减少相位失真和拓宽频率响应范围,最大限度的发挥该IC的优良性能。
其中IC的9,10脚外围元件构成静噪和防电流冲击保护电路。
扬声器保护电路有很多种,下面的电路简单而且比较稳定可靠,也可用其它电路,该电路中的继电器的选取很重要,本电路选用日本的OMRON透明银触点继电器。
至于音量电位器,一般的国产电位器在用不到一年的时间,大都会出现接触不良的毛病,在使用时出现令人心烦的噪声,这是发烧友很难接受的,这里选取MALAYSIA进口的ALPS八脚步进电位器,从而克服了以上的毛病。
TDA7294功放原理图+PCB图哟AAA
各端脚作用如下 :①脚为待机端;②脚为反相输入端;③脚为正相输入端;④脚接地;⑤、⑾、⑿脚为空脚;⑥脚为自举端;⑦脚为+Vs(信号处理部分);⑧脚为-Vs(信号处理部分);⑨脚为待机脚;⑩脚为静音脚;⒀脚为+Vs(末级);⒁脚为输出端;⒂脚为-Vs(末级)。
主要特点:TDA7294主要参数为:TDA7294应用电路待机和关机过程均在静音状态下进行,保证了放大器开关机无噪声。
由于业余自装分立元件功放常因测试条件不具备、元件配对差而出现音色粗糙、自激等问题,而TDA7294性能优良、外围元件少安装简单、价格低廉、较其它集成功放更具音色上的优势,十分适合电子爱好者自装家庭影院功放及Hi-Fi功放。
TDA7294标准应用电路如图2所示,图2电路闭环增益为30dB,增大R3或减小R2可以提高放大器增益,反之增益下降;R4、C4决定待机时间常数,取值大时增加等待开/关时间,反之缩短时间;R5、R6C3决定静音时间常数,取值大时静音时间延长,反之缩短;当控制端接低电位时为待机或静音状态。
当控制端接Vs时,因(R5+R6)〉R4,⑩脚比⑨脚后升到高电位,而关机时先变为低电位,这就音、低失真度、重放音色极具亲和力等特色;短路电流及过热保护功能使其性能更加完善。
Vs(电源电压)为±10V~±40V;Vs=±29V、4Ω时为100W。
I0(输出电流峰值)为10A;P0(RMS连续输出功率)在Vs=±35V、8Ω时为70W,Vs=±27V、4Ω时为70W;音乐功率(有效值)Vs=±38V、8Ω时为100W;欧洲著名 SGS-THOMSON 意法微电子公司向中国大陆推出一款音色颇有新意的DMOS大功率集成功放TDA7294,一扫以往线性集成功放和厚膜集成功放生、冷、硬的音色, 广泛用于Hi-Fi领域,如家庭影院、有源音箱。
该器件为15脚封装,外形如图1所示。
TDA7294内部线路设计以音色为重点,兼有双极信号处理电路和功率MOS的特点,具有耐压高、低噪SPKTDA7294功放原理图。
转载TDA7294制作的200W功放电路
TDA7294 200W 2.1低音炮电路图SGS-THOMSON意法微电子公司向中国大陆推出一款音色颇有新意的DMOS大功率集成功放TDA7294,一扫以往线性集成功放和厚膜集成功放生、冷、硬的音色,广泛用于Hi-Fi领域,如家庭影院、有源音箱。
该器件为15脚封装,外形如图所示。
各端脚作用如下:①脚为待机端;②脚为反相输入端;③脚为正相输入端;④脚接地;⑤、⑾、⑿脚为空脚;⑥脚为自举端;⑦脚为+Vs(信号处理部分);⑧脚为-Vs(信号处理部分);⑨脚为待机脚;⑩脚为静音脚;⒀脚为+Vs(末级);⒁脚为输出端;⒂脚为-Vs(末级)。
欧洲著名TDA7294内部线路设计以音色为重点,兼有双极信号处理电路和功率MOS的特点,具有耐压高、低噪音、低失真度、重放音色极具亲和力等特色;短路电流及过热保护功能使其性能更加完善。
TDA7294主要参数为:Vs(电源电压)为±10V ~±40V;I0(输出电流峰值)为10A;TDA7294标准应用电路闭环增益为30dB,增大R3或减小R2可以提高放大器增益,反之增益下降;R4、C4决定待机时间常数,取值大时增加等待开/关时间,反之缩短时间;R5、R6、C3决定静音时间常数,取值大时静音时间延长,反之缩短;当控制端接低电位时为待机或静音状态。
当控制端接Vs时,因(R5+R6)〉R4,⑩脚比⑨脚后升到高电位,而关机时先变为低电位,这就使待机和关机过程均在静音状态下进行,保证了放大器开关机无噪声。
【元器件选择与安装】(1)安装:自装之前应备齐器件,元件选用优质正品。
滤波电解电容容量应达到6800μF(最好10000UF),耐压50V;电阻采用金属模型;整流管电流应为5A以上;电源变压器可采用环形,也可以采用EI型以降低成本,但容量应该足够大,最好400-500W,这样才能保证放大器低频特性优良。
