二次根式及其化简 公开课教案 教案
二次根式的化简备课教案
二次根式的化简备课教案【教案策划】【教学目标】1. 理解二次根式的概念,掌握常见的二次根式的化简方法;2. 能够运用所学的方法,灵活地化简各种形式的二次根式;3. 培养学生的逻辑思维和解决问题的能力。
【教学重点】掌握二次根式化简的方法。
【教学难点】能够适应不同形式的二次根式的化简。
【教学准备】教师准备:板书、教学课件、相关练习题;学生准备:教科书、笔记本、计算器。
【教学步骤】Step 1 引入1. 教师可以提问学生,你们知道什么是二次根式吗?请举一个例子。
2. 学生回答后,教师对二次根式进行解释,并板书相关定义和符号。
Step 2 基本化简方法1. 教师通过板书引导学生复习一些基本知识点,如分解因式、化简分数等。
2. 教师给出示例,让学生根据基本知识点进行化简,引导学生发现规律。
3. 教师板书总结基本化简方法,并与学生一起归纳总结。
Step 3 常见的二次根式的化简1. 教师呈现一组常见的二次根式,让学生一一进行化简,并解释过程。
2. 学生进行展示,教师提问学生,你们觉得有哪些化简方法是通用的呢?Step 4 深入探究1. 教师出示几个较为复杂的二次根式,让学生合作讨论并尝试化简。
2. 辅助提问:你们能找到一个化简方法,能够覆盖这些例子吗?3. 学生进行展示与解释,并互相讨论。
Step 5 拓展应用1. 教师出示一些拓展应用题,要求学生灵活运用所学知识进行化简。
2. 学生进行独立或合作完成,并进行互相检查。
Step 6 归纳总结1. 教师与学生一起回顾所学内容,归纳总结二次根式的化简方法。
2. 学生可以发表自己对二次根式化简的理解和感悟。
【教学延伸】1. 学生可以自主查找更多的例题进行练习;2. 学生可以尝试设计自己的二次根式化简题目,与同学们互换。
【教学反思】通过本节课的学习,学生能够掌握二次根式的化简方法,并能够熟练地运用于各种形式的二次根式。
教师可以通过课后作业和小测验来检查学生的掌握情况,并随时跟进学生的学习进度。
初中数学教案二次根式的运算与化简(三)
初中数学教案二次根式的运算与化简(三)初中数学教案二次根式的运算与化简(三)一、教学目标1. 理解二次根式的定义和性质。
2. 掌握二次根式的加减、乘除法运算法则。
3. 学会化简二次根式,并能在实际问题中运用。
二、教学重点1. 二次根式的加减法运算。
2. 二次根式的乘除法运算。
3. 化简含有二次根式的表达式。
三、教学难点1. 二次根式的乘除法运算。
2. 含有二次根式的表达式的化简。
四、教学过程【导入】引导学生回顾上节课所学的二次根式的定义和性质,并提醒学生二次根式的运算法则。
【讲解】1. 二次根式的加法运算:将有理数部分相加,保持根号中的数字不变。
例如:√2 + √3 = √2 + √32. 二次根式的减法运算:将有理数部分相减,保持根号中的数字不变。
例如:√5 - √2 = √5 - √23. 二次根式的乘法运算:将有理数部分相乘,根号中数字间相乘,相同根号间合并。
例如:(2√3)*(3√2) = 6√(3*2) = 6√64. 二次根式的除法运算:将有理数部分相除,根号中数字间相除,相同根号间合并。
例如:(4√5)/(2√2) = 2√(5/2) = 2√2.5【练习】1. 按要求计算:(1) √8 + √18(2) 3√12 - 2√27(3) (5+√3)(5-√3)2. 化简以下二次根式:(1) √32(2) √50 - √8(3) (√3 + 2)(√3 - 2)【拓展】运用二次根式的运算法则解决实际问题。
例如:一个矩形花坛的长和宽的二次根式表示分别为√5和√7。
求矩形花坛的面积。
解:矩形花坛的面积为长乘宽,即√5 * √7 = √(5*7) = √35。
【归纳总结】总结二次根式的运算法则,并强调在化简过程中要合理运用这些法则。
五、课堂练习1. 小明算错了,他认为√12 = √(4+8) = √4 + √8,请帮他找出错误。
2. 比较√(6+3)和(√6 + √3)的大小,并说明理由。
九年级数学上人教版《二次根式及其化简》教案
《二次根式及其化简》教案
一、教学目标
1.理解二次根式的概念,掌握二次根式的性质和化简方法。
2.会进行二次根式的化简和运算。
3.培养学生的观察、比较、分析、推理能力。
二、教学重点难点
1.重点:掌握二次根式的性质和化简方法。
2.难点:正确运用二次根式的性质进行化简和运算。
三、教学方法与手段
1.通过实例引入,让学生感受二次根式在生活中的应用。
2.通过讲解和示范,让学生掌握二次根式的性质和化简方法。
3.通过练习和反馈,让学生深入理解并掌握二次根式的化简和运算。
4.通过小组合作和讨论,让学生互相交流和学习。
四、教学过程
1.复习导入:复习整式、一元二次方程等知识,为学习二次根式做准备。
2.新课引入:通过实例引入二次根式的概念,引导学生探索二次根式的性质
和化简方法。
3.讲解新课:通过讲解和示范,让学生掌握二次根式的性质和化简方法,包
括化简的步骤、注意事项等。
4.巩固练习:通过练习和反馈,让学生深入理解并掌握二次根式的化简和运
算,包括简单的一元二次方程的解法等。
5.课堂小结:总结二次根式的性质、化简方法和应用,强调正确运用二次根
式的性质进行化简和运算的步骤和方法。
6.作业布置:布置相关练习题,巩固所学知识。
五、教学反思与改进
1.通过观察学生的表现,了解学生对二次根式的掌握情况。
2.根据学生的反馈情况,进行相应的反思和改进,调整教学方法和手段。
3.加强与学生的沟通和交流,及时发现和解决学生在学习过程中遇到的问
题。
二次根式的化简数学教案
二次根式的化简数学教案标题:二次根式的化简数学教案一、教学目标:1. 理解并掌握二次根式的概念和性质。
