光栅、编码器基本知识
光栅编码器工作原理
![光栅编码器工作原理](https://img.taocdn.com/s3/m/c7006543b42acfc789eb172ded630b1c58ee9b5a.png)
光栅编码器工作原理
光栅编码器是一种基于光栅原理的测量设备,用于测量物体的位置和运动。
它的工作原理主要包括光栅、光源、接收器和信号处理等几个关键组成部分。
1.光栅:光栅是一个具有周期性光透过和阻挡区域的光学元件。
它通常由许多平行的透光区和阻挡区组成,透光区和阻挡区的宽度相等。
光栅的周期性结构决定了每个光栅单元的尺寸。
2.光源:通常使用光源(例如激光二极管)发出一束平行的光线,并通过透射透过光栅。
光线经光栅后将被分为不同的相位。
3.接收器:接收器位于光栅的另一侧,用于接收透过光栅的光线。
接收器通常包括多个光电二极管或光敏电阻。
当光线照射到接收器上时,光电二极管或光敏电阻产生电信号。
4.信号处理:接收器输出的电信号经过信号处理电路进行放大
和滤波等处理。
然后,通过解码器将处理后的信号转换为数字脉冲信号。
这些数字脉冲信号可以表示物体的位置,例如线性位置或旋转角度。
光栅编码器利用光栅的周期性结构和光信号的相位差来测量物体的位置和运动。
通过测量输出信号的相位差,可以计算出物体相对于原始位置的位移。
光栅编码器具有高分辨率、高精度、高可靠性和较快的响应速度,广泛应用于机械加工、自动化控制、医疗设备等领域。
光栅尺和编码器的区别
![光栅尺和编码器的区别](https://img.taocdn.com/s3/m/de5c9ecabb0d4a7302768e9951e79b89680268a1.png)
光栅尺和编码器的区别下面将详细探讨光栅尺和编码器的区别。
首先,我们将介绍两者的基本概念,然后通过比较它们的特性和应用来展示它们的差异。
一、基本概念1、光栅尺:光栅尺是一种利用光栅和光电检测技术进行测量或位置反馈的装置。
其工作原理是利用一对相对移动的光栅,通过测量光栅的相对位移来计算物体的位置或位移。
2、编码器:编码器是一种用于测量旋转角度或位置的装置。
它通过读取旋转编码器的脉冲数来测量旋转角度或位置。
编码器可以用于许多不同的应用,例如电机控制、机器人定位等。
二、特性比较1、分辨率:光栅尺的分辨率通常高于编码器。
由于光栅尺采用高精度光栅,其分辨率可以非常高,达到微米甚至纳米级别。
而编码器的分辨率通常较低,一般只有几十到几百个脉冲。
2、线性度:光栅尺的线性度通常优于编码器。
由于光栅尺采用一对相对移动的光栅,其测量结果不受机械误差的影响,因此其线性度很高。
而编码器的线性度受限于编码器的设计以及使用环境的影响,可能会有一些误差。
3、环境适应性:光栅尺对环境的变化较为敏感,例如温度、湿度和机械振动等,这些因素都可能影响光栅尺的测量精度。
而编码器对环境的变化不太敏感,因此更适合在恶劣环境下使用。
4、成本:一般来说,光栅尺的成本高于编码器。
光栅尺需要精密加工和制造,而且需要高质量的光电检测器。
编码器虽然也需要一定程度的加工和制造,但其结构相对简单,成本较低。
三、应用比较1、测量与反馈控制:在测量和反馈控制方面,光栅尺是一种常见的位置传感器。
它被广泛应用于各种高精度测量和反馈控制应用中,例如机床、运动控制系统等。
编码器则通常用于电机控制和机器人定位等应用中,通过读取编码器的脉冲数来控制电机的旋转角度或位置。
2、速度和位置控制:在速度和位置控制方面,编码器和光栅尺都可以使用。
但是,由于编码器的线性度和精度较低,它通常被用于低精度应用中,例如速度控制或简单位置控制。
而光栅尺则更适合高精度应用,例如高速运动控制系统或精密加工设备。
光栅尺和编码器介绍
![光栅尺和编码器介绍](https://img.taocdn.com/s3/m/da8636602af90242a895e5d3.png)
光栅与编码器介绍位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
microe光栅编码器介绍
![microe光栅编码器介绍](https://img.taocdn.com/s3/m/6a5b44b6fd0a79563c1e72a3.png)
