第二十四届希望杯初三第1试试题及答案解析
历届1-24“希望杯”全国数学邀请赛八年级-真题及答案
5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点, 组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的 四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于 1的正三角形.故选(D). 二、填空题
12.如果 2x 3x 1, 那么 3 (x 2)3 (x 3)2 等于[ ]
A.2x+5 B.2x-5; C.1 D.1
9.已知 x2 2xy 2y 1
y2 1
y 1 等于一个固定的值,
x2 1
2y2 xy y x 1 x 1
则这个值是( ) A.0. B.1.
C.2.
D.4.
把f1990化简后,等于 ( )
A. x . B.1-x. C. 1 . D.x.
x 1
x
二、填空题(每题1分,共10分)
1. 1302 662 ________.
9.方程x2+|x|+1=0有[ ]个实数根.
A.4; B.2; C.1; D.0 10.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两
位数是[ ] A.26; B.28; C.36; D.38 11.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.185
∠A'BE=∠A'CF=45°. 又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C. 在△A'FC和△A'EB中,
∴SA'EBF=S△A'BC.
∴两个正方形的重合部分面积必然是一个定值. 3.可能的四位数有9种:
第二十四届希望杯竞赛初三第1试
第二十四届 希望杯 全国数学邀请赛初三㊀第1试试题一、选择题(每小题4分,共40分.)图11.若m ,n 是方程x 2-25x +1=0的两个根,则n m -mn的值是()(A )ʃ25.(B )ʃ45.(C )ʃ65.(D )ʃ85.2.设☉O 的半径是5,点P 不在☉O 外,若点O 与P 的距离|O P |=m 2-2m +2,则m 的取值范围是()(A )m <-1或m >3.(B )-1ɤm ɤ3.(C )m ɤ-1.(D )m ȡ3.3.如图1,☉O 内的点P 在弦A B 上,点C 在圆O 上,P C ʅO P ,若B P =2,A P =6,则C P 的长等于()(A )23.(B )4.(C )22.(D )32.图24.图2是类似 羊头 的图案,它左右对称,由正方形,等腰直角三角形构成,如果标有数字 13 的正方形的边长是2,那么标有数字 2的等腰直角三角形斜边的长是()(A )4.(B )22.(C )2.(D )32.5.若m ,n 分别是20的整数部分和小数部分,则与(m +n )(n -m )的差的绝对值最小的整数是()(A )-55.(B )-56.(C )-16.(D )-15.6.如图3,铁路MN 和公路P Q 在点O 处交汇,øQ O N =30ʎ.点A 在O Q 上,A O =240(米).当火车行驶时,周围200米以内会受到噪音的影响,现有一列火车沿MN 方向以72千米/时的速度行驶(火车的长度忽略不计),那么,A 处受噪音影响的时间为()(A )12秒.(B )16秒.(C )20秒.(D )24秒.图3F i g .4图5图67.I n әA B C a s s h o w n i n f i g.4,A B =A C ,B D =E C ,B E =C F ,i føA =50ʎ,t h e n t h e d e gr e e o føD E F i s ()(A )60ʎ.(B )65ʎ.(C )70ʎ.(D )75ʎ.8.如图5,☉O 1的半径是1,正方形A B C D 的边长是6,点O 2是正方形A B C D 的中心,O 1O 2垂直A D 于P 点,O 1O 2=8.若将☉O 1绕点P 按顺时针方向旋转360ʎ,在旋转过程中,☉O 1与正方形A B C D 的边只有一个公共点的情况一共出现()(A )3次.(B )5次.(C )6次.(D )7次.9.如图6,在同一个坐标系内,二次函数y 1=a x 2+b x +c (a ʂ0)和一次函数y 2=d x +e (d ʂ0)的图象相交于点A (m ,n )和点B (p ,q ).当y 1<y 2时,用m ,p 表示x 的取值范围,则是()(A )m <x <p .(B )x <m .(C )x >p .(D )x >m.图710.如图7,在正方形A B C D 中,点M ㊁N 分别在边A B ㊁B C 上运动(不与正方形的顶点重合),且B N =2AM ,若图中的三个阴影三角形中至少有两个相似,则这样的点M 有()(A )1个.(B )2个.(C )3个.(D )4个.二㊁A 组填空题(每小题4分,共40分.)11.已知实数a ,b 不相等,并且a 2+1=5a ,b 2+1=5b ,则1a 2+1b2=.12.I f a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2, ,t h e n a 2013i n t e r m s o f m i s .13.如图8,在3ˑ2的方格纸上,以某三个格点为顶点的三角形中,等腰三角形共有个.14.若实数x ,y ,z 使2x +y +z =0和3x +2y +5z =0成立,并且z ʂ0,则2x 2-y 2+2z 2-4x yx 2-5z 2+7x z的值是.15.若一个三角形的三边的长是2,13,17,则此三角形的面积是.16.已知抛物线y =a x 2+b x +c (a ʂ0)与x 轴的交点坐标为(-1,0),(3,0),当-2ɤx ɤ5时,y 的最大值为12,则该抛物线的解析式为.图8图9图10图1117.如图9,直角梯形纸片A B C D 中,A D ʊB C ,A B ʅB C ,A B =10,B C =25,A D =15,以B D 为折痕,将әA B D 折起,旋转180ʎ后,点A 到点A 1,则凹五边形B D C E A 1的面积为.18.如图10,将边长为a 的正方形A B C D 绕其顶点C 顺时针旋转45ʎ,得四边形A ᶄB ᶄC D ᶄ,则图中阴影部分的面积是.19.I f (a +4)2-(a -3)2=7,t h e n t h e v a l u e r a n ge of r e a l n u m b e r a i s .20.如图11,从边长为5的正方形纸片A B C D 中剪去直角әE B F (点E 在边A B 上,点F 在边B C 上).若E B +B F =15,则五边形A E F C D 的面积的最小值是.三㊁B 组填空题(每小题8分,共40分.)21.图12是由若干个棱长为1厘米的正方体堆成的几何体,它的三视图中,面积最大的是平方厘米,这个几何体的体积是立方厘米.22.如图13,在әA B C 中,øA =30ʎ,A B =A C =2,B D 是边A C 上的高,利用此图可求得t a n15ʎ=,B C=.23.在直角坐标系内,如果一个点的横坐标和纵坐标都是整数,则称该点为整点.若凸n边形的顶点都是整点,并且多边形内部及其边上没有其它整点,则n=.图12图13图14图1524.如图14,直角梯形A B C D中,A B=1.5,C D=2,A F=1,A D=3,A BʊE FʊC D,øA= 90ʎ,分别以A D,F E所在的直线为x轴,y轴建立坐标系(A D,F E为正方向),若抛物线y=a x2+b x +c过点B㊁C,并且它的顶点M在线段E F上,则a=,b=,c=.25.如图15,әA B C中,øB=90ʎ,øA=60ʎ,A B=A D=2,点M在D C上,以M为圆心,以DM为半径的半圆切边B C于点N,交M C于点P,则DM=,曲边әN C P的面积= .附加题(每小题10分,共20分.)1.若f(x)=6x3-11x2+a x-6可以被g(x)=2x-3整除,则a=,当f(x) >0时,x的取值范围是.2.有一堆黑,白围棋子,如果从中每次取出3枚黑子和2枚白子,当黑子被取完或剩下1枚或2枚时,则还剩35枚白子,如果每次取出5枚黑子和7枚白子,当白子被取完或剩下不足7枚时,则还剩下35枚黑子,那么这堆棋子中,原有黑子枚,白子枚.初三第1试答案。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】
希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第27届中学(第1试答案,含初三)
2;
;
评分标准:
第1~20题,每题4分;第21~25题,每题8分,每空4分。
第27届“希望杯”全国数学邀请赛第1试
参考答案及评分标准
初中三年级
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
C
A
A
C
B
C
C
A
题号
11
12
13
14
15
答案
5
2
4
2
题号
16
17
18
19
20
答案
6
882
题号
21
22
23
24
25
答案
2;
;5
第二十七届中学“希望杯”全国数学邀请赛
参考答案及评分标准
初一第1试
题号
1
2
3
4
5
6
7
8
9
10
答案
D
A
C
D
B
C
D
B
A
C
题号
11
12
13
14
15
答案
2016
224
36288
1
2
题号
16
17
18
19
20
答案
2
5
10
-11285
984
题号
21
22
23
24
25