元件备齐后,须用万用表逐一检查,避免把开路、短路或变质元件装入电路板,给下一步通电调试带来麻烦。
TDA7294
TDA7294TDA7294-GC DC-SERVO 整合型功率放大器我想常在我們[喬治查爾斯電子電路網]上逛的人大都知道TDA7294了,上次我已規劃並分享了”可橋接TDA7294功率放大器”,那為何又要做這個也是TDA7294的DIY功率放大器呢?上回的”可橋接TDA7294功率放大器”,是純後級,並不包含前級及喇叭保護等電路,它在橋接後可得到很大的功率,且音質也不錯,但不是每個人都會使用到那麼大的功率,且當成兩聲道使用時,我覺得音質平平,也許是沒有加入DC-SERVO的原故?那不是也有了LM3886 DC-SERVO AMP了嗎? 不錯! LM3886 DC-SERVO AMP 音質真讓人滿意,尤其是加了TUBE SERVO前級時,更是讓人有說不出的感覺,但是有些高價的喇叭組合效率較低,讓人感覺有點推不大動的感覺,所以我們這次使用了TDA7294這個功放IC,他單聲道有100W,配合跟LM3886 DC-SERVO AMP一樣的相關周邊電路,一樣也是參考對岸松勝電子的電路,他們的電路圖都不大清楚,我花了不少時間把它畫出來,且我把前級OP使用的電源改變了一下,因為從製作LM3886 DC-SERVO AMP時前級電源使用的7815及7915來說,可能由於廠牌的原因,正、負電壓總是會差個零點幾伏特,所以這次改用LM317及LM337穩壓IC,且包含了電源的伺服電路,實際使用結果真的還不錯。
電路圖如下:主電路之部電源供應之部我們不再對電的原理做進一步說明了,純粹以DIY成果分享為主,如果想要對電路進一步瞭解,我想到GOOGEL上搜尋一下,應該可以找到TDA7294的相關資料。
這次在電路板LAYOUT方面問題少了許多,有了上次LAYOUT LM3886的經驗,不會像上次LM3886時LAY了4~5個版本才解決啍聲的問題,只做了小修正;另外在LM3886時大家找不到合適的散熱片,這次特別花了精神找到合用的散熱片,如果大家買不到,我可以供應,配合LAYOUT,散熱片還可以在鎖銅柱的同時固定它,很穏固!如果大家買不到,我可以供應。
用tda 7294 自己diy 功放设计 +原理图+pcb
近段时间比较闲没事做,就像自己捣鼓的功放玩玩,在学校时剩下有几块TDA7294 的功放块,我就想把它利用起来,,废话不多说现在就动手开始做吧,,从原理图到pcb 到实物焊接完成,,全手工制作,,希望大家能制作成功,,,,(原理图+和pcb是在网上找的,,pcb我自己与改动),,,音质不是一般的好,,,,当然这跟用料有关,,,开始吧,,上图
1.原理图(在网上找的这只是一半,另一半完全一样)
主功放部分
2.电源部分
3原理图用AD09 画的
4.AD09 PCB
5,用AD09 负面打印图(不能直接打印)
接下来开始做饭子,,把电路图打印在菲林纸上,,用感光法做pcb,,,有点基础都会做,,
上图实显影后的图,
上图是腐蚀铜箔后的图
上图为焊接后的实物图,,
这是带40w 8欧喇叭的侧试图
由于没有外壳用了个赛睿鼠标的盒子勉强放下呵呵,,到此就制作完成了
声音很纯美的,,,由于中间有些照片没拍到大家制作中遇到困难可以加我qq 免费指导,,,1094662454 呵呵呵再见吧。
由TDA7294推动东芝管功率输出级电路的改进尝试
由TDA7294推动东芝管功率输出级电路的改进尝试
一台由TDA7294作推动,东芝管A1943、C5200互补输出的功放,用小音量听时,感觉音质还可以,然后逐渐开大音量,发觉有很大失真,且两声道都一样。
关小声音仔细听,也存在同样失真,仔细检查没有问题,电路如下图:
研究电路图后,决定把推动级TDA7294的输出端和末级大功率管的2.2μF耦合电容,直接接到末级管T1、T2 的基极上(虚线为原接法)再开机试听,立刻感觉眼前一亮,果然如文中所说,音质很好,极具胆味,确是一款值得发烧自制的好功放。
需要注意的是,TDA7294虽然作推动级,但也要加一块不大的散热片。
如果末级只用一对大功率管输出,开机冲击很小,可不加喇叭保护电路。
但如果并联两对以上大功率输出管,则以加装喇叭保护电路为好,否则开机对喇叭有一定冲击。
感谢阅读。
主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294
LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。
采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。
JeffRowland 的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。
关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。
采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。
JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。
虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。
很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。
本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。
1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。
TDA7294功放实作
比 , 将 是 单 个 TDA7294 输 出 电 压 的 4 倍 。 照 此 推 算 , 在 R1 =1 0Ω的 条 件 下, 单 个TDA7224 的 输 出 电 压 为1 0V, 输 出 功 率 为PS=VS2/R1 =1 00/1 0=1 0W。 桥 接 两 个TDA7294 的 放 大器在R1 =1 0Ω的条件下可提供的输出电压为VS1 =1 0V和 VS2=- 1 0V; 输出功率为:
Gv=20log ( Gv) =27.2dB。 IC2是一 个 倒 相 放 大 器 , 其④脚的 输 出 电 压 与IC1 的 输出电压的绝对值相同, 但极性相反, 因此“输出1” 电压与“输出2”电压的相位相反。 图2示出桥接放大原理。如果在输入上临时施加一个 +1 V的信号, 那么在A1 的输 入 上, 该 信 号 为Ve1 =1 V; 在 A1 的输 出 上 , 该 信 号 为 : VS1 = Ve1 ×Gv=23V。该 信 号 是 经由电阻R7注入IC2的反 相 输 入 。A2的 输 入 “- ”端 是 一
1 . 无 载 电 源 电 压 : Vdd=+42.8V 和 Vss= - 42.8V;
2.输出噪声电压 ( 当输入被短路时) : Vnoi se< 0.1 mVef f ; 3 . 空 载 直 流 分 量 : 输 出 Vof f set = 0.74mV; 4. 限幅 之 前 ( 电 阻 为8Ω时) , 最 大 输 出 电 压 : Vsmax=40.2V; 电 源 电 压 : Vdd=+37.8V,Vss=- 37.9V; 5.限幅之前 ( 电阻为1 6Ω时) , 最大 输 出 电 压 : Vsmax=49.8V; 电 源 电 压 : Vdd=+39.4V,Vss=- 39.4V; 6. 输 入 灵 敏 度 : 763mVef f ;在 8Ω 条 件下, 当频率为1 kHz时, 灵敏度可达35Vef f ; 7. 当用 数 字 存 储 示 波 器 以5V为输 出 参 考 值 重 建- 3dB 通带时: — ——低截止频率为: 8.1 5Hz, — ——高截止频率为: 1 1 3kHz; 噪声是可感知的, 但只有将耳朵贴近扬声器时 ( 距 离20cm左右) 才能听到轻微的噪声。在8Ω负载条 件 下 , 可获得: Pmax ( 8Ω) =Vsmax2/R1 =40.22/8=202W。 电压增益 ( 负载8Ω) 为: GV= 输出/输入=35/0.763=45.9。 若每 个TDA7294集 成 电 路 的 输 出 电 压 为23V, 则 桥 接 两 个 TDA7294 的 放 大 器 的 输 出 电 压 为 : 23V×2= 46V。 测试表明, 扩展的通带不会使重放的音频信号的谐 波 特 性 劣 化 。 PAV
[VIP专享]TDA7294与LM3886中文资料
TDA7294功率放大器的制作TDA7294是目前性能最好、功率最大的单片音频放大器之一。
它由欧洲SGS-THOMSON 意法公司根据分立元件甲乙类音频功放经典电路设计而成。