MicroE光栅编码器的浅谈MicroE Systems Inc.始建于1994年,是GSI集团精密运动公司的成员公司。
MicroE系统公司提供世界领先技术的光学编码器和精密定位系统。
其产品在数据存储、半导体和电子制造业、自动化及机器人、运动控制子系统和电机、医疗设备、测量和仪表、宇航工程等领域有广泛的应用。
下面我们了解一下光栅编码器一些常用概念:一、编码器的分辨率是指编码器可读取并输出的最小角度变化,对应的参数有:每转刻线数(line)、每转脉冲数(PPR)、最小步距(Step)等。
二、编码器的精度是指编码器输出的信号数据对测量的真实角度的准确度,对应的参数是角度(°)角分(′)、角秒(″)。
三、影响编码器精度有4个部分:1:光学部分2:机械部分3:电气部分4:使用中的安装与传输接收部分,使用后的精度下降,机械部分自身的偏差。
①.编码器光学部分对精度的影响光学码盘—主要的是母板精度、每转刻线数、刻线精度、刻线宽度一致性、边缘精整性等。
光发射源—光的平行与一致性、光衰减。
光接收单元—读取夹角、读取响应。
光学系统使用后的影响—污染,衰减。
例如光学码盘,首先是母板的刻线精度.其次,加工的过程,光学成像的时间,温度,物理化学的变化,污染等,都会影响到码盘刻线的宽度和边缘性。
所以,即使是一样的码盘刻线数,各家能做到的精度也是不同的。
②.编码器机械部分对精度的影响轴的加工精度与安装精度。
轴承的精度与结构精度。
码盘安装的同心度,光学组建安装的精度。
安装定位点与轴的同心度。
例如,就轴承的结构而言,单轴承支撑结构的轴承偏差无法消除,而且经使用后偏差会更大,而双轴承结构或多支承结构,可有效降低单个轴承的偏差。
③.编码器电气部分对精度的影响源的稳定精度—对光发射源与接收单元的影响。
读取响应与电气处理电路带来的误差;电气噪音影响,取决于编码器电气系统的抗干扰能力;例如,如果电子细分,也会带来的误差,按照德国海德汉提供的介绍,海德汉编码器的细分电气误差与正余弦曲线的误差约在原始刻线宽度的1%左右。
光栅尺和编码器介绍
![光栅尺和编码器介绍](https://img.taocdn.com/s3/m/ad4dbb4d27284b73f2425090.png)
光栅与编码器介绍位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
光栅尺和编码器介绍-精品
![光栅尺和编码器介绍-精品](https://img.taocdn.com/s3/m/dce497f3dd36a32d72758128.png)
光栅尺和编码器介绍-精品2020-12-12【关键字】情况、方法、动力、前提、空间、领域、质量、问题、系统、现代、透明、快速、执行、保持、统一、发展、建立、提出、发现、规律、特点、位置、关键、稳定、理想、基础、需要、环境、工程、能力、载体、方式、作用、增量、结构、水平、速度、关系、设置、形成、满足、严格、保证、调整、完善、取决于、方向、实现、提高、转变、中心位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
编码器,光栅
![编码器,光栅](https://img.taocdn.com/s3/m/8958480f844769eae009ed8a.png)
情景二位移传感器的连接与信号获取任务1:光电编码器用于数控机床的位移检测2.1.1任务目标使学生认识、了解光电编码器;了解光电编码器测量角位移、各种转速的方法。
能应用光电编码器。
2.1.2任务内容针对机床转轴的转速检测要求,确定光电编码器。
分析制定安装位置、实施效果检测方案,成本分析。
学生现场安装、连接和调测传感器电路。
2.1.3知识点光电编码器也是一种光电传感器,只是它将光源、透镜、随轴旋转的码盘、窄缝和光敏元件组成在一起。
当码盘转动时,光敏元件接收到一串亮暗相间的光线,由后续电路转换为一串脉冲,它将转速信号直接转换为脉冲输出。
因此它是一种数字式传感器。
光电编码器广泛使用于测量转轴的转速、角位移、丝杆的线位移等方面。
它具有测量精度高、分辨率高、稳定性好,抗干扰能力强,便于与计算机接口,适宜远距离传输等特点。
光电编码器由于它的码盘和内部结构的不同分为增量式编码器和绝对式编码器两种。