答案
3;
36;25
4:1:
第1~20题,每题4分;第21~25题,每题8分,每空4分。
第十四届“希望杯”全国数学邀请赛试题(附答案)
第十四届“希望杯”全国数学邀请赛试题(附答案)
佚名
【期刊名称】《中学理科:初中数理化》
【年(卷),期】2003(000)007
【总页数】3页(P20-22)
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.建模思想在小学数学教学中的渗透——一个“希望杯”全国数学邀请赛试题的启示 [J], 曹军;蔡炯辉;鲁慧媛
2.《第十四届“希望杯”全国数学邀请赛》(初一第1试)答案/9月份《数学竞赛训练题》参考答案 [J], 煜明
3.第十四届“希望杯”全国数学邀请赛试卷(初一第1试) [J], 无
4.第一届小学“希望杯”全国数学邀请赛试题答案(五年级第一试) [J], 无
5.第一届小学“希望杯”全国数学邀请赛试题答案(四年级第1试) [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
第1-23届希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题......................018-0204.希望杯第二届(1991年)初中一年级第二试试题......................024-0265.希望杯第三届(1992年)初中一年级第一试试题......................032-0326.希望杯第三届(1992年)初中一年级第二试试题......................038-0407.希望杯第四届(1993年)初中一年级第一试试题......................048-0508.希望杯第四届(1993年)初中一年级第二试试题......................056-0589.希望杯第五届(1994年)初中一年级第一试试题......................064-06610.希望杯第五届(1994年)初中一年级第二试试题.....................071-07311.希望杯第六届(1995年)初中一年级第一试试题.....................078-080 12希望杯第六届(1995年)初中一年级第二试试题.....................085-08713.希望杯第七届(1996年)初中一年级第一试试题.....................096-09814.希望杯第七届(1996年)初中一年级第二试试题.....................103-10515.希望杯第八届(1997年)初中一年级第一试试题.....................111-11316.希望杯第八届(1997年)初中一年级第二试试题.....................118-12017.希望杯第九届(1998年)初中一年级第一试试题.....................127-12918.希望杯第九届(1998年)初中一年级第二试试题.....................136-13819.希望杯第十届(1999年)初中一年级第二试试题.....................145-14720.希望杯第十届(1999年)初中一年级第一试试题.....................148-15121.希望杯第十一届(2000年)初中一年级第一试试题...................159-16122.希望杯第十一届(2000年)初中一年级第二试试题...................167-16923.希望杯第十二届(2001年)初中一年级第一试试题...................171-17424.希望杯第十二届(2001年)初中一年级第二试试题...................176-17825.希望杯第十三届(2002年)初中一年级第一试试题...................182-18426.希望杯第十三届(2001年)初中一年级第二试试题...................186-18927.希望杯第十四届(2003年)初中一年级第一试试题...................193-19628.希望杯第十四届(2003年)初中一年级第二试试题...................198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题...................213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题...................228-23334.希望杯第十七届(2006年)初中一年级第二试试题...................234-23835.希望杯第十八届(2007年)初中一年级第一试试题...................242-246 26.希望杯第十八届(2007年)初中一年级第二试试题...................248-25137.希望杯第十九届(2008年)初中一年级第一试试题...................252-25638.希望杯第十九届(2008年)初中一年级第二试试题...................257-26239.希望杯第二十届(2009年)初中一年级第一试试题...................263-26620.希望杯第二十届(2009年)初中一年级第二试试题...................267-27121.希望杯第二十一届(2010年)初中一年级第一试试题.................274-27622.希望杯第二十二届(2011年)初中一年级第二试试题.................285-28823.希望杯第二十三届(2012年)初中一年级第二试试题.................288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____.7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,此时,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回离出发地点最远的那辆车一共行驶了多少公里2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.×+×的值是( ) A..B..C..D..7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )11 20;413;316;617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43 x;C. 甲方程的两边都乘以43;D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,,与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A .225. B ..C .. D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. >-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是
。
14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷
。
3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53
第24届初中“希望杯”全国数学邀请赛第2试_参考答案
a a SәAEF = , SәADF = , 8 2
从而
P Q 1 = , PD 4
于是
图1
S梯 形APCQ =SәAPQ +SәCPQ
因此
S梯 形APCQ 3 = . S▱ABCD 2 0
a a 3 a = + = . 2 0 1 0 2 0
( 1 5分)
另解 因为 所以 因此
设 S▱ABCD =a. E㊁ F 分别是 A B 和B C 的中点 ,
) n( n -1 ( 1 0分) . 2 )个整数a ( ) n ȡ2 3 n( < 1 <a 2 <a 3 <
kɤ
l ɤk. 同 理, 对 于 每 一 个 差 整 数 对 ( a i, , 于是可以构造 a a i -a j) j 也在这n 个整数中 , 出一个 和整数对 ( a a . i -a j, j)
)三角形每滚动 3 次 , 来自 A 运动的路程是图3
1 4 π πˑ1ˑ2= , ˑ2 3 3 所以当点 C 落在x = 点 A 走过的路 2 0 1 3处时 , 程是 4 π 2 π ( 1 0分) 7 0+ 9 4 π. ˑ6 =8 3 3 ( )设点 A 走过 的 路 程 8 3 9 4 π是半径为 R 2 π R =8 9 4 π,
所以 因为 于是 所以
1 池水变为水深 0 正好 . 6 米时 , 6 增加了满池水的
a a SәAPD =4ˑ = . 2 0 5 , A Q ʊP C SәAPQ =SәACQ , SәACQ +SәADQ = SәCDQ = a a 3 a - = . 2 5 1 0 a , 2 a , 5
a a x, x= , -x =4 4 2 0
希望杯历年真题集(九年级)-附答案