2. 能够运用二次根式的性质进行简单的化简计算。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容:1. 二次根式的定义与性质2. 二次根式的化简方法三、教学过程:(一)引入新课教师可以利用生活中的实例,如测量物体的长度或体积等,引出二次根式的概念。
然后,通过一些简单的例子,让学生初步理解二次根式的基本性质。
(二)讲解新课1. 二次根式的定义与性质教师首先给出二次根式的定义,即若a≥0,则√a表示a的平方根。
接着,介绍二次根式的性质,包括:① √a²=a;② √ab=√a×√b(a≥0,b≥0);③ (√a)²=a;④ √(a/b)=√a/√b(a≥0,b>0)。
2. 二次根式的化简方法教师以具体的二次根式为例,逐步引导学生学习二次根式的化简方法。
主要的方法有:① 利用二次根式的性质进行化简;② 利用完全平方公式进行化简。
(三)课堂练习设计一些针对二次根式化简的题目,让学生在课堂上完成,以此检查学生对二次根式化简的理解和掌握程度。
(四)作业布置设计一些课外练习题,让学生在课后进行自我检测和巩固。
四、教学反思:在教学过程中,教师应注意观察学生的反应,及时调整教学策略。
同时,应鼓励学生积极参与,提高他们的主动性和积极性。
五、教学评价:通过对学生的课堂表现、作业完成情况以及测试成绩的综合评价,了解学生的学习进度和理解程度。
六、总结:本节课的教学目标是让学生理解和掌握二次根式的概念和性质,以及如何进行二次根式的化简。
通过实例引入、理论讲解、课堂练习和作业布置等方式,使学生能够熟练地运用二次根式的性质进行化简计算,培养他们的逻辑思维能力和解决实际问题的能力。
《二次根式及化简》优秀教案
27 二次根式第1课时 二次根式1.理解二次根式概念及性质.2.用公式错误!=错误!·错误!a ≥0,b ≥0、错误!=错误!a ≥0,b>0进行二次根式的化简运算.自学指导:阅读课本P41-42,完成下列问题知识探究(一)内容:通过探究得出b a b a •=⋅,ba b a=. 具体过程如下:94⨯= 6 ,94⨯= 6 ;2516⨯= 2021 ,2516⨯= 2021 ;94= 23 ,94= 23 ; 2516= 45 ,2516= 45 . 问题1:观察上面的结果你可得出什么结论?积的算术平方根等于算术平方根的积;商的算术平方根等于算术平方根的商问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗? b a b a •=⋅ ;ba b a =. 问题3:其中的字母a ,b 有限制条件吗?b a b a •=⋅(a ≥0,b ≥0),ba b a =(a ≥0, b >0).活动1 典例解析例1 化简(1)6481⨯;(2)625⨯;(3)95。
观察:化简以后的结果中的被开方数又有什么特征?被开方数中都不含分母,也不含能开得尽的因数。
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做 最简二次根式 。
化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。
例2化简:(1)45;(2)27;(3)31;(4)98;(5)16125. 答案:(1)5353595945=⨯=⨯=⨯=; (2)3333393927=⨯=⨯=⨯=;(3)31=333331=••; (4)3223223243249898=⨯=⨯=⨯==; (5)455455452545251612516125=⨯=⨯=⨯==.活动2 探究问题:(1)你怎么发现45含有开得尽方的因数的?你怎么判断714是最简二次根式的?(2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。
初中数学教案 二次根式的化简与运算
初中数学教案二次根式的化简与运算初中数学教案:二次根式的化简与运算一、二次根式的基本概念二次根式是指形如√a的数,其中a是非负实数。
初中数学中,我们经常遇到二次根式的化简与运算问题。
本教案将重点讲解二次根式的化简与运算方法,并给出相应的例题和解析。
二、二次根式的化简1. 提取因式法提取公因式法是一种常用的二次根式化简方法。
对于形如√(a*b)的二次根式,可以使用提取因式法,将其分解为√a * √b。
例题1:化简√(12)解析:由于12可以分解为2*6,所以√(12) = √2 *√6。
进一步化简,得到√(12) = 2√3。
2. 合并同类项法合并同类项法是指合并根号下的同类项并进行运算的方法。
例题2:化简√(32) + 3√(8)解析:首先,32可以分解为16*2,8可以分解为4*2。
所以√(32) + 3√(8) = √16 * √2 + 3√4 * √2 = 4√2 + 3 * 2√2 = 4√2 + 6√2 = 10√2。
三、二次根式的运算1. 加法与减法二次根式的加法与减法要求根号下的式子相同,即根号内的数值和根指数相同。
例题3:计算√5 + √5 - 2√2解析:由于√5的根号下的数值和根指数相同,所以√5 + √5 = 2√5。
因此,√5 + √5 - 2√2 = 2√5 - 2√2。
2. 乘法与除法二次根式的乘法与除法使用分配律进行运算。
例题4:计算(2 + √3) * (2 - √3)解析:使用分配律展开式子,得到(2 + √3) * (2 - √3) = 2 * 2 + 2 * (-√3) + √3 * 2 + √3 * (-√3) = 4 - 2√3 + 2√3 - 3 = 4 - 3 = 1。
3. 求比二次根式的比值可以通过有理化的方法进行求解。
例题5:求√6:√2的值解析:将√6和√2有理化,得到√6:√2 = (√6 / √2) * (√2 / √2) = (√(6/2)) * (√(2/2)) = √3 * 1 = √3。
2.7 第1课时 二次根式及其化简 教案