一、光电编码器和码盘的外形图光电编码器的外形及绝对式和增量式码盘的外形如下图所示。
光电编码器的外形图两种码盘的外形图10码道绝对式光电码盘增量式码盘零位标志二、增量式编码器(一)增量式编码器的结构和组成 如右图所示为增量式编码器的结构图。
它由光源、光栅板、码盘和光敏元件组成。
光栅板外圈有A 、B 两个窄缝,里圈有一个C 窄缝;光敏元件也对应有A 、B 和C 三个,分别接收A 、B 和C 窄缝透过的光线。
(二)增量式编码器的工作原理光电编码器的光栏板外圈上A 、B 两个狭缝的间距是码盘上的两个狭缝距离的(m +1/4)倍,m 为正整数,由于彼此错开1/4节距,两组狭缝相对应的光敏元件所产生的信号A 、B 彼此相差90︒相位。
当码盘随轴正转时,A 信号超前B 信号90︒;当码盘反转时,B 信号超前A 信号90︒,波形如下图所示。
这样可以判断码盘旋转的方向。
码盘里圈的狭缝C ,每转仅产生一个脉冲,该脉冲信号又称“一转信号”或零标志脉冲,作为测量的起始基准。
发格圆光栅和编码器
![发格圆光栅和编码器](https://img.taocdn.com/s3/m/3645eb8f59f5f61fb7360b4c2e3f5727a5e924a6.png)
发格圆光栅和编码器
发光栅和编码器是两种常见的传感器设备,它们在工业自动化、机器人技术、医疗设备等领域中起着重要作用。
首先,让我们来谈谈发光栅。
发光栅是一种光学传感器,通常
由光源和接收器组成。
它们通过发射光束并检测光束的反射或透射
来检测物体的位置、形状或运动。
发光栅可以用于测量物体的位置、检测物体的存在或不存在、检测物体的运动方向和速度等。
在工业
自动化中,发光栅常用于安全光栅,用于检测人员或物体是否进入
了危险区域,以便触发相应的安全措施。
接下来是编码器。
编码器也是一种位置传感器,它能够将物体
的位置或运动转换成电子信号。
编码器通常分为旋转编码器和线性
编码器两种类型。
旋转编码器用于测量旋转运动,常见的应用包括
电机控制、机械臂定位等;而线性编码器则用于测量直线运动,常
见的应用包括数控机床、印刷机械等。
编码器通过测量物体的位置
和速度,可以提供精准的位置反馈,从而实现精密控制和定位。
总的来说,发光栅和编码器都是重要的传感器设备,它们在工
业和科技领域中发挥着关键的作用,帮助实现自动化控制、精密定
位和安全监测等功能。
希望这个回答能够全面地介绍这两种传感器设备。
光栅尺和编码器介绍
![光栅尺和编码器介绍](https://img.taocdn.com/s3/m/059bda8659f5f61fb7360b4c2e3f5727a5e924e3.png)
光栅尺和编码器介绍一、光栅尺光栅尺是一种基于光学原理的测量设备,它利用光栅的周期性结构来测量位置和线性位移。
光栅尺由一根光导纤维和一组非常微小的刻痕组成,这些刻痕是均匀且等距离分布在光导纤维上的。
当光源照射在光栅上时,光会经过刻痕的反射或衍射,形成干涉条纹。
通过检测这些条纹的位置变化,可以计算出位置或线性位移的数值。
光栅尺具有高精度和高分辨率的特点。
它可以实现亚微米级的测量精度,并且可以用于测量较大的位移范围。
此外,光栅尺还具有高灵敏度和快速响应的特点,适用于高速运动控制系统。
光栅尺的应用非常广泛。
它被广泛应用于数控机床、半导体设备、医疗设备等行业。
在数控机床中,光栅尺可用于测量工件的位置和线性位移,确保机床运动的精确性和稳定性。
在半导体设备中,光栅尺可用于测量和控制光刻机的位置,确保芯片的精度和质量。
在医疗设备中,光栅尺可用于测量和控制超声设备的位置,确保医学成像结果的准确性。
二、编码器编码器是一种通过测量脉冲数或脉冲宽度来确定位置和运动的装置。
编码器有两种主要类型:增量式编码器和绝对式编码器。
1.增量式编码器增量式编码器是将物理位置转换为相应的电信号的装置。
它通过测量脉冲数或脉冲宽度的变化来确定位置和运动。
增量式编码器通常由光电二极管和光脉冲发射装置组成。
当物体移动时,光脉冲发射装置会发出一系列的光脉冲,通过光电二极管接收并转换为电信号。
通过计算接收到的脉冲数可以确定位置和运动的数值。
增量式编码器具有简单、稳定和成本低的特点。
它可以快速响应和反应,适用于高速运动控制系统。