目录第二十二届“希望杯”全国数学邀请赛(第1试) (3)第二十三届“希望杯”全国数学邀请赛(第1试) (7)第二十三届“希望杯”全国数学邀请赛(第2试) (11)第二十四届“希望杯”全国数学邀请赛(第1试) (15)第二十四届“希望杯”全国数学邀请赛(第2试) (19)第二十五届“希望杯”全国数学邀请赛(第1试) (23)第二十五届“希望杯”全国数学邀请赛(第2试) (27)第二十六届“希望杯”全国数学邀请赛(第1试) (31)第二十六届“希望杯”全国数学邀请赛(第2试) (35)第二十七届“希望杯”全国数学邀请赛(第1试) (40)第二十八届“希望杯”全国数学邀请赛(第1试) (43)参考答案 (47)第二十二届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为( )A .8分钟B .7分钟C .6分钟D .5分钟 2.若关于x 的一元二次方程()2320a b x ax b +++=有唯一解,则这个解是( )A .23-B .32-C .23D .323.如图,已知////AD EF BC ,::1:2:4AD EF BC =,则梯形AEFD 与梯形EBCF 的面积之比为( )A .1:2B .1:3C .1:4D .2:34.一个兵乓球队有男队员6人,女队员5人,其中男、女左撇子分别有3人和2人,若从这个球队任意抽取2人,则抽到2个左撇子的概率是( )A .211 B .511 C .15D .251215.已知x ,y 都是负整数,且满足66xy x=-,则y 的最小值为( ) A .3- B .4- C .5- D .6-6.已知等腰ABC 中,,30AB AC BAC =∠=︒,AD 为BC 边上的高,P 点在AC 上,E 点在AD 上,若PE EC +的最小值为4,则ABC 的面积为( )A .8B .16C .32D .647.如图,AB 是圆O 的直径,点C 平分AB ,点D 平分AC ,DB 、CA 交于点E ,则DEEB的值( )A .13B .14 C .1 D8.已知直线()0y kx k =<与双曲线2y x=-交于点()11A x y ,和()22B x y ,两点,则122138x y x y -的值是( ) A .10- B .5- C .5 D .109.用一些棱长是1的小正方体堆成一个立体,下图分别是它的俯视图和主视图,则这个立体的表面积(含下底面面积)的值最小是( )A .42B .43C .44D .4610.如图,在ABC 中,BAC ∠、BCA ∠的平分线相交于点I ,若35B ∠=,BC AI AC =+,则BAC ∠的度数为( )A .60B .70C .80D .90二、A 组填空题(每小题4分,共40分)11.如图,正六边形的边向外延长一倍,连接端点后又构成一个大的正六边形,则小正六边形与大正六边形的面积之比为 ;12.若对于p 的任意值,抛物线2231y x px p =-++都过一个定点,则这个定点的坐标是 ; 13.如图,正方形ABCD 的边长为 4,E 点在BC 上,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则EC = ;14.在锐角ABC 中,54AB AC ==,,则BC 的取值范围是 ;15.袋中装有大小相同的黑球、白球、红球各2个,规定:取出一个黑球计0分,取出一个白球计1 分,取出一个红球计2分;在抽取这些球的时候,看不到球的颜色.甲先取出3个球,不再放回袋中,然后,乙取出剩余的3个球;取出球的总积分多者获胜.则甲乙成平局的概率为 ;16.不等式21x x a -+-≥对所有实数x 都成立,则 a 的最大值是 ; 17.如图,设M 是ABC 的重心,过M 的直线分别交边AB AC 、于P Q 、 两点,且APm PB=,AQ n QC =,则11m n+= ;18.已知抛物线()20y ax bx c c =++≠与x 轴的交点坐标为()()1,0,3,0-,当25x -≤≤时,y 的最大值为12,则该抛物线的解析式为 ;19.已知平面直角坐标系中有()1,3A ,()3,1B 两点,在x y 、轴上分别找一点C D 、,使四边形的周长最小,则最小周长为 ;20.明明用计算器求代数式()a b c +的值.他依次按出“,,,,,a b c ⨯+=”,显示11;当他依次按“,,,,b c a +⨯=”,显示14 (其中,,a b c 均为正整数).这时他才明白不按括号时,计算器先做乘法再做加法.那么如果他按键正确(该加括号时加括号)时,显示结果应为 ;三、B 组填空题(每小题 8 分,共 40 分)21.已知代数式22 342x xy y x by ---+-能分解为两个关于x y 、的一次式的乘积,则b = 或 ; 22.已知,,x y z 是三个非负实数,满足3252x y z x y z ++=+-=,,若2S x y z =+-,则S 的最大值为 最小值为 ;23.已知()2f x ax bx c =++,若()01f =,并且()()12f x f x x +-=,则()1f = ,()1f -= ,a = ,b = ;24.如图,在平面直角坐标系中,矩形OABC 的顶点A C 、分别在轴上,顶点B 在()14,8,点E F 、分别在OA 、 OB 、上.将AEF 沿EF 对折,使点A 落在线段BC 上的点D 处.经过抛物线()2220y ax abx ab c c =-++<顶点P 的每一条直线总平分矩形OABC 的面积.若点P 在线段DE 上,AF 的长为整数,且已知抛物线与线段EF 仅有一个交点,则点F 的坐标是 ,a 的取值范围是 ;25.某种在同一平面内进行传动的机械装置如左图,右图是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程 中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 做 OH l ⊥于点H ,并测得4OH = 分米,3PQ = 分米,2OP = 分米.则点Q 在l 上 允许滑动的最大距离为 分米,点P在O 上的最大移动路线长为 分米;第二十三届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.如图1所示,一个正方体和一个圆柱体紧靠在一起,则它们的主视图是( )图1 A B C D2.完成一项工作,甲单独做需a 天,乙单独做需b 天,甲乙合作需c 天,则丙单做全部工作所需的天数是( )A .abc ab ac bc -- B .abc ab ac bc +- C .ab ac bcabc++ D .()ab c b a c --3.已知1,0,1x ≠-,则1111x x x x x x -+++-+的值可能是( ) A .比3大的数 B .比3-小的数 C .1,3±± D .比3-大,并且比3小的数4.如图,梯形ABCD 中,//AB CD ,两条对角线交于点E .已知ABE 的面积是a ,CDE 的面积是b ,则梯形ABCD 的面积是( )A .22a b +B )a b +C .2D .()2a b +5.已知a ,b 是实数,关于x 的不等式组的解集表示在数轴上如图所示,则这个不等式组是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩6.如图,AB BC ⊥,AB BC =,点D 在BC 上,以D 为直角顶点作等腰直角,则当D 从B 运动到C 的过程中,点E 的运动轨迹是( )A .圆弧B .抛物线C .线段D .双曲线7.已知实数1234,,,x x x x 满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩其中1234a a a a <<<,则1234,,,x x x x 的大小关系是( )A .1234x x x x <<<B .2314x x x x <<<C .3214x x x x <<<D .4321x x x x <<< 8.已知23x ≤≤,则函数()21y x =-的取值范围是( )A .14y ≤≤和916y ≤≤B .116y ≤≤C .49y ≤≤D .19y ≤≤ 9.如图,已知梯形ABCD 中,//AB DC A C αβ∠=∠=,,,则:AD BC 等于( )A .sin :cos αβB .sin :sin αβC .sin :sin βαD .cos :sin αβ10.若关于x 的二次函数221y x mx =-+的图像与端点在()1,1-和()3,4的线段只有一个交点,则m 的取值可能是( )A .52B .13-C .12D .13二、A 组填空题(每小题4分,共40分)11.若两位数除以他的数字和等于7,则这样的两位数有 个. 12.已知21x y -=,则22425x y x y ---+= ;13.二次函数2y ax bx c =++的图象如图所示,已知2OB OA OA OC =<,,则,,a b c 满足的关系式是 ;14.如图,已知A B C 、、三点在同一个圆上,并且AB 是圆O 的直径,若点C 到AB 的距离5CD =,则圆O 的面积最小是;15.如图,在边长为1的正方形中,分别以四个顶点为圆心,作半径为1的圆弧,则图中阴影部分的面积是 ;16.如图,在梯形ABCD 中,2//76BA CD AD AB AB CD m BC m ⊥===,,,,,若以BC 为直径的圆与AD 没有公共点,则m 的取值范围是 ;17.设()f x 是关于x 的多项式,()f x 除以()21x +,余式是3;()2f x 除以()32x -,余式是4-,那么,()3f x 除以()242x x --,余式是 ;18.