一、情境导入问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?(2)面积为S 的正方形的边长是多少?(3)要修建一个面积为 6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念【类型一】二次根式的定义下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】二次根式有意义的条件当x________,x+3+1x+1在实数范围内有意义.解析:要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简化简下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本题主要考查运用ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43;(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a ,c 9,a 2+b 2,a 2中,最简二次根式共有( ) A .1个 B .2个C .3个D .4个解析:8a 中有因数4;c 9中有分母9;a 3中有因式a 2.故最简二次根式只有a 2+b 2.故选A. 方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a (a ≥0)的式子有意义的条件:a ≥0性质:(a )2=a (a ≥0),a 2=a (a ≥0)最简二次根式 1.若-1<x <0,则22)1(+-x x 等于 A.2x +1 B.1 C.-1-2x D.1-2x 2.下列等式成立的是A.2)2(2-=-B.4x =x 2C.b -122++b b =-1D.36x x =3.若1)3()2(22=-+-a a ,则a 的取值范围是A.2≤a ≤3B.a ≥3或a ≤2C.a ≤2D.a ≥34.化简a +2)1(a -等于A.2a -1B.1C.1或-1D.2a -1或15.计算22)21()12(a a -+-的值是A.2-4a 或4a -2B.0C.2-4aD.4a -26.当3323+-=+x x x x 时,x 的取值范围是 A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤07.当2m +7<0时,16914422++++-m m m m 化简为A.-5mB.mC.-m -2D.5m8.当a >0时,化简3ax -的结果是A.x axB.-x ax -C.x ax -D.-x ax9.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为。
八年级上册数学 二次根式及其化简教案
八年级数学上册教案吧斗 Assistant teacher 为 梦 想 奋2.7二次根式第1课时二次根式及其化简1.了解二次根式的定义及最简二次根式;(重点)2.运用二次根式有意义的条件解决相关问题.(难点)一、情境导入问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?(2)面积为S的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念【类型一】二次根式的定义下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】二次根式有意义的条件当x________,x+3+1x+1在实数范围内有意义.解析:要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简化简下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本题主要考查运用ab=a·b (a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43;(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有( )A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计 二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a (a≥0)的式子有意义的条件:a≥0性质:(a )2=a (a≥0),a 2=a (a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.2.7 二次根式第1课时二次根式及其化简重点难点提示本单元重点是二次根式的重要性质:,它是二次根式化简和运算的重要依据。
二次根式的化简及计算(学生基础版)教案
二次根式的化简及计算(学生基础版)教案一、教学目标:1. 让学生理解二次根式的概念,掌握二次根式的化简方法。
2. 能够正确计算含有二次根式的数学问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 二次根式的概念与性质2. 二次根式的化简方法3. 二次根式的计算法则4. 实际应用问题三、教学重点与难点:1. 教学重点:二次根式的化简方法,二次根式的计算法则。
2. 教学难点:理解二次根式的性质,掌握化简和计算的方法。
四、教学方法:1. 采用讲授法,讲解二次根式的概念、性质、化简方法和计算法则。
2. 利用例题,演示二次根式的化简和计算过程。
3. 引导学生进行分组讨论和练习,巩固所学知识。
4. 利用信息技术辅助教学,展示二次根式的图像,增强学生的直观感受。
五、教学过程:1. 导入:回顾一次根式的相关知识,引导学生思考二次根式的概念。
2. 新课讲解:讲解二次根式的性质,引导学生掌握二次根式的化简方法。