然而,它无法直接确定位置,需要通过计算脉冲数的变化来求解。
2.绝对式编码器绝对式编码器是一种能够直接确定位置的装置。
它通过将位置信息编码到多个不同的信号轴上来实现。
绝对式编码器通常由光栅、霍尔传感器或磁传感器组成。
当物体移动时,传感器会检测到具有特定编码的标记,并将其转换为对应的位置信号。
绝对式编码器具有高精度和高分辨率的特点。
伺服控制,编码器和光栅尺的关系
![伺服控制,编码器和光栅尺的关系](https://img.taocdn.com/s3/m/170ce55efbd6195f312b3169a45177232e60e46c.png)
伺服控制,编码器和光栅尺的关系
在伺服控制系统中,编码器和光栅尺都是用于测量位置和提供反馈信号的设备,它们与伺服控制系统紧密相关。
1.编码器(Encoder):
-编码器是一种用于测量旋转或线性位置的设备。
它将位置信息转换为数字信号,通常以脉冲形式输出。
编码器的工作原理包括光电或磁感应技术,根据其类型分为光学编码器和磁性编码器。
-在伺服系统中,编码器常用于测量电机的转动角度或执行机构的线性位移。
控制系统通过读取编码器的信号来了解当前位置,并通过比较实际位置与目标位置来调整电机或执行机构的运动,以实现闭环控制。
2.光栅尺(Grating Ruler,光栅条尺):
-光栅尺是一种高精度的位置测量装置,它利用光学原理通过光栅条的周期性结构来测量位置。
光栅尺通常用于需要更高分辨率和更高精度的应用。
-在伺服系统中,光栅尺可以作为高精度的位置反馈装置,用于提供更准确的位置信息。
它与编码器类似,但通常具有更高的分辨率和更精确的测量能力。
关系:
-编码器和光栅尺都是伺服系统中的位置反馈装置,用于提供实际位置信息。
-它们的工作原理都涉及到光学或磁性测量技术,但在技术细节和应用场景上可能有一些不同。
-在实际应用中,选择使用编码器还是光栅尺通常取决于精度和分辨率的要求,以及系统的成本考虑。
总的来说,编码器和光栅尺在伺服系统中都发挥着关键的角色,帮助系统实现准确的位置控制。
光栅 绝对值 原理编码器
![光栅 绝对值 原理编码器](https://img.taocdn.com/s3/m/b54160c5f80f76c66137ee06eff9aef8941e489b.png)
光栅绝对值原理编码器光栅编码器原理一、概述光栅编码器是一种高精度的位置测量设备,它通过光电检测技术实现对物体位置的测量。
光栅编码器具有分辨率高、精度高、稳定性好等优点,广泛应用于机床、印刷机、数控机床等领域。
二、光栅编码器原理1. 光栅板原理光栅板是一种由透明和不透明条纹交替组成的玻璃或金属板。
当光线通过光栅板时,会发生衍射现象,使得出射光线呈现出干涉条纹图案。
2. 光电检测原理当干涉条纹图案经过一个光电检测器时,会产生电压信号。
这个信号的大小与干涉条纹图案中亮度和暗度的变化有关。
3. 绝对值编码器原理绝对值编码器是一种能够直接读取物体位置信息的编码器。
它采用多个不同位数的二进制代码来表示物体位置信息,并且每个代码都只表示一个特定位置。
4. 原理编码器原理原理编码器是一种能够通过计算物体位置的变化来确定物体位置信息的编码器。
它采用两个不同位数的二进制代码来表示物体位置信息,其中一个代码表示当前位置,另一个代码表示位置变化量。
三、光栅编码器分类1. 依据分辨率分类光栅编码器可以分为低分辨率、中分辨率和高分辨率三种类型。
低分辨率光栅编码器的分辨率在几十微米左右,适用于一些对精度要求不高的应用场合;中分辨率光栅编码器的分辨率在几微米到十几微米之间,适用于一些对精度要求比较高的应用场合;高分辨率光栅编码器的分辨率可以达到亚微米级别,适用于对精度要求极高的应用场合。
2. 依据测量方式分类光栅编码器可以按照测量方式分为增量式和绝对式两种类型。
增量式光栅编码器只能测量物体移动距离,不能直接读取物体位置信息;绝对式光栅编码器则可以直接读取物体位置信息,并且具有快速定位和自动复位等功能。
四、应用领域光栅编码器广泛应用于机床、印刷机、数控机床等领域。
在机床加工中,光栅编码器可以实现对加工精度的控制和提高,从而提高产品质量和生产效率。
在印刷机中,光栅编码器可以实现对印刷品的位置精度和色彩精度的控制和提高,从而提高印刷品的质量。
光栅编码器1