已知实数,a b 满足3a ab b ++=,若m a ab b =-+,则m 的取值范围是 ;19.Tom’s computer has password,which contains only numbers from 0 to 9.If the probability to guess the right password only one time is less than12012,then at least the password has digits. 20.Suppose point ()1,A m - is on the graph of the function 2y x=-,,,,B C D respectively,are point As symmetric points of x -axis,origin,y-axis.Then the area of the quadrilateral ABCD is ;三、B 组填空题(每小题8分,共40分) 21.反比例函数1k y x =和一次函数2y k x b =+的图象交于点2(3,)3M -和点()1,2N -,则1k = ,2k = ,一次函数的图象交x 轴于点 ;22.已知,a b 是实数,且2210a a -=,则a = ,b = ;23.已知,a b 是有理数,1x =是方程20x ax b -+=的一个解,则a 的值是 ,b 的值是 ; 24.如图,已知ABC 中,CD AB ⊥于点D ,26BD AD CD ==,,8cos 9ACD ∠=,BE 是AC 边上的高,则AD = ,BE = ;25.已知点A B Pa=︒,∠=,点M是上的动点,且使ABM为等腰三角形.若45、、是O上不同的三点,APB a则所有符合条件的点M有个,若满足题意的点M有2个,则a=;第二十三届 “希望杯”全国数学邀请赛(第2试)一、 选择题(每小题4分,共40分) 1.若反比例函数k y x =的图像经过点1,22⎛⎫- ⎪⎝⎭,则k 的值为( ) A .1- B .1 C .4- D .42.已知二次函数2y ax bx c =++的图像如图所示,则下列代数式的值恒为正值的是( )A .abcB .acC .bcD .ab3.若存在12x ≤≤,使得2120ax -->,则a 的取值范围是( )A .14a <-B .34a >C .1344a -<<D .14a <-或34a >4.直线k y x k=总是下列哪个函数图像的对称轴?( )A .y k x =B .ky x=C .2y kx =D .y kx = 5.若实数,,a b c 满足2222221,2,3,a b b c c a +=+=+=则ab bc ca ++的最小值为( )A .B .C .D 6.如图,双曲线(0)ky k x=>经过Rt AOB ∆的斜边AB 的中点C ,,AF AO ⊥,BF BO ⊥,AF BF 与双曲线分别交于点,D E ,若8,6,OA OB ==则四边形ODFE 的面积是( )A .12B .24C .36D .407.对于实数a ,规定[]a 表示不大于a 的最大整数,如[][]2.12, 1.52,=-=-则方程[][]224x y +=的解在xOy 坐标系中的图像是( )A B C D 8.某商店对于某个商品的销售量与获利做了统计,得到下表:若获利是销售量的二次函数,则该商店获利的最大值是( )A .9万元B .9.25万元C .9.5万元D .10万元9.如图,已知长方形ABCD 的边长32AB AD ==,,点E 在BC 边上,且AE EF ⊥,EF 交CD 于F ,设,BE x FC y ==,则当点E 从点B 运动到点C 时,y 关于x 的函数图像是( )A B C D10.若凸n 边形12n A A A 适合以下:(1)1100A ∠=,(2)18,1,2,,1,k k A A k n +∠=∠+=-则n 的值是( )A .5B .6C .7D .8 二、A 组填空题(每小题4分,共40分)11.若ABC ∆是半径为1的圆的内接三角形,BC =则A ∠= ; 12.方程11112012201420162018x x x x -=-----的解是x = ; 13.如图,P 是等边ABC ∆内一点,3,4,5,AP BP PC ===则APB ∠= ;14.边长为整数,且周长为2012的等腰三角形有 个.15.已知关于x 的一元二次方程222(1)(1)0x m x m --+-=有两个不相等的实根,αβ,若224,αβ+=则m = ; 16.已知ABC ∆的三个顶点的坐标分别为(1,5),(6,2),(1,2),A B C ----则ABC ∆外接圆半径的长度为 ;17.已知坐标平面xOy ,Rt ABC ∆中的直角顶点是A ,点B 与点O 重合,点C 在坐标轴上,则点C 的坐标是 ;18.已知350,x y z -+=并且230x y z ++=,则2222223323x y z xy yz zx x y z-+++-+-的值等于 ; 19.α和β是方程2210x x --=的两根,2α和2β是20x mx n ++=的两根,点(,)m n 在一次函数(3)y kx n =+-的图像上,则此函数的解析式是 .它的图像与xOy 坐标平面内的坐标轴围成的图形的面积是 ; 20.如图5,在直角梯形ABCD 中,,90,AB CD BAD ADC ∠=∠=∥两条对角线的交点为O ,O 与AD 相切,并与以AD 为直径的O '内切,已知AD 长为h ,则梯形ABCD 的面积是 ;三、解答题(每题都要写出推算过程) 21.解方程44(2)820x x +--=22.如图所示,已知二次函数28y x bx =-++的图像与x 轴交于,A B 两点,与y 轴交于点C ,且(4,0)B . (1)求二次函数的解析式及其图像的顶点D 的坐标;(2)若点(,0)M p 是x 轴上的一个动点,则当MC MD -取得最大值时,求p 的值;(3)如果点(,)E m n 是二次函数28y x bx =-++的图像上的一个动点,且ABE ∆是钝角三角形,求m 的取值范围.23.给你若干个边长都是1的正三角形,正方形,正五边形,正六边形,从其中任选两种(个数不限),将它们拼接,要求是:(1)使某边重合;(2)两种图形中的任何一种不得有公共部分.问:(1)用选出的两种图形围成正n 边形,如:用3个正方形和3个正六边形围成一个正三角形ABC (如下图). 请你再举两例,并作图说明.(2) 对于(1)中的正n 边形,求它的外接圆的半径.第二十四届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.若m n 、是方程210x -+=的两个根,则n mm n-的值是( )A .±B .±C .±D .±2.设O 的半径是5,点P 不在O 外,若点O 与P 的距离222OP m m =-+,则m 的取值范围是( ) A .1m <-或3m > B .13m -≤≤ C .1m ≤- D .3m ≥3.如图,O 内的点P 在弦AB 上,点C 在圆O 上,PC OP ⊥,若2BP =,6AP =,则CP 的长等于( )A .B .4C .D .4.如图是类似“羊头的”图案,它左右对称,由正方形,等腰直角三角形构成,如果标有数字“13”的正方形的边长是,那么标有数字“2”的等腰直角三角形的斜边的长是( )A .4B .C .2D .325.若m n 、()()m n n m +-的差的绝对值最小的整数是( ) A .55- B .56- C .16- D .15-6.如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=︒,点A 在OQ 上,240AO = (米),当火车行驶时,周围200米以内未受到噪音的影响,现有一列火车沿MN 方向意72千米/时的速度行驶(火车的长度忽略不计),那么,A 处受噪音影像的时间为( )A .12秒B .16秒C .20秒D .24秒 7.InABC as shown in fig, ,,AB AC BD EC BE CF ===,if 50A ∠=︒,then the degree of DEF ∠ is ( )A .60︒B .65︒C .70︒D .75︒8.如图5,2O 的半径是1,正方形ABCD 的边长是6,点2O 是正方形ABCD 的中心,12O O 垂直AD 于P 点,128O O =,若将1O 绕点P 按顺时针方向旋转360°,在旋转过程中,与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .5次C .6次D .7次9.如图,在同一个平面直角坐标系内,二次函数()120y ax bx c a =++≠和一次函数()20y dx e d =+≠的图象相交于点(),A m n 和点(),B p q ,当12y y <时,用,m p 表示x 的取值范围,则是( )A .m x p <<B .x m <C .x p >D .x m >10.如图,在正方形ABCD 中,点M N 、分别在边AB BC 、上运动(不与正方形的顶点重合),2BN AM =,若图中的三个阴影三角形中至少有两个相似,则这样的点M 有( )A .1个B .2个C .3个D .4个二、A 组填空题(每小题4分,共40分)11.已知实数,a b 不相等,并且2215,15,a a b b +=+=则2211a b+= ; 12.If 111a m=-, 2111a a =-, 3211a a =-,...,then 2013a in terms of m is;13.如图,在3×2的方格纸上,以某三个格点为顶点的三角形中,等腰三角形共有 个.14.若实数,,x y z 使20x y z ++=和3250x y z ++=成立,并且0z ≠,则2222222457x y z xy x z xz -+--+的值是 ;15, ,则此三角形的面积是 ;16.