3. 例题演示:展示典型例题,引导学生跟随步骤进行二次根式的化简和计算。
4. 练习环节:布置练习题,组织学生进行分组讨论和练习,解答疑难问题。
5. 课堂小结:总结本节课所学内容,强调二次根式的化简和计算方法。
6. 课后作业:布置课后作业,巩固所学知识。
7. 教学反思:根据学生反馈,调整教学方法,提高教学效果。
六、教学评价:1. 课堂提问:通过提问了解学生对二次根式概念、性质和化简方法的掌握情况。
2. 练习题:评估学生在练习中的表现,检验他们对二次根式计算法则的掌握。
3. 课后作业:分析课后作业的完成质量,了解学生对课堂所学知识的巩固程度。
4. 小组讨论:观察学生在分组讨论中的参与程度和合作能力。
七、教学拓展:1. 邀请数学专家或相关领域的从业者进行讲座,加深学生对二次根式在实际应用中的理解。
2. 组织数学竞赛或挑战活动,激发学生对二次根式计算的兴趣和潜能。
3. 推荐学生阅读相关的数学书籍或文章,拓宽他们的数学视野。
二次根式的化简与运算教案
二次根式的化简与运算教案I. 介绍二次根式是指根号下包含变量的表达式。
在数学中,化简和运算二次根式是基础的数学技能之一。
本教案旨在介绍二次根式的化简与运算的方法和技巧。
II. 化简二次根式化简二次根式的目的是将根号下的表达式简化为最简形式。
以下是化简二次根式的一般步骤:1. 将根号下的表达式分解为互质的因式乘积;2. 提取其中可以化简的因子;3. 直观地取消平方根中的因子,化简为整数或分数。
示例1: 化简根号下的完全平方数对于形如√(a^2) 的根式,其中 a 是一个正实数,化简结果为 a。
示例2: 化简根号下的平方数因子对于形如√(ab^2) 的根式,其中 a 和 b 是正实数,化简结果为b√a。
示例3: 化简根号下的倍数对于形如√(ma) 的根式,其中 m 和 a 是正整数且 m 是最大平方数因子,化简结果为√m√a。
III. 运算二次根式运算二次根式包括加法、减法、乘法和除法。
以下是每种运算的具体方法和技巧。
1. 加法与减法将相同的二次根式相加或相减时,只需合并系数并保留相同的根号下的表达式。
示例4: √5 + √5 = 2√5示例5: 3√2 - 2√2 = √22. 乘法将两个二次根式相乘时,可使用分配律或者使用恒等式√a * √b = √(ab)。
示例6: √3 * √2 = √(3 * 2) = √6示例7: (4√5)(3√2) = 4 * 3 * √(5 * 2) = 12√103. 除法将两个二次根式相除时,可使用恒等式√a / √b = √(a / b)。
示例8: √8 / √2 = √(8 / 2) = √4 = 2示例9: (5√7) / (2√3) = 5 / 2 * (√7 / √3) = 5 / 2 * √(7 / 3)IV. 实际应用二次根式的化简与运算在数学中有广泛的应用,尤其在代数、几何和物理学中。
1. 代数中的应用化简和运算二次根式在多项式的因式分解、方程的求解以及函数的图像绘制等方面具有重要作用。
二次根式及其化简 公开课获奖教案
2.7 二次根式第1课时二次根式及其化简重点难点提示本单元重点是二次根式的重要性质:,它是二次根式化简和运算的重要依据。
1.二次根式的重要性质:要注意以下问题:(1)因为被开方数a2 ≥0(非负数),所以a可以取任意实数。
而是表示算术根,所以(非负数),即,可用绝对值的定义和性质去掉绝对值符号。
去掉绝对值符号时,首先要判断绝对值符号内的代数式的值的符号。
若无法决定,要对其进行讨论。
(2)应用公式化简时,为保证结果的非负性,也避免出现运算上的错误,应首先写成的形式,然后再去绝对值符号。
2.的区别(1)a的取值范围不同:中的a必须是非负数。
中的a可以是任何实数。
(2)运算顺序不同,表示对非负数a先开方,再平方。
而表示对实数a先平方,再开方。
知识点精析例1.判断下列各式是否正确(1)(2)(3) (4)(5)解:根据二次根式知,(1),(2),(3)都是错的,只有(4),(5)是对的。
例2.化简(1) (2) (-1<x<8)(3) (0<x<1)(4)解:(1) ∵x2+1>0,∴(2) ∵-1<x<8,∴x+1>0, x-8<0.∴=|x+1|-|x-8|=x+1+x-8=2x-7.(3) ∵0<x<1,∴.∴.(4) ==|x-4|+|x-3|当x≥4时,原式=x-4+x-3=2x-7.当3≤x<4时,原式=4-x+x-3=1.当x<3时,原式=4-x-x+3=7-2x。
∴原式=说明:对于二次根式的化简,首先应根据算术根的定义写成绝对值的形式。
而正确去掉绝对值符号是化简的关键。
去掉绝对值符号时应首先判定绝对值符号内代数式值的符号。
此类问题,一般可分为两类。
第一类是不需要讨论直接化简。
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。
③给出明确的条件,如(2)小题。
二次根式化简及综合运算教案
二次根式化简及综合运算教案一、教学目标:1. 让学生掌握二次根式的性质和运算法则。
2. 培养学生运用二次根式进行化简和综合运算的能力。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
二、教学内容:1. 二次根式的性质2. 二次根式的运算规则3. 二次根式的化简4. 二次根式的综合运算5. 实际问题中的应用三、教学重点与难点:1. 教学重点:二次根式的性质和运算法则,二次根式的化简和综合运算。
2. 教学难点:二次根式在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解二次根式的性质和运算法则。
2. 运用案例分析法,解析二次根式的化简和综合运算。
3. 利用实践操作法,让学生通过实际问题解决来巩固二次根式的应用。
五、教学过程:1. 引入新课:通过生活实例,引导学生了解二次根式的实际意义。