![光栅编码器1](https://img.taocdn.com/s3/m/3702bbd750e2524de5187e2c.png)
光栅编码器介绍与应用1.光栅编码器介绍光栅编码器包括带有光栅的尺子和电子反馈器件;光栅尺的实际作用就是检测位置信息,高精度的光栅尺是精密机械精度的一个重要影响因素,各个品牌的光栅也在不断的更新技术,提高光栅的精度,性能;精密仪器、精密机械是以后发展的重要方向,光栅尺的应用也更加的广泛。
光栅编码器一般应用是将读数头和光栅尺安装在两个相对移动的工件上,他们每移动一个栅距,输出信号便变化一个周期,通过周期的变化,来测量出相对位移;现在市面上使用的光栅编码器输出信号一般有三种,一种是两路相差90°的方波信号,也称数字信号,一种是两路相差90°的正玄信号,也称模拟信号,还有一种是串行输出,直接输出位置信息。
光栅编码器的尺子一般为金属尺带和玻璃尺带两种,同分辨率的金属尺带的价格较玻璃尺带稍便宜一些,性能也略差;高精度的光栅编码器的尺子多为玻璃尺带,玻璃尺的热敏系数等一些参数要优于金属尺子,不过玻璃尺的行程一般较短,金属尺在这方面就有较大的优势,金属尺的行程可以很长,可以有一定的弯折,安装也比较方便。
光栅编码器的主要参数有:分辨率、精度、重复性、带宽等。
在我们选择光栅的时候,首先要考虑它的精分辨率,要求的最小分辨率是多少,其次是精度,是否能满足系统的要求,还有就是输出频率;其他的还有一些安装要求,环境要求,维护等。
选择合适的光栅,不仅可以让设备满足设计要求,还能节约成本,提升设备的整体性能。
说了那么多,其实大家最关心的还是光栅编码器的精度,没有精度的编码器就好比走不准的手表,除了装饰毫无用处;影响精度的因素有很多,下面简单介绍一下;大家都知道,光栅编码器是通过读取尺子上的光栅来获得位置信息的,那是不是把尺子的栅距刻得越小越好呢?当然不是,不同的光栅编码器它的光电扫描原理不同,刻画的栅距也各不相同,通过电子细分做成不同分辨率的光栅编码器。
分辨率一般通过对光学传感器产生的周期信号进行电信号插值或数字插值产生。
光栅传感器与光电编码器
![光栅传感器与光电编码器](https://img.taocdn.com/s3/m/2873fe2a650e52ea55189862.png)
大、小数
示
cosθ
辩向电路
方向信号
合并
测
量
计算结果
值
(细分值)
A/D 转换、 采样/保持电路
细分程序 (计算)
光栅信号微机软件细分原理图
经过大小数合并处理后,再由微机进 行数值计算和码制转换等处理,即可得到 测量值。
采用微机软件细分方法,不但可以得 到高细分数,而且可以通过编程改变细分 数、结构简单、成本低、可靠性高,非常 适用于智能检测与控制等系统。
横向莫尔条纹重要特性: ①莫尔条纹运动与光栅运动具有对应关系 ②莫尔条纹具有位移放大作用 ③莫尔条纹具有平均光栅误差作用
辨向原理和细分电路
一、辨向原理
在实际应用中,大部分被测物体的移动往 往不是单向的,既有正向运动,也可能有反向 运动。单个光电元件接收一固定的莫尔条纹信 号,只能判别明暗的变化而不能辨别莫尔条纹 的移动方向,因而就不能判别光栅的运动方向, 以致不能正确测量位移。如果能够在物体正向 移动时,并将得到的脉冲数累加,而物体反向 移动时就从已累加的脉冲数中减去反向移动所 得的脉冲数,这样就能得到正确的测量结果。 完成这样一个辨向任务的电路就是辨向电路。
11
1011 1110
4
0100 0110
12
1100 1010
5
0101 0111
13
1101 1011
6
0110 0101
14
1110 1001
7
0111 0100
15
1111 1000
循环码是一种无权码,这给译码造成一 定困难。通常先将它转换成二进制码然后 再译码。 可以找到循环码和二进制码之间 的转换关系为:
Ci Ri Ci1
光栅尺和编码器概念介绍
![光栅尺和编码器概念介绍](https://img.taocdn.com/s3/m/c84aab90294ac850ad02de80d4d8d15abe2300ef.png)
光栅尺和编码器概念介绍光栅尺和编码器概念介绍1. 什么是光栅尺?光栅尺是一种长度或位移检测元件,在任何需要检测长度或位移的时候,都可以选用光栅尺,前提是需要满足光栅尺的安装使用条件。