已知抛物线2(0)y ax bx c c =++≠与x 轴的交点坐标为()1,0-,()3,0,当25x -≤≤时,y 的最大值为12,则该抛物线的解析式为 ;17.如图,直角梯形纸片ABCD 中,//AD BC ,AB BC ⊥,10AB =,25BC =,15AD =,以BD 为折痕,将ABD 折起,旋转180°后,点A 到点1A ,则凹五边形1BDCEA 的面积为 ;18.如图,将边长为a 的正方形ABCD 绕其顶点C 顺时针旋转45︒,得四边形A B C D '''',则图中阴影部分的面积是 ;19.If7,then the value range of real number a is ;20.如图,从边长为5的正方形纸片ABCD 中剪去直角EBF (点E 在边AB 上,点F 在边BC 上),EB BF +=则五边形AEFCD 的面积的最小值是 ;三、B 组填空题(每小题8分,共40分)21.下图是由若干个棱长为1厘米的正方形堆成的几何体,它的三视图中,面积最大的是 平方厘米,这个几何体的体积是 立方厘米22.如图,在ABC 中,502A AB AC ∠=︒==,,BD 是边AC 上的高,利用此图可求得tan15︒= ;BC = ;23.在直角坐标系内,如果一个点的横坐标和纵坐标都是整数,则称该点为整点,若凸n 边形的顶点都是整点,并且多边形内部及其边上没有其它整点,则n = ;24.如图,直角梯形中, 1.5213////90AB CD AF AD AB EF CD A ====∠=︒,,,,,,分别以AD FE ,所在的直线为x 轴、y 轴建立坐标系(,AD FE 为正方向)若抛物线过点B C 、,并且它的顶点M 在线段EF 上,则a = b = c = ;25.如图,ABC 中,90602B A AB AD ∠=︒∠=︒==,,,点M 在DC 上,以M 为圆心,以DM 为半径的半圆切边BC 于点N ,交MC 于点P ,则DM = 曲边的面积= ;附加题(每小题10分,共20分)1.若()326116f x x x ax =-+-可以被()23g x x =-整除,则a = 当()0f x >时,x 的取值范围是 ;2.有一堆黑,白围棋子,如果从中每次取出3枚黑子和2枚白子,当黑子被取完或剩下1枚或2枚时,则还剩35枚白子,如果每次取出5枚黑子和7枚白子,当白子被取完或剩下不足7枚时,则还剩下35枚黑子,那么这堆棋子中,原有黑子 枚,白子 枚;第二十四届“希望杯”全国数学邀请赛(第2试)一、选择题(每小题4分,共40分)1.如图,矩形ABCD 中,2AB =,1AD =,点M 在边DC 上,若AM 平分DMB ∠,则AMD ∠的大小是( )A .75B .60C .45D .302 )A .B .-C .D .-3.一个矩形被直线分成面积为,x y 的两部分,则y 与x 之间的函数关系只可能是( )A B C D 4.函数31x y x x-=-中,x 的取值范围是( ) A .0以外的一切实数 B .0,1-以外的一切实数 C .1±以外的一切实数 D .0,1±以外的一切实数5 )A .1B .2C .3D .4 6.代数式25x x -++( )A .有最小值,没有最大值B .有最大值,没有最小值C .既有最小值,也有最大值D .既没有最小值,也没有最大值7.如图,△ABC 中,AB=2,BC=4,CA=3,平行于BC 的直线l 过△ABC 的内心I ,分别交边AB AC 、于点D E 、,则ADE 的周长是( )A .5B .6C .7D .88.若动点)M x y (,到定点A 324⎛⎫⎪⎝⎭,的距离等于M 到直线54y =的距离,则动点)M x y (,的轨迹( )A .双曲线B .抛物线C .双曲线的一支D .一条直线9.不等式0a 的解是( ) A .0a ≠ B .1a >或1a <- C .1a >或10a -<< D .0a >或1a <-10.如图,ABC 中,1,2,90AB AC ABC ==∠=,若BD EF GH 、、都垂直于AC DE FG HI 、、、都垂直于BC ,则阴影HIC 的面积与ABC 的面积的比是( )A .634⎛⎫ ⎪⎝⎭ B .6324⎛⎫⨯ ⎪⎝⎭ C 634⎛⎫⎪⎝⎭D .62334⎛⎫⨯ ⎪⎝⎭二、填空题(每小题4分,共40分)112=的根是 ; 12.若正n 边形的一个外角为5︒,则n = ;13.已知关于x 的方程224220x x p p --++=的一个根为p ,则p = ;14.平面直角坐标系内,一只跳蚤停在点()5,0处,它要跳到点()6,0处,它每一跳都是飞越5个长度单位,并且总是跳到整点(坐标都是整数的点),也不从原路返回,那么,当它跳到点()6,0时,至少跳了 次 15.将一个圆分成三个相同的扇形,将其中一个卷成圆锥,锥顶对锥底圆周上任意两点的最大张角的余弦值是 ;16.将相同的平行四边形和相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 ;17.ABC 中,3,5,120AC BC ACB ==∠=,点M 平分AB ,则tan MCA ∠= ,MC = ;18.方程组3322181x y z x y z +=-⎧⎨+=-⎩的正整数解(),,x y z 是 ; 19.ABC 的三条高依次是643AD BE CF ===,,,则cos C = ,ABC 的面积是 ; 20.已知()f x 是一个多项式,若()f x 除以()1x -,余5;若()f x 除以()2x +,余2,则()f x 除以()()12x x -+,得到的余式是 ;三、解答题(每题都要写出推算过程) 21.(本题满分10分)已知二次函数24y mx x m =+++的图象在直线2y =-的上方. (1)求m 的取值范围;(2)当2m =时,求此二次函数的图象在x 轴上截得的线段长.22.(本题满分15分)一家商店销售某种计算器,开始按定价(小于200元的整数元)售出,后来按定价的六折售出,当售出200台时,共得款30498元.问:打折前,按定价售出了多少台?23.(本题满分15分)设()0)f x x =>(1)将()f x(a b ,是不同的整数)的形式;(2)求()f x 的最大值及相应的x 的值.第二十五届“希望杯”全国数学邀请赛(第1试)一、选择题(每小题4分,共40分)1.以下三角形中,与图1中的三角形相似的是( )图1 A B C D2.某商品原价200元,先降价%a ,又提价%a ,售价是182元,则下列关系式中正确的是( )A .()()2001%1%182a a -÷+=B .()()1821%1%200a a -÷+=C .()()2001%1%182a a +÷-=D .()()1821%1%200a a ÷-÷+= 3.一个几何体的三视图如图所示,则该几何体可能是下列四个选项中的( )主视图 左视图 俯视图A B C D4.若关于x 的一元二次方程()2223560m x x m m -++-+=的常数项为0,则m 的值是( )A .2B .3C .2或3D .0 5.方程20142014x x -=-的正整数解有( )A .2013个B .2014个C .2015个D .无穷多个6.在ABC 中,若AC =BC AB =ABC 的面积为( )A B . C .112D .67.Given equationx ,then the number of solutions for this equation is ( )A .0B .1C .2D .countless8.若()()6xx+=,则x =( )A .2B .2-C .2±D .12±9.如图,AB AC AD DE EC BC ====,,则ABC ∠的度数为( )A .30︒B .40︒C .45︒D .60︒ 10.如图,设AB 是O 的弦,CD 是O 的直径,且CD 与AB 相交,若CABOABm SS=-,OABn S=,则( )A .2m n >B .2m n =C .2m n <D .m 与2n 的大小关系无法确定. 二、A 组填空题(每小题4分,共40分)11.若2420y y ++=,则22224y y y =-+ ;12.如图,矩形ABCD 中,60AB =,23BD BC CD =+,则BC = ;13.InABC as shown in Fig., 40BAC ∠=︒.Both BD and CD are the interior angle bisectors of ABC which intersect atpoint D , BE and CE are exterior angle bisectors of ABC which intersect at point E ,then BDC BEC ∠-∠= °14.有1,2,5,10g g g g 的砝码各2个,从中任取2个放在已经平衡的天平的两端,则天平依然保持平衡的概率P = ;15.如图,将等边ABC 的外接圆对折,使点A 与弧BC 的中点F 重合,折痕与边AB AC 、分别交于点D E 、.若3BC =,则ADE 的面积是 ;16.如图,Rt ABC 中,9021C AC BC ∠=︒==,,,若以C 为圆心,CB 为半径的圆交AB 于点D ,则AD DB= ;17.在平面直角坐标系中,抛物线C 经过点()()3,87,8A B ,,且与x 轴恰有一个交点,则抛物线C 上纵坐标为32的两个点的距离为 ;18.如图,等边AFG 被线段BC DE ,分割成周长相等的三部分:等边三角形ACB 、梯形BCED 、梯形DEGF ,其面积分别为123S S S ,,,若263S =,则12S S -= ;19.如图,四边形ABCD 中,90571ABC CDA AD DC AB BC ∠=∠=︒====,,,,则BD = ; 20.