2. 讲解概念:讲解二次根式的定义和性质。
3. 演示例题:展示二次根式的化简和综合运算案例,引导学生掌握运算法则。
4. 练习巩固:布置练习题,让学生独立完成,检验学习效果。
5. 实际应用:布置应用题,让学生运用二次根式解决实际问题。
6. 总结反馈:对本节课的内容进行总结,解答学生的疑问。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果:评估学生在练习题和实际应用题中的表现,检验学生的掌握程度。
3. 课后作业:检查课后作业的完成情况,了解学生的学习效果。
4. 综合评价:结合学生的课堂表现、练习成果和课后作业,进行全面评价。
七、教学资源:1. 教材:二次根式化简及综合运算相关章节。
2. 课件:制作精美的课件,辅助讲解。
3. 练习题:准备适量的练习题,巩固所学知识。
4. 应用题:选取与生活实际相关的应用题,提高学生的应用能力。
八、教学进度安排:1. 第一课时:讲解二次根式的性质和运算法则。
2. 第二课时:演示二次根式的化简和综合运算案例。
二次根式的化简及计算(学生基础版)教案
二次根式的化简及计算(学生基础版)教案第一章:二次根式的概念与性质1.1 引入二次根式的概念,让学生了解二次根式是由二次方程的根演变而来的数学表达式。
1.2 解释二次根式的性质,包括:a) 二次根式中的被开方数必须是非负数;b) 二次根式具有非负性、非负数的乘除法性质;c) 二次根式可以进行乘除运算,乘除运算规则与整数相同。
第二章:二次根式的化简2.1 介绍二次根式化简的方法和步骤:a) 提取二次根式中的最大公因数;b) 将二次根式中的括号展开;c) 合并同类项。
2.2 进行几个简单的例子,让学生熟悉化简方法。
第三章:二次根式的加减法运算3.1 讲解二次根式加减法的运算规则:a) 确保二次根式中的被开方数相同;b) 将同类二次根式相加减;c) 化简结果,确保最简二次根式形式。
3.2 进行几个具体的例子,让学生掌握二次根式的加减法运算。
第四章:二次根式的乘除法运算4.1 讲解二次根式乘除法的运算规则:a) 将二次根式相乘除,确保被开方数相乘除;b) 化简结果,确保最简二次根式形式。
4.2 进行几个具体的例子,让学生掌握二次根式的乘除法运算。
第五章:二次根式的实际应用5.1 引入二次根式在实际问题中的应用,例如:计算物体的体积、面积等。
5.2 进行几个具体的实际应用例子,让学生了解二次根式在实际问题中的应用方法和步骤。
第六章:含绝对值的二次根式6.1 引入绝对值的概念,并解释绝对值与二次根式的关系。
6.2 讲解如何处理含绝对值的二次根式,包括:a) 分析绝对值内的表达式正负,确定二次根式的性质;b) 利用绝对值的性质进行化简和运算。
6.3 进行几个例子,让学生掌握处理含绝对值的二次根式的方法。
第七章:含指数的二次根式7.1 引入指数的概念,并解释指数与二次根式的关系。
7.2 讲解如何处理含指数的二次根式,包括:a) 将指数形式转换为根式形式;b) 利用指数的性质进行化简和运算。
7.3 进行几个例子,让学生掌握处理含指数的二次根式的方法。
二次根式的化简与应用教案
二次根式的化简与应用教案二次根式是指形如√a的表达式,其中a为非负实数。
在数学中,化简二次根式是指将其转化为简化形式的过程。
本教案将详细介绍二次根式的化简方法以及其常见应用。
一、二次根式的化简方法1. 分解因子法当二次根式中的被开方数可以分解为两个因子的乘积时,可以使用分解因子法来化简。
例如,对于√12,我们可以将其分解为√(4×3),进一步化简为√4×√3,即2√3。
2. 合并同类项法当二次根式中存在同类项时,可以使用合并同类项法进行化简。
同类项是指二次根式中的被开方数和根号下的数相同。
例如,对于√5-√3+2√5-3√3,我们可以合并同类项得到(2√5-√3)-(3√3),进一步化简为2√5-4√3。
3. 倍用公式法倍用公式法是指利用二次根式的倍用公式进行化简。
常用的倍用公式有(a+b)^2=a^2+2ab+b^2以及(a-b)^2=a^2-2ab+b^2。
例如,对于√(x^2+2xy+y^2),我们可以将其化简为|x+y|,其中||表示绝对值。
二、二次根式的应用1. 几何应用二次根式在几何学中有广泛的应用。
例如,当计算一个正方形的对角线长度时,就涉及到二次根式的计算。
设正方形的边长为a,则对角线的长度可以表示为√(a^2+a^2)=√2a。
同样地,计算圆的周长和面积时,也需要用到二次根式的计算方法。
2. 物理应用在物理学中,二次根式也有一些应用。
例如,在计算物体自由落体运动的速度时,涉及到二次根式的计算。
设物体自由落体的时间t和加速度g,速度v可以表示为v=gt。
类似地,在计算弹性势能以及机械振动的频率时,也需要用到二次根式的化简与计算方法。
3. 金融应用二次根式在金融学中也有一些应用。
例如,在计算复利的问题中,涉及到年利率和复利计算公式。
复利公式可以表示为A=P(1+r/n)^(nt),其中A为最终金额,P为本金,r为年利率,n为每年计算的次数,t为投资的年限。
在使用复利公式计算时,可能会涉及到二次根式的运算。
二次根式的化简及计算(学生基础版)教案
二次根式的化简及计算(学生基础版)教案一、教学目标1. 让学生掌握二次根式的概念,理解二次根式的性质。
2. 培养学生运用二次根式进行化简和计算的能力。
3. 提高学生解决实际问题的能力,培养学生的数学思维。
二、教学内容1. 二次根式的概念与性质2. 二次根式的化简方法3. 二次根式的计算法则4. 实际问题中的二次根式计算5. 巩固与拓展三、教学重点与难点1. 重点:二次根式的概念、性质、化简方法及计算法则。
2. 难点:二次根式在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究二次根式的化简与计算方法。
