二次根式及其化简 公开课教案 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7 二次根式 第1课时 二次根式及其化简

1.了解二次根式的定义及最简二次根式;(重点) 2.运用二次根式有意义的条件解决相关问题.(难点)

一、情境导入

问题:(1)如图,在Rt △ABC 中,AC =3,BC =2,∠C =90°,那么AB 边的长是多少?(2)面积为S 的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)

上述结果有什么共同特征?

二、合作探究

探究点一:二次根式的相关概念 【类型一】 二次根式的定义

下列式子中,哪些是二次根式,哪些不是二次根式?

(1)2;(2)4;(3)3

3;(4)1x +y

(5)x +y (x≥0,y ≥0);(6)3a 2

+8;

(7)-x 2

-12.

解:(1)(2)(5)(6)是;(3)(4)(7)不是.

方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.

【类型二】 二次根式有意义的条件

当x________,x +3+

1

x +1

在实数范围内有意义. 解析:要使x +3+1

x +1在实数范围内有意义,必须同时满足被开方数x +3≥0和分母

x +1≠0,解得x ≥-3且x≠-1.

方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不

为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简

化简下列二次根式.

(1)48;(2)8a3b(a≥0,b≥0);

(3)(-36)×169×(-9).

解析:本题主要考查运用

ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43;

(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;

(3)(-36)×169×(-9)=36×169×9=6×13×3=234.

方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).

探究点三:最简二次根式

在二次根式8a,

c

9

,a2+b2,a2

中,最简二次根式共有( ) A.1个 B.2个

C.3个 D.4个

解析:8a中有因数4;

c

9

中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.

方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.

三、板书设计

二次根式

⎩⎪

⎪⎧定义⎩⎨⎧形如a(a≥0)的式子

有意义的条件:a≥0

性质:(a)2=a(a≥0),a2=a(a≥0)

最简二次根式

本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

4.4一次函数的应用

第1课时确定一次函数的表达式

1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)

一、情境导入

某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.

二、合作探究

探究点一:确定正比例函数的表达式

求正比例函数y =(m -4)m 2

-15的表达式.

解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.

解:由正比例函数的定义知m 2

-15=1且m -4≠0,∴m =-4,∴y =-8x.

方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式

【类型一】 根据给定的点确定一次函数的表达式

已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.

解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.

解:设一次函数的表达式为y =kx +b ,根据题意得,

∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩

⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.

【类型二】 根据图象确定一次函数的表达式

正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的

图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.

解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.

解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=3

4,即正比例函数的表达

式为y =34x.∵OA =32+42

=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的

坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-5

2=b ,代入3=4k 2+b 中,

得k 2=118.∴一次函数的表达式为y 2=118x -5

2

.

方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,

然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.

【类型三】 根据实际问题确定一次函数的表达式

某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所

示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5

解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.

方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.

三、板书设计

确定一次函数表达式⎩⎪⎨⎪

⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)

相关文档
最新文档