正方体骰子的每个面内都写了一个正整数.随意地投掷这样的两个骰子,若朝上的两个面内的数的和为偶数的概率最小为P ,则P = ;三、B 组填空题(每小题8分,共40分.)21.若关于x 的方程()()()()2424x x p p --=--的两个实数根12x x ,是某直角三角形的两条直角边的长,则此直角三角形的面积最大是 ,此时P = ;22.If ,x y and z satisfy the equation x y z ++,then x y z ++= ,and xyz = ;23.若ABC 的三条边长,,a b c 满足2101261b c bc a a +==-+,,则ABC 的周长等于 ,面积等于 ;24.如图,在平面直角坐标系x O y --中,反比例函数()0ky x x=>的图象交矩形OBCD 的边BC 于点E ,交CD 于F 点,且14DF CD =,若四边形OECF 的面积为24,则k = ,OEFS= ;25.在直角坐标系xOy 中,抛物线2y ax bx c =++(,,a b c 是正整数)与x 轴有两个不同的交点()()12,0,,0A x B x .若1x 和2x 都大于1,则abc 的最小值是 ,此时a b c ++= ;第二十五届“希望杯”全国数学邀请赛(第2试)一、选择题(每小题4分,共40分)1.If both a and c are real numbers , 2and 3are the two solutions of the equation 2100ax x c -+= for x ,then the value of a c + is ( )A .10B .12C .14D .162.如图,在ABC 中,BC CA AB >>,D E F 、、分别是AB BC CA 、、边上的点,//,//DE AC FD CB ,若 :1:2AD DB =,则图中的相似三角形有( )对。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全][ 真诚为您服务试试题希望杯”全国数学邀请赛初二第 2 ·2009 年第20 届“次·161 ·[4-30]★ 详细简介请参考下载页]·[ 竞赛 2 试试题届“希望杯”全国数学邀请赛初一第年第·200920 次·153 ·[4-28]详细简介请参考下载页★]·[ 竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第·2009 ·76 次·[4-17]★ 详细简介请参考下载页]·[ 竞赛试试题”全国数学邀请赛初二第1·2009 年第20 届“希望杯次·133 ·[4-7]对不起,尚无简介☆]竞赛·[ 试试题全国数学邀请赛初一第 1 届“希望杯”20 ·2009年第·122 次·[4-7]详细简介请参考下载页★]·[ 竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次·44 ·[9-9]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初一第19 ·2008年第届次·203 ·[9-4]详细简介请参考下载页★]·[ 竞赛 1 ”“19 ·2008 年第届希望杯全国数学邀请赛初一第试试题次·169 ·[9-4]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第219 年第届“希望杯”·2008 次·156 ·[9-2]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·2008 年第19 届·146 次·[9-2]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第18 ·2007年第·101 次·[9-2]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “18 ·2007 年第届希望杯次·95 ·[9-2]详细简介请参考下载页★]竞赛·[ 试试题”全国数学邀请赛初二第2·2006 年第17 届“希望杯次·76 ·[9-2]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第届·2006年第17 ·76 次·[9-2]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 2 希望杯·2005 年第16 届“”次·65 ·[9-1]详细简介请参考下载页★]·[ 竞赛 1 试试题全国数学邀请赛初二第届·2005 年第16“希望杯”次·52 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题全国数学邀请赛初二第希望杯”2·2004 年第15 届“次·47 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第115 届“希望杯”年第·2004 次·38 ·[9-1]详细简介请参考下载页★]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第届·2003 年第14 “次·30 ·[9-1]详细简介请参考下载页★]竞赛·[ 1 试试题希望杯届“”全国数学邀请赛初二第年第·200314 ·26 次·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题全国数学邀请赛初二第希望杯届年第·200213 “”·31 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 1 ”年第13 届“希望杯·2002 次·23 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第·2001 年第12 届·17 次·[9-1]详细简介请参考下载页★]]·[ 竞赛试试题”全国数学邀请赛初二第1“·2000 年第11 届希望杯次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第210 届“希望杯”·1999年第次·13 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题 1 希望杯”全国数学邀请赛初二第·1999 年第10 届“次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第9 ·1998年第届次·11 ·[8-29]详细简介请参考下载页★]·试题[ 竞赛 1 ”“9·1998 年第届希望杯全国数学邀请赛初二第试竞赛·[ 试试题全国数学邀请赛初二第112 年第届“希望杯”·2001 ·17 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题2“届希望杯”全国数学邀请赛初二第11 ·2000 年第次·15 ·[9-1]★详细简介请参考下载页次·10 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第28 年第届“希望杯”·1997 次·13 ·[8-29]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·1997 年第8 届·10 次·[8-29]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第7·1996年第·11 次·[8-29]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “7·1996 年第届希望杯次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初二第2·1995 年第6 届“次·14 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第16 届“希望杯”·1995年第次·14 ·[8-29]★详细简介请参考下载页]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第5·1994 年第届“次·12 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“届希望杯”全国数学邀请赛初二第·1994年第5 ·12 次·[8-29](每一、选择题: 年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题[] Ax 1.303 小题分,共分)使等式成立的的值是.是]·[ 竞赛试试题初二第 2 ”年第4 届“希望杯全国数学邀请赛·1993 次·9 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第14 届“希望杯”·1993年第次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题2 希望杯”全国数学邀请赛初二第·1992 年第3 届“次·11 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第 3 ·1992年第届次·9 ·[8-29]详细简介请参考下载页★]·[ 竞赛 2 ”“2·1991 年第届希望杯全国数学邀请赛初二第试试题·14 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 年第·19912 届“希望杯次·12 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第21 届“希望杯”·1990年第·13 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 希望杯·1990 年第1 届“次·11 ·[8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题: “1990 年第一届希望杯() 倍,那么这个角是 1 .