2. 利用案例分析,让学生学会将实际问题转化为二次根式计算问题。
3. 运用小组讨论法,培养学生的合作意识和团队精神。
4. 采用分层教学法,关注学生的个体差异,提高教学效果。
五、教学过程1. 导入:通过生活实例,引出二次根式的概念,激发学生的学习兴趣。
2. 知识讲解:讲解二次根式的性质,引导学生掌握化简方法。
3. 案例分析:分析实际问题,让学生学会将问题转化为二次根式计算。
4. 课堂练习:布置具有代表性的练习题,巩固所学知识。
5. 拓展延伸:引导学生思考二次根式在实际问题中的应用,提高学生的解决问题的能力。
6. 总结:对本节课内容进行总结,强调重点知识点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对二次根式概念、性质、化简方法和计算法则的理解与应用。
2. 评价方法:课堂问答:通过提问,了解学生对知识的掌握程度。
练习题:设计不同难度的练习题,评估学生的应用能力。
小组讨论:评估学生在团队合作中的表现和问题解决能力。
3. 评价内容:学生能否正确识别二次根式。
学生能否运用二次根式的性质进行化简。
学生能否应用计算法则进行二次根式的计算。
学生能否将实际问题转化为二次根式计算问题。
七、教学资源1. 教学PPT:制作包含二次根式概念、性质、化简方法和计算法则的PPT。
2.7.1 二次根式及化简 教学设计(表格式)北师版八年级上册数学(2024年)
7 二次根式第1课时二次根式及化简课题第1课时二次根式及化简授课人教学目标1.认识二次根式和最简二次根式.2.探索积的算术平方根与商的算术平方根的性质.3.利用积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式.4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识.5.利用二次根式及最简二次根式的概念及性质,能把一个二次根式化成最简形式,培养学生解决问题的能力.6.引导学生认识从特殊到一般的认知规律,大胆猜测结果,从例子中归纳出一般适用的方法.7.通过探索规律,培养学生学习的主动性,使学生敢于探索,鼓励学生大胆猜想,积极与他人交流,增强学生学习数学的信心.教学重点二次根式的概念、性质及化简.教学难点利用二次根式的性质化简二次根式.授课类型新授课课时教具课件教学活动教学步骤师生活动设计意图回顾问题1:什么叫做平方根?问题2:什么叫做算术平方根?问题3:什么数有算术平方根?通过复习让学生对知识有熟悉感.活动一: 【课堂引入】观察下列代数式:先从学生比较熟知的具体的根式入手,观创设情境导入新课√5,√11,√7.2,√49121,√(c+b)(c-b)(其中b=24,c=25),这些式子有什么共同特征?特征:都含有开平方运算,并且被开方数都是非负数.察它们的形式,首先从感官上感知什么是二次根式,为二次根式的定义的提出做准备.活动二: 探究与应用【探究1】二次根式概念的探究像√2这样的式子就是我们本节课要学习的二次根式(板书课题).首先我们认识一下什么叫二次根式.(给出概念)二次根式的概念:一般地,形如√a(a≥0)的式子叫做二次根式,a叫做被开方数.请同学们结合二次根式的概念回答下面的问题:问题1:你认为一个式子是二次根式应满足几个条件?问题2:下列式子中,哪些是二次根式,哪些不是二次根式?√2,√33,1x,√x(x>0),√0,4√2,-√2,1x+y,√x+y(x≥0,y≥0).问题3:当x是多少时,二次根式√3x−1在实数范围内有意义?其中x的最小整数值是多少?问题4:当a≥0时,√a的结果一定是什么数?【探究2】(多媒体出示)计算下列各题,你发现了什么规律?(1)计算下列各式,你能得到哪些猜想?√4×9=,√4×√9=;√16×25=,√16×√25=.(2)√6×7=,√6×√7=.你又会产生怎样的猜想?问题1:你能用字母表示这个规律吗?问题2:你能用语言描述这个结论的意义吗?小组总结出结论:√ab=√a·√b(a≥0,b≥0),这里应强调a,b的取值范围.【探究3】(多媒体出示)计算下列各式,你又发现了什么规律?√49=;√4√9=;√1625=;√16√25=.1.通过问题的解决加深对二次根式的认识和理解,比空洞的讲解文字定义更直观具体,易于理解接受.问题4对于学习二次根式的双重非负性起到过渡作用,为二次根式性质的探究做了铺垫.2.本活动的设计意在引导学生通过自主探究、合作交流,由特殊数入手,先让学生获得感性上的认识,然后通过猜想、归纳,得出二次根式的性质.3.由于现在还没有学习最简二次根式的概使学生明白:√a b =√a √b(a ≥0,b>0),这里应强调a ,b 的取值范围. 语言叙述:积的算术平方根等于积中各因式(非负数)算术平方根的积.商的算术平方根等于分子(非负数)、分母(正数)算术平方根的商.念,学生实际上并不知道化简的方向,因此,这里以例题的形式呈现了有关结论,增强学生对最简二次根式的理解.(续表)活动 二:探究 与应用 【探究4】 最简二次根式的概念探究思考:请同学们观察例1中的各式,怎样进行化简?(多媒体出示例1)(教材例1)化简:(1)√81×64;(2)√25×6;(3)√59.总结:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式. 例1的设计是让学生能够熟练掌握二次根式的化简方法和技巧,进一步明确最简二次根式的条件.【应用举例】 例1 (1)若式子√x−12在实数范围内有意义,则x 的取值范围是 ; (2)若式子1x−2+√x 在实数范围内有意义,则x 的取值范围是 . 例2 (教材例2)化简:(1)√50;(2)√27;(3)√3.例3 下列各式中,哪些是最简二次根式?哪些不是最简二次根式?不是最简二次根式的,请说明理由.