其前级采用低噪声、低失真的双极性晶体管电路,末级采用高耐压、大电流DMOS管缓冲输出,故既有双极性电路的音色纯正优点,又有场效应管高压大电流驱动输出特点。
自1998年TDA7294介绍到国内至今,许多发烧友都为TDA7294细腻、自然的音色而着迷。
该芯片的设计具有耐高压、低噪音、低失真度、重放音色极具亲和力等特色;并且具有静音待机功能,短路电流及过热保护功能使其性能更完善。
有关电器参数如下:工作电压范围:(VCC+VEE)=80V输出功率:高达100W电压范围:|VCC|+|VEE|=20V-80V静态电流:30MA 输出功率:|VCC|=|VEE|=35V ,RL=8欧时为70W总谐波失真(THD):0.01%(典型值)转换速率(SR): 10V/us开环增益:80dB各端脚作用如下: 1脚为待机端; 2脚为反相输入端; 3脚为正相输入端; 4脚接地; 5、11、12脚为空脚; 6脚为自举端; 7脚为+Vs(信号处理部分); 8脚为-Vs(信号处理部分); 9脚为待机脚; 10脚为静音脚; 13脚为+Vs(末级); 14脚为输出端;15脚为-Vs(末级)。
电路使用其官方的典型应用电路:制作简单介绍如下:接成如图电路闭环增益为30dB,增大R3或减小R2可以提高放大器增益,反之增益下降;TDA7294的⑨脚静音控制端,当该脚低于2.5V时,TDA7294执行静音操作,输出端无信号输出,⑩脚为待机模式控制端,当该脚低于2.4V时,TDA7294工作在待机模式,内部电路停止工作。
使待机和关机过程均在静音状态下进行,保证了放大器开关机无噪声。
1. 电源变压器选用一般的环形变压器,双18伏绕组,额定功率应该接近100瓦。
2. 为保证两个声道的一致,电阻从多个电阻中用万用表挑选两个阻值接近的电阻而不直接根据标称值随便取两个使用。
用TDA7294制作的功放电路图
用TDA7294制作的功放电路图2009年05月16日 00:53 本站整理作者:佚名用户评论(0)关键字:用TDA7294制作的功放电路图TDA7294集成功放电路是欧洲著名的SGS—THOMSON公司推出的一款Hi—Fi大功率DMOS集成功放电路。
今天就为大家介绍三种使用TDA7294集成功放块制作的功放电路。
1.OOL电路OCL电路图见图1,本电路是用两片TDA7294组成的双声道70W 功放。
外围元件少,电路简单,当电源电压为土35V时,在8欧负载上可获得70W的连续输出功率。
非常适合30平方米以下的环境放音。
整流电路见图4,如音箱阻抗小于8欧,电源电压应相应降低。
BTL电路见图2,整流电路见图4。
利用两片TDA7294桥接组成BTL功放电路,输出功率可达150W 以上,适合歌舞厅等需要大功率的地方,立体声时需要4块TDA7294。
当电源电压为土25V时,在8欧姆负载上可获得150W的连续输出功率。
当电源电为±35V时,在16欧姆负载上可获得180W的连续输出功率。
用TDA7294作BTL功放,负载不得低于8欧姆。
3.恒流功放恒流功放电路见图3,整流电路见图4。
本功放电路与前面两种结构有些不同,其反馈电路为电流取样、电压求和负反馈。
这种电路结构就是人们常说的恒流功放,电路的具体分析不作详述,只介绍与传统恒压功放相比后较突出的优点。
①功放输出电流与负载阻抗无关,即使负载短路,也不会造成功放块过热现象。
②输出功率随着负载阻抗的增大而增大,在一定功率储备之内推动扬声器负载,可以很好地保证原来音乐信号的低音力度和高频解析力。
③作用在扬声器音圈上的力只依赖于电流。
用流控振荡方式推动扬声器必然要快于压控振荡方式,使扬声器振动系统④输入、输出阻抗容易做到匹配。
恒流功放电路实际上是一个受输入信号电压控制的受控电流源。
它的内部反馈电路为电流取样,电压求和负反馈,具有输入、输出阻抗均高的特点。
输入阻抗高,正好是前级恒压放大电路所需要的,有利于信号电压无损失地送到功放输入端。
TDA7294功放板BTL应用接线图
注:BTL应用时两块功放板需配对,具体方法是找出OUT端口标有+,和OUT端口标有-的两块为一对。
BTL应用接线说明:
1.两块功放板的BTL-J1,BTL-J2,BTL-J3的短路针必须插好,普通应用时是要断开这三处短路针。
2.板A的BTL-F1处,与板B的BTL-F1处,用一根普通的软导线连接好(连接线已附送)。
5.发货默认是BTL连接方式,所有的断路针都已连成BTL形式,如做为标准应用时一定要把所有的断路针全部拔掉.