一个角等于它的余角的 5 分)共10]竞赛·[ 2 试试题全国数学邀请赛初一第希望杯届年第·200718 “”·94 次·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初一第118 届“希望杯”·2007年第次·42 ·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初一第2·2006 年第17 届“次·41 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题 1 希望杯”全国数学邀请赛初一第“·2006 年第17 届次·43 ·[8-28]试第1 全国数学邀请赛初一希望杯年第十七届2006 “”中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
第24届希望杯初三第1试试题及答案
第二十四届“希望杯”全国数学邀请赛初三 第1试试题一、选择题(每小题4分,共40分)1.若n m ,是方程01522=+-x x 的两个根,则n m m n -的值是( ) (A )52± (B )54± (C )56± (D )58±2.设⊙O 的半径是5,点P 不在⊙O 外,若点O 与P 的距离|OP|=222+-m m ,则m 的取值范围是( )(A )1-<m 或3>m(B )31≤≤-m (C )1-≤m (D )3≥m3.如图1,⊙O 内的点P 在弦AB 上,点C 在圆O 上,PC ⊥OP ,若BP=2,AP=6,则CP 的长等于( )(A )32 (B )4 (C )22 (D )234.图2是类似“羊头”的图案,它左右对称,由正方形,等腰直角三角形构成,如果标有数字“13”的正方形的边长是2,那么标有数字“2”的等腰直角三角形斜边的长是( )(A )4 (B )22 (C )2 (D )23 5.若n m ,分别是20的整数部分和小数部分,则与))((m n n m -+的差的绝对值最小的整数是( )(A )-55 (B )-56 (C )-16 (D )-156.如图3,铁路MN 和公路PQ 在点O 处交汇,∠QON=30ο,点A 在OQ 上,AO=240米,当火车行驶时,周围200米以内会受到噪音的影响,现有一列火车沿MN 方向以72千米/时的速度行驶(火车的长度忽略不计),那么,A 处受噪音影响的时间为( )(A )12秒 (B )16秒 (C )20秒 (D )24秒∆ABC as 7.Inshown in fig.4, AB=AC, BD=EC, BE=CF, if ∠A=50ο,then the degree of ∠DEF is ( )(A )60ο (B )65ο (C )70ο (D )75ο8.如图5,⊙O 1的半径是1,正方形ABCD 的边长是6,点O 2是正方形ABCD 的中心,O 1O 2垂直AD 于P 点,O 1O 2=8,若将⊙O 1绕点P 按顺时针方向旋转360ο,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )(A )3次 (B )5次 (C )6次 (D )7次9.如图6,在同一个坐标系内,二次函数)0(21≠++=a c bx ax y 和一次函数)0(2≠+=d e dx y 的图象相交于点),(n m A 和点),(q p B ,当21y y <时,用p m ,表示x 的取值范围,则是( )(A )p x m << (B )m x < (C )p x > (D )m x >10.如图7,在正方形ABCD 中,点M 、N 分别在边AB 、BC 上运动(不与正方形的顶点重合),且BN=2AM ,若图中的三个阴影三角形中至少有两个相似,则这样的点M 有()(A )1个 (B )2个 (C )3个 (D )4个二、A 组填空题(每小题4分,共40分)11.已知实数b a ,不相等,并且b b a a 51,5122=+=+,则=+2211b a 12.If ,,11,11,1123121Λa a a a m a -=-=-=then 2013a in terms of m is 13.如图8,在23⨯的方格纸上,以某三个格点为顶点的三角形中,等腰三角形共有 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四届“希望杯”全国数学邀请赛初三 第1试试题2013年3月17日 上午8:30至10:00竞赛结束时,只交答题卡,试卷可带走。
答案于今日10:00在以下网站和微博公布:“希望杯”官方网站:http ://www .hopecup .org “希望杯”微博:http ://e .weibo .com /xiwangbei 《数理天地》官方网站:http ://www .mpw 《数理天地》微博:http ://e .weibo .com /shulitiandi 未经“希望杯”组委会授权,任何单位和个人均不准翻印或销售此试卷,也不准以任何形式(包括网络)转载。
一、选择题(每小题4分,共40分)1.若m ,n 是方程x 2-25x +1=0的两个根,则n m -m n的值是( ) (A )±25. (B )±45. (C ) ±65. (D ) ±85. 2.设⊙O 的半径是5,点P 不在⊙O 外,若点O 与点P 的距离|OP |=m 2-2m +2,则m 的取值范围是( )(A )m <-1或m >3.(B )-1≤m ≤3. (C )m ≤-1. (D )m ≥3.3.如图1,⊙O 内的点P 在弦AB 上,点C 在圆O 上,PC ⊥OP ,若BP =2,AP =6,则CP 的长等于( )(A )23. (B ) 4. (C ) 22. (D ) 32.4.图2是类似“羊头”的图案,它左右对称,由正方形,等腰直角三角形构成,如果标在数字“13”的正方形的边长是2,那么标有数字“2”的等腰直角三角形斜边的长是( )(A )4. (B )22. (C )2. (D )32. 5.若m ,n 分别是20的整数部分和小数部分,则与(m +n )(n -m )的差的绝对值最小的整数是( ) (A )-55. (B )-56. (C )-16. (D )-15.6.如图3,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.点A在OQ 上,AO =240(米).当火车行驶时,周围200米以内会受噪音的影响,现有一列火车沿MN 方向以72千米/时的速度行驶(火车的长度忽略不计),那么,A 处受噪音影响的时间为( )(A )12秒. (B )16秒. (C )20秒. (D )24秒.图3 fig .4 图5 图67.In △ABC as shown in fig .4,AB =AC ,BD =EC ,BE =CF ,if ∠A =50°, then the degree of ∠DEF is ( )(A )60°. (B )65°. (C )70°. (D )75°.8.如图5,⊙O 1的半径是1,正方形ABCD 的边长是6,点O 2是正方形的中心,O 1O 2垂直AD 于P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )(A )3次. (B )5次. (C )6次. (D )7次.9.如图6,在同一个坐标系内,二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=dx +e (d ≠0)的图象相交于点A (m ,n )和点B (p ,q ).当y 1<y 2时,用m ,p 表示x 的取值范围,则是( ).(A )m <x <p . (B )x <m . (C )x >p . (D )x >m .10.如图7,在正方形ABCD 中,点M 、N 分别在边AB 、BC 上运动(不与正方形的顶点重合),且BN =2AM ,若图中的三个阴影三角形中至少有两个相似,则这样的点M 有() 图1图2图7(A )1个. (B )2个. (C )3个.(D )4个.二、A 组填空题(每小题4分,共40分) 11.已知实数a ,b 不相等,并且a 2+1=5a ,b 2+1=5b ,则1a 2 + 1b 2 = . 12.If a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2,…,then a 2003 in terms of m is . 13.如图8,在3×2的方格纸上,以某三个格点为顶点的三角形中,等腰三角形共有 个.14.若实数x ,y ,z 使2x +y +z =0和3x +2y +5z =0成立,并且z ≠0,则2x 2-y 2+2z 2-4xy x 2-5z 2+7xz的值是 . 15.若一个三角形的三边的长是2,13,17,则此三角形的面积是 .16.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点坐标为(-1,0),(3,0),当-2≤x ≤5时,y 的最大值为12,则该抛物线的解析式为 .17.