(1)√13;(2)√x 2+1;(3)√0.2;(4)√24x ;(5)√x 3+6x 2+9x ; (6)√3+√2√3-√2. 变式训练1.下列等式中正确的是 ( ) A .(√3)2=3 B .√(-3)2=-3 C .√33=3 D .(-√3)2=-32.计算:(1)√49×64;(2)√36×7;(3)√1764.灵活应用二次根式的性质进行化简,并把结果化成最简二次根式.3.化简:(1)√32;(2)√127;(3)√1.5;(4)√5;(5)√118.4.化简:(1)√12;(2)√(-16)×(-2);(3)√-3-25;(4)√5.5.若√3m −1在实数范围内有意义,则m 能取的最小整数值是 . 【拓展提升】 1.若y=√x−4+√4−x2+2,则(x+y )y = .2.若√16−x 是整数,则自然数x= .3.对于任意不相等的两个数a ,b ,定义一种运算“*”如下: a*b=√a+b a−b ,如:3*2=√3+23−2=√5,那么8*4= .4.实数a ,b 在数轴上的对应点的位置如图2-7-2所示,化简:√a 2-√b 2-√(a -b)2.图2-7-2拓展提升,进一步让学生熟练掌握二次根式的化简,加深理解. 【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]通过一组问题引出二次根式的概念,同时让学生感悟二次根式也需要化简,为下一步学习最简二次根式、二次根式的性质做好铺垫.②[讲授效果反思]本节课让学生理解二次根式和最简二次根式的概念,领悟二次根式的性质,明确性质的应用,知道如何化简二次根式.教师要教会学生化简的方法.③[师生互动反思]让学生根据实例进行探索,通过同学们互相交流合作,得出两个化简的公式:√ab=√a·√b(a≥0,b≥0);√ab =√a√ba≥0,b>0).这样既培养了他们的合作精神和探索能力,也让他们获得成功的体验.在教学时加强了师生互动的教学环节,充分调动学生的积极性,发挥学生的主体性,促进学生在教师指导下主动地、富有个性地学习.④[习题反思]计算能力的培养始终是初中阶段的一个重要目标,只有让学生多加练习才能熟练.但本节课的练习题数量较少,有待另外花时间加大训练.关于练习题目,老师们可以适当补充一些关于公式适用条件的题目,使学生对于公式有更深的了解.反思,更进一步提升.。
二次根式化简的教案
二次根式化简的教案教案标题:二次根式化简的教案教案目标:1. 学生能够理解二次根式的概念和性质。
2. 学生能够运用化简二次根式的方法。
3. 学生能够解决与二次根式相关的问题。
教学准备:1. 教师准备黑板、白板或投影仪等教学工具。
2. 教师准备一些二次根式化简的练习题。
3. 学生需要纸和铅笔。
教学过程:引入活动:1. 教师可以通过展示一些简单的二次根式,引发学生对二次根式的兴趣和好奇心。
2. 教师可以提出一个问题,例如:“如何将√12化简为最简形式?”引导学生思考。
知识讲解:1. 教师向学生解释二次根式的概念,即由一个数的平方根组成的根式。
2. 教师介绍二次根式的基本性质,例如:√(a*b) = √a * √b,√(a/b) = √a / √b。
3. 教师讲解如何化简二次根式,例如:分解因式法、有理化分母法等。
示范演示:1. 教师通过示范演示如何化简一些简单的二次根式,例如:√(16/4),√(27*2)等。
2. 教师在黑板上或投影仪上展示步骤,并解释每一步的原理和方法。
练习活动:1. 学生进行个人或小组练习,化简一些给定的二次根式。
2. 教师巡视并提供必要的指导和帮助。
3. 学生可以互相交流和讨论,共同解决问题。
总结回顾:1. 教师和学生一起回顾本节课所学的内容,强调二次根式化简的重要性和实际应用。
2. 教师可以提供一些综合性的问题,让学生运用所学知识解决。
拓展延伸:1. 对于进一步挑战的学生,教师可以提供更复杂的二次根式化简练习题。
2. 教师可以引导学生思考二次根式的实际应用,例如在几何图形中的应用等。
评估反馈:1. 教师可以布置一些作业,让学生继续巩固和应用所学的知识。
2. 教师可以通过课堂练习、讨论和学生的提问来评估学生的理解情况。
教案结束。
二次根式化简及综合运算教案
二次根式化简及综合运算教案第一章:二次根式的概念与性质1.1 引入二次根式的概念,让学生了解二次根式的一般形式:√a,其中a≥0。
1.2 讲解二次根式的性质,如:√a√b=√(ab),√a^2=|a|,(√a)^2=a等。
1.3 举例说明二次根式的性质在化简中的运用。
第二章:二次根式的化简2.1 介绍化简二次根式的原则:保持根号内数值的不变,减少根号的层数。
2.2 教授化简的方法:分解因数,提取公因数,配方法等。
2.3 练习化简一些简单的二次根式,如:√(ab),√(a+b),√(a-b)等。
第三章:二次根式的加减法3.1 讲解二次根式加减法的规则:同根号下相加减,去掉根号,合并同类项。
3.2 举例说明二次根式加减法的运算过程。
3.3 练习一些二次根式的加减法题目,加强学生对运算规则的理解。
第四章:二次根式的乘除法4.1 介绍二次根式乘除法的规则:分别乘除根号内的数,再进行根号的运算。
4.2 教授二次根式乘除法的方法:交叉相乘,分配律等。
4.3 练习一些二次根式的乘除法题目,巩固学生对运算规则的掌握。
第五章:二次根式的综合运算5.1 讲解二次根式综合运算的步骤:先化简,再进行加减乘除,化简结果。
5.2 举例说明二次根式综合运算的过程。
5.3 练习一些二次根式的综合运算题目,提高学生解决问题的能力。
第六章:二次根式的乘方与开方6.1 介绍二次根式的乘方规则:√a^n=a^(n/2),其中n为正偶数。
6.2 讲解二次根式的开方规则:√a^2=|a|,其中a为实数。
6.3 举例说明二次根式的乘方与开方在化简中的运用。
第七章:二次根式的分式运算7.1 介绍二次根式分式的运算规则:分子分母分别进行二次根式的化简,再进行乘除运算。