6.BTL应用时,2块功放板要配对使用,功放板上有配对标记,查看功放板的A与B为一对.
简易接线参考:
+VCC
GND
-VCC 音频信号从A板输入
扬声器8欧扬声器8欧
TDA7294功放板BTL应用接线说明
3.音箱+ 接功放板(A)带有BTLOUT+端子上,音箱- 接功放板(B)BTLOUT-端子上。
(两块功放板各 各连接一条喇叭线。
分清 + - ,千万不要接错),BTL应用时,两块功放板音频输出端的GND (地端)闲置不用。
4.与电源板的接线请参考,标准版接线说明。
TDA7294直流伺服电流负反馈立体声功放(图)
TDA7294直流伺服电流负反馈立体声功放(图)TDA7294直流伺服电流负反馈立体声功放(图)2013-04-16 10:38:30作者:中华维修整理1071我要评论在消费类电子产品领域,产品的体积、重量都向着更小、更轻的方向发展,大功率单片音频功率放大器的需求日渐突出,TDA7294即是目前性能最好、功率最大的单片音频放大器之一。
它由欧洲SGS-THOMSON意法公司根据分立元件甲乙类音频功放经典电路设计而成。
其前级采用低噪声、低失真的双极性晶体管电路,末级采用高耐压、大电流DMOS管缓冲输出,故既有双极性电路的音色纯正优点,又有场效应管高压大电流驱动输出特点。
自1998TDA7294介绍到国内至今,相信许多发烧友已品味过TDA7294细腻、自然的音色。
不过,遗憾的是他们听到的仅仅是标准电压负反馈型放大器的声音。
与电压负反馈型放大器相比,电流负反馈放大器由于具有优良的非线性失真和瞬态互调失真特性,放大器的频率曲线平坦、高低频率响应得到更大展宽;更重要的是此种电路将负载阻抗纳入反馈网络之中,因此能对扬声器这类阻抗变化剧烈的负载加以补偿,加上工作性能稳定可靠,因此比电压负反馈放大器具有更多的优势,故目前电流负反馈放大器被广泛用于现代高保真音频放大器中。
图1电路是一款性能优良、没计完善的发烧级100Wx2直流伺服电流负反馈立体声功放,由两只TDA7294组成,频率响应为10Hz~100kHz。
使用精密音频双运放担任两声道功放直流伺服输出。
由扬声器保护专用芯片uPC1237HA驱动继电器完成开关机静音及功放输出直流偏移扬声器保护等。
当插上交流电源时,继电器延迟一段时间后将扬声器接入功放;在断开交流电源时,uPC1237HA检测到交流失电立即使继电器断开扬声器,故本功放彻底消除了开、关机过渡过程对扬声器的冲击噪声。
TDA7294的极限参数见表1,电参数见表2。
表2电参数测试条件为:Vs=±35V,RL=8Ω,GV=3CdB,Rg=50Ω,f=1kHz,环境温度25℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TDA7294/TDA7293电流/电压动态负反馈功放电路
上传者:zezhong007
TDA7294是ST意法公司一款新型DMOS大功率音频功放集成电路,它具有较宽范围的工作电压,(VCC+VEE)=80V;较高的输出功率(高达100W的音乐输出功率),并且具有静
音待机功能,很小的噪声和失真以及过热、短路保护功能,有关电气参数如下:
电压范围:|VCC|+|VEE|=20V-80V
静态电流:30MA
输出功率:|VCC|=|VEE|=35V ,RL=8欧时为70W
总谐波失真(THD):0.01%(典型值)
转换速率(SR): 10V/us
开环增益:80dB
典型推荐应用电路如下:
点击放大PCB图如下
BTL接法如下
TDA7294的封装参数如下图
以下是笔者参照有关推荐电路设计的TDA7294X2 前后级电路图,以及用PROTEL99设计的PCB电路板图。