如图9,直角梯形纸片ABCD 中,AD ∥BC ,AB ⊥BC ,AB =10,BC =25,AD =15,以BD 为折痕,将△ABD 折起,旋转180°后,点A 到点A 1,则凹五边形BDCEA 1的面积为 .18.如图10,将边长为a 的正方形ABCD 绕其顶点C 顺时针旋转45°,得四边形A ’B ’CD ’,则图中阴影部分的面积是 .19.If (a +4)2-(a -3)2=7,then the value range of real number a is .20.如图11,从边长为5的正方形纸片ABCD 中剪去直角△EBF (点E 在边AB 上,点F 在边BC 上).若EB +BF =15,则五边形AEFCD 的面积的最小值是 .三、B 组填空题(每小题8分,共40分) 21.图12是由若干个棱长为1厘米的正方体堆成的几何体,它的三视图中,面积最大的是 平方厘米,这个几何体的体积是 立方厘米.22.如图13,在△ABC 中,∠A =30°,AB =AC =2,BD 是边AC 上的高,利用此图可求得tan 15°= ,BC = .23.在直角坐标系内,如果一个点的横坐标和纵坐标都是整数,则称该点为整点.若凸n 边形的顶点都是整点,并且多边形内部及其边上没有其它整点,则n = .图12 图13 图14 图1524.如图14,直角梯形ABCD 中,AB =1.5,CD =2,AF =1,AD =3,AB ∥EF ∥CD ,∠A =90°,分别以AD ,FE 所在的直线为x 轴,y 轴建立坐标系(AD ,FE 为正方向),若抛物线y =ax 2+bx +c 过点B 、C ,并且它的顶点M 在线段EF 上,则a = ,b = ,c = .25.如图15,△ABC 中,∠B =90°,∠A =60°,AB =AD =2,点M 在DC 上,以M 为圆心,以DM 为半径的半圆切边BC 于点N ,交MC 于点P ,则DM = ,曲边△NCP 的面积= .附加题(每小题10分,共20分)1.若f (x )=6x 3-11x 2+ax -6可以被g (x )=2x -3整除,则a = ,当f (x )>0时,x 的取值范围是 .2.有一堆黑,白围棋子,如果从中每次取出3枚黑子和2枚白子,当黑子被取完或剩下1枚或2枚时,则还剩35枚白子,如果每次取出5枚黑子和7枚白子,当白子被取完或剩下不足7枚时,则还剩下35枚黑子,那么这堆棋子中,原有黑子 枚,白子 枚.图8图9图10 图11第二十四届“希望杯”全国数学邀请赛初三第1试答案与解析一、选择题(每小题4分,共40分)1.选:D ;【解析】根据一元二次方程根与系数的关系有:m +n =25,mn =1,∴n m -m n =(m +n )(n -m )mn =±(m +n )(n +m )2-4mn mn=±25×(25)2-4=±8 5 2.选:B ;【解析】|OP |=m 2-2m +2=(m -1)2+1≤5,|m -1|≤2,-1≤m ≤33.选:A ;【解析】根据垂径定理及相交弦定理可得:AP ·BP =PC 2,PC =2 34.选:B ;【解析】正方形11边长为2;正方形9边长为22;正方形7边长为4;正方形5边长为42;正方形3边长为4,∴标有数字“2”的等腰直角三角形斜边的长是22.5.选:C ;【解析】m =4,n =20-4,(m +n )(n -m )=20(20-8)=20-165≈-15.7771.6.选:B ;【解析】作AB ⊥于MN 于B ,以A 为圆心,以200m 为半径作圆交MN 于C 、D ,AB =12×OA =12,BC =2002-1202=160,CD =2BC =320米,72千米/时=20米/秒,320÷20=16秒. 7.选:B ;【解析】△BDE ≌△CEF ,∠DEC =∠DEF +∠FEC =∠B +∠BDE ,∴∠DEF =∠B =65°.8.选:B ;【解析】与AB 相切两次,与BC 相切一次,再与CD 相切两次.9.选:A ;【解析】利用函数图象解不等式,可以直接得到结论.10.选:B ;【解析】设正方形边长为a ,AM =x (x <12a ),BM =a -x ,NB =2x ,NC =a -2x ,当△DAM ≌△DCN 时,x =a -2x ,x =13a ,有意义;当△DAM 与△MBN 相似时,a :x =(a -x ):2x ,无有意义解,或a :x =2x :(a -x ),无有意义解;当△MBN 与△DCN 相似时,a :(a -2x )=(a -x ):2x ,x =5-174a ,或a :(a -2x )=2x :(a -x ),无解.所以只有两种.二、A 组填空题(第小题4分,共40分)11.23;【解析】a 、b 是方程x 2-5x +1=0的两根,所以a +b =5,ab =1,1a 2+1b 2= (a +b )2-2ab a 2b 2=23 12.m ;【解析】a 1=1-1m =m -1m ,a 2=1-m m -1=-1m -1,a 3=1+m -1=m ,……,变化周期为3,3|2013,∴a 2003 =m 13.68;【解析】“”这样的有6×4=24个;“”这样的有7×2=14个;“”这样的有2×4=8个;“”这样的有2×4=8个;“”这样的有2×4=8个;“”这样的有1×4=4个;“”这样的有1×2=2个;共68个.14.115;【解析】⎩⎨⎧2x +y +z =0…①3x +2y +5z =0…②①×2-②得:x =3z ,代入得:y =-7z ,代入原式=115 15.52;【解析】如图:,可算出S △=8-3-2- 12 = 52. 16.y =x 2-2x -3或y =-3x 2+6x +9;【解析】对称轴是x =(-1+3)÷2=1,在-2≤x ≤5这个范围内,当a <0时,过(1,12),可得y =-3x 2+6x +9;当a >0时,由于|-2-1|<|5-1|,所以过(5,12),可得y =x 2-2x -317.14556 ;【解析】S 梯形ABCD =12×(15+25)×10=200,设BE =x ,作DF ⊥BC 于F ,DE =BE =x ,根据勾股定理,x 2-(15-x )2=102,得:x =656,∴S △BED =12×656×10=3256,S 五边形BDCEA 1=S △A 1BD + S △CED = S △ABD + S △CED = S 梯形ABCD -S △BED =200-3256=8756=1455618.(2-1)a 2;【解析】∵旋转45°,∴A 、B ’、C 共线,(AD 、A ’B ’交于E ),S 阴影=S △ACD -S △AEB ’=12a 2-12(2a -a )2=(2-1)a 2 19.a ≥3;【解析】∵(a +4)2-(a -3)2=7,∴|a +4|-|a -3|=7,这个等式可以理解为在数轴上a 与-4的距离比a 与3的距离大7,而3与-4的距离刚好是7,所以3及3右边的点都满足,所以a ≥3.20.2318;【解析】设BE =x ,五边形ABCFE 的面积为y , 则y =25-12x (15-x )=-12x 2-1215x +25=-12(x -1215)2+2318,y 最小值=2318三、B 组填空题(第小题8分,共40分)21.6;7;【解析】主视图面积为:4;左视图面积为:4;俯视图面积为:6.所以最大面积为6;共7个小正方体,所以体积为7; 22.2-3;6-2;【解析】∠CBD =15°,BD =1,AD =3,CD =2-3;∴tan 15°=CD BD =2-3;BC =BD 2+CD 2 =12+(2- 3 )2=8-4 3 =(6)2+(2)2-2×6×2=( 6 -2)2=6-2.23.3或4;【解析】通过画图可以验证,满足条件的三角形、四边形可以画出,而五边形以上画不出;24.16;0;43;【解析】此抛物线过(-1,1.5)、(2,2),对称轴x =0,可求出a =16;b =0;c =43; 25.23;293-227π;【解析】DM =MN =12MC ,可得半径MD =23, S 曲边△NCP =S △MNC -S 扇形MNP =12×23×233-16×π×(23)2=293-227π 附加题1.7;x >32;【解析】g (x )|f (x ),∴f (x )= g (x )h (x ), 当x =32时,g (32)=0,∴f (32)=0,即6×(32)3-11(32)2+32a -6=0,解得:a =7;6x 3-11x 2+7x -6=(2x -3)(3x 2-x +2), ∵3x 2-x +2=3(x -16)2+2312>0恒成立,∴f (x )>0,即2x -3>0,得x >32; 2.110;107;【解析】设第一次取x 次,则白子有:2x +35枚,黑子有3x 或3x +1或3x +2枚; 设第二次取y 次,则黑子有5y +35枚;则有7y ≤2x +35<7y +7当5y +35=3x 时,x =5y +353=2y +11+2-y 3(y 是除以3余2的整数),有7(35x -7)≤2x +35<7(35x -7)+7,解得14<y ≤17511,y =15,无满足条件的整数解; 当5y +35=3x +1时,x =5y +343=2y +11+1-y 3 (y 是除以3余1的整数),有7y ≤2(5y +343)+35<7y +7,解得15211<y ≤17311,y =14或15,无满足条件的整数解; 当5y +35=3x +2时,x =5y +333=2y +11-y 3 (y 是被3整除的整数),有7y ≤2(5y +333)+35<7y +7,解得15011<y ≤17111,y =14或15,其中y =15满足条件;代入得x =36 黑子有5y +35=110枚;白子有:2x +35=107枚.。