7.2 教授二次根式分式的运算方法:交叉相乘,分配律等。
7.3 练习一些二次根式的分式运算题目,巩固学生对运算规则的掌握。
第八章:二次根式的应用8.1 讲解二次根式在实际问题中的应用,如:计算物体的面积、体积等。
16.1二次根式的性质与化简(教案)
(2)二次根式的化简:学生难以掌握如何将复杂的二次根式化简为简单形式。
举例:对于√72这样的题目,学生可能不知道如何提取完全平方数,以及如何分解剩余的数。
(3)混合运算中二次根式的处理:在包含加减乘除的混合运算中,学生容易混淆运算顺序和法则。
举例:讲解二次根式乘除法时,强调“分子分母同乘(除)一个数,根号内的数也同乘(除)这个数”。
(3)二次根式的化简:掌握化简二次根式的方法和技巧。
举例:化简√18为3√2的过程,展示如何分解质因数,并提取完全平方数。
2.教学难点
(1)理解并运用二次根式的性质进行运算:学生容易在运算过程中忘记性质,导致错误。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《16.1二次根式的性质与化简》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如计算正方形面积时用到√2)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
16.1二次根式的性质与化简(教案)
一、教学内容
本节课选自人教版《数学》八年级下册第16章“二次根式”的第一节“16.1二次根式的性质与化简”。教学内容主要包括以下几部分:
1.二次根式的定义:了解二次根式的概念,明确被开方数和开方数的关系。
2.二次根式的性质:掌握二次根式的性质,如乘除法、加减法的基本规律。
5.培养学生合作交流意识:在小组讨论和课堂展示中,培养学生主动参与、合作交流的团队精神,提高学生的沟通能力。
三、教学难点与重点
二次根式及其化简 公开课教案 教案
2.7二次根式第1课时二次根式及其化简1.了解二次根式的定义及最简二次根式;(重点)2.运用二次根式有意义的条件解决相关问题.(难点)一、情境导入问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?(2)面积为S的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念【类型一】二次根式的定义下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】二次根式有意义的条件当x________,x+3+1x+1在实数范围内有意义.解析:要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简化简下列二次根式.(1)48;(2)8a 3b (a≥0,b ≥0); (3)(-36)×169×(-9).解析:本题主要考查运用ab =a ·b(a ≥0,b ≥0)及a 2=a(a ≥0)进行化简. 解:(1)48=16×3=16×3=43;(2)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab ;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a ,c 9,a 2+b 2,a 2中,最简二次根式共有( ) A .1个 B .2个 C .3个 D .4个 解析:8a 中有因数4;c 9中有分母9;a 3中有因式a 2.故最简二次根式只有a 2+b 2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a (a≥0)的式子有意义的条件:a≥0性质:(a )2=a (a≥0),a 2=a (a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.1 2 3 4 52 3 4 51 2 34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.7 二次根式 第1课时 二次根式及其化简1.了解二次根式的定义及最简二次根式;(重点) 2.运用二次根式有意义的条件解决相关问题.(难点)一、情境导入问题:(1)如图,在Rt △ABC 中,AC =3,BC =2,∠C =90°,那么AB 边的长是多少?(2)面积为S 的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念 【类型一】 二次根式的定义下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x +y;(5)x +y (x≥0,y ≥0);(6)3a 2+8;(7)-x 2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】 二次根式有意义的条件当x________,x +3+1x +1在实数范围内有意义. 解析:要使x +3+1x +1在实数范围内有意义,必须同时满足被开方数x +3≥0和分母x +1≠0,解得x ≥-3且x≠-1.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简化简下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本题主要考查运用ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43;(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有( ) A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。