上图为前级放大部分,为了获得较好的效果,电源用运放和外围元件构成松下伺服电源,以拓宽电源的响应速度,该电路只有在输出电压和输入电压差值大于5V的情况下才能发挥作用,由于采用前后级共用一组电源,后级功放电源的电压较高,本机用正负32V 供电
,用Rx ,RY作限流后完全能达到上述条件。
线性放大部分采用发烧级运算放大集成电路AD827,或更好的AD812等,或者用大S的NE5532,设置放大倍数为10,其中R4为阻抗匹配电阻,同时能有效的减少干挠,反馈回路中省去电容,以拓宽频率范围,对电路的稳定没有影响,下图是后级功放部分,采用典型的推荐电路,只不过为了后级扬声器的保护功能,还有应用直流伺服电路,以减少相位失真和拓宽频率响应范围,最大限度的发挥该IC的优良性能。
其中IC的9,10脚外围元件构成静噪和防电流冲击保护电路。
扬声器保护电路有很多种,下面的电路简单而且比较稳定可靠,也可用其它电路,该电路中的继电器的选取很重要,本电路选用日本的OMRON透明银触点继电器。
至于音量电位器,一般的国产电位器在用不到一年的时间,大都会出现接触不良的毛病,在使用时出现令人心烦的噪声,这是发烧友很难接受的,这里选取MALAYSIA进口的ALPS八脚步进电位器,从而克服了以上的毛病。
上图为功放电路部分,功放电路采用电流负反馈电路,传统的电压负反馈能改善功放的频率特性,降低非线性失真,但声音缺乏力度,对瞬态互调失真无能为力,电流负反馈能有效解决这种问题,但是扬声器是一个动态的阻抗,在不同的频率下呈现不同的阻抗,因此电流负反馈电路在不同的频率下的增益却相差很大,最大能差几十倍,功放的频响曲线不再平直,音响论坛中也有不少烧友反应用单纯的电流反馈听起来是有些中高音过亮剌耳,本站一开始推出的SSE02板均采用纯电流反馈,也有网友反应这方面在听感上的不足,笔者通过反复实验改进,决定修改电路如下图:
改进后在听感上中高频纤细耐听许多,低频继承了电流反馈的下潜很深有力度的优点。
音域平衡许多,建议曾在我站购买板的朋友亲手改进一下,相信音质和听感会有较好的效果,并且以后出售的板子和散件全部改为电流电压动态负反馈电路板。
下图右下部分为扬声器保护电路
整机的电源部分如下,变压器功率要有余量,最好用300W的优质环型变压器,电源的大滤波电容的容量应充足,本板选取用美产的(NIPPON CHEM CON)蓝色3脚电解。
下图为印刷电路板的元件布局图,在设计PCB板时,充分的考虑到各类措施以减少前后级的干挠,实行前后级地线分离,大电流和小电流分开走线,大电路线路尽可能的增大铜泊的宽度,严格一点接地,(星型接地),注:由于分辨率的原因,下图中PCB板的很小的间距(小于10MIL时)就显示粘到一块,实际不是这样的。
电路的尺寸为10 X 15 CM单面板设计。
在元件选取上,本电路本着一般的发烧原则,采用金属膜电阻,尽量减少音频通路中的电路耦合,本机的音频通道中只有一个电容,C5,Ce5,应选用高品质的CBB电容,在这里选用红WIMA,其中的电源退耦电容中小电容均应选CBB的,其中的C9,Ce9要为高频旁路电容,滤除输出中的高次谐波信号,防止高频自激。
该电容可用一般电容。
以降低成本。
电路的关键元件,TDA7293/7294均为从正规渠道采购的全新原装品,为激光暗刻,产地为新加坡。
以下本站推出的第二款HIFI音响板(SSE01)TDA7294的成品板图片,PCB板的工艺比较令人满意,采用进口加厚(2MM)玻纤板,水金工艺,双南蓝色阻焊油,铜泊加厚,大大降低音频信号通道的内阻,同时在设计上有意加大焊盘的面积,这样在多次焊接时都不容易弄坏焊点。
部分元器件更新后的最新图片如下(9月6日)
点击放大
绝缘处理安装示意图
PCB板实图如下
和本板配套的大型场式散热器,尺寸为76MM X 55MM X150MM,重量为1斤多,以满足在大功率输出时的散热需要。
试听:本电路中使用近年来流行的具有胆味的大功率音乐功放集成路TDA7294,从性能参数上它具有10V/us转换速率,末级用DMOS作电流放大,具有很鲜明的音色,费了
很大的功夫,终于作好样板,接线试听,结论正如报刊所说的,音色温暖,尤其是人声很甜,高频部分虽没有LM3886的解析力,但是个人认为很耐听,也许是人们所说的胆味吧。
用TDA7293装HIFI功放板
意法公司推出的新型大功率DMOS功放IC TDA7294以其功率大,保护功能完善,还有相当不错的胆昧音色,受到广大音响爱好者的喜爱,在国内外的音响DIYER中成为音响功率放大IC中的首选,随后意法公司又推出性能和功率更加优秀的TDA7293,除了功率加大之外,从官方给出的资料中可以看出,TDA7293的转换速率值同样为10V/us,但是有更宽的电压供电范围,最高可用双50V直流供电,这意味着比TDA7294有更大的动态范围和更高的输出功率,在双40伏直流供电,8欧负载时能达到100W的平均输出功率,当然如果提升电压到双50V时,或更小的负载如4欧时,会有更大的输出功率,根据TDA7293的特性,在选取变压器时,可选用双28V交流电压,这样整流滤波后的电压为双40V左右,当然也可以加大电压,考虑到电网电压有一个波动,最好小于最高电压50V 几伏,这样对电路的稳定工作有益。
,因此本站在规划用TDA7294做出一体化板子的时候,也同时考虑到是否还要出TDA7293功率放大器,以供音响DIYER以更多的选择,在查看意法公司的官方资料来看,其实两者的电路差别只是一个电容的接法不同,下面是TDA7293的电路图
同上图可以看出,两者的区别在于6脚(BOOTSTRP)上的22UF电解电容的负极接法有所不同,其它外围电路以及IC的引脚和封装均完全一样,这样完全可以预留焊盘来实现两块板的兼容安装。
下现就PCB的安装来详细说明。
SSE01板的功能结构和SSE02板基本相同
完整电路图
装机注意事项:(2004/10/13更新)
虽然用TDA7293做成HIFI音响板有相当不错的听音效果,但是由于TDA7293内部的后级功率放大是DMOS管,在使用不当时容易损坏,所以显得比较骄气点,结合极少数网友在使用本站板子不当发生损坏功放集成块的实际情况,总结以下几点,敬请网友注意
1,散热器和TDA7293的散热片部分要紧固好,可用螺丝刀加强紧固一下,(在发货时为防止在运输过程中损坏板子,一般将大型散热器分开包装)这样,以保证散热正常,本站提供的专用绝缘片的作用有两个,一方面绝缘,还有一个作用是帮助散热,利用它的软体特性压放在集成块的散热片和大型散热器之间,无需再涂导热硅脂。
如果没有通过绝缘片把热量散出,TDA7293势必由于温度过高而损坏
2,按网页上提示装好散热器后最好用万用表测一下散热器和TDA7293的散热片有没绝有真正绝缘好,以防止在装入机壳后通电工作时损坏集成块,因为散热器固定在机壳上(注意机壳已通过电位器外壳接地)TDA7293的散热片和负电压相通,如果没有绝缘好就直接导致负电源接地,其结果是集成块损坏。
3。
不要在通电工作的情况下,用手摸输入线,或电路板上的相关音频输入部分,如有些网友在装机时将电位器从板子上拆下,通过连线固定到机壳上时,在通电工作状态时不要碰电位器的引脚部分。
4。
板子拿到手接线时,尤其是接电源线到板子上时要看一下接线图,接地端GND(双电源的中心抽头)不要搞错了,否则直接就导致TDA7293的烧坏。
(笔者就曾经发生过这种事)
TDA7293虽然比较容易损坏,但是都是由于使用不当所造成的,只要你注意以上几点,摸清它的特性,就能保证长期稳定的工作。