封闭光栅尺敞开式光栅尺2. 什么是编码器?编码器是一种检测角度的反馈元件,同时也可以检测旋转速度,在需要检测角度或旋转速度时,可以选用编码器,前提是需要满足编码器的安装、使用条件。
高分辨率角度编码器转速编码器3. 光栅尺有哪些种类?按测量介质分类,有玻璃光栅尺,钢带光栅尺。
发格的M系列,C系列,S系列,G系列属于玻璃光栅尺;发格的L系列是钢带光栅尺。
按输出信号分类,有1Vpp正弦波信号,TTL方波信号,绝对信号(数字信号)光栅尺;其中绝对式光栅尺又包含不同的通讯协议,如SSI协议、串行协议、FeeDat协议,FeeDat协议是发格自行研究的协议。
、绝对信号方波信号正弦信号4. 如何选择光栅尺?应考虑的因素包括:所需测量长度,可接收的信号类型,所需的测量精度,安装空间大小、需要连接的数控系统等等。
5. 什么是光栅尺的测量精度?光栅尺的测量精度指在任意一米范围内,光栅尺的测量结果与实际值之间的差距小于所标称的值,如有效测量范围2040mm,精度3um的光栅尺,任意一米范围内的测量结果与实际值的差距小于±3um,注意,不是±1.5um。
6. 光栅尺密封等级IP54、IP64是什么含义?IP后面的第一个数字表示电器防止外物侵入的等级,第二个数字表示电器防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高。
IP54指不可能完全阻止灰尘进入,但灰尘进入的数量不会对设备造成伤害;在一段时间,5分钟内,可以防止各个方向飞溅而来的水侵入电器而造成损坏。
IP64指完全防止外物及灰尘侵入;同时在一段时间,5分钟内,可以防止各个方向飞溅而来的水侵入电器而造成损坏。
7. 光栅尺的分辨率是什么意思分辨率是在显示设备上(如数显表、数控系统),其数值累加的最小单位。
编码器、磁栅、光栅的工作原理及作用
![编码器、磁栅、光栅的工作原理及作用](https://img.taocdn.com/s3/m/fd161dbbc77da26925c5b0d0.png)
编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。
编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。
这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。
在ELTRA编码器中角位移的转换采用了光电扫描原理。
读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。
此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。
接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。
一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。
故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。
要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。
编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。
一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。
在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。
如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。
现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。
编码器、磁栅、光栅的工作原理及作用
![编码器、磁栅、光栅的工作原理及作用](https://img.taocdn.com/s3/m/0eb6138d65ce05087732130c.png)
编码器产生电信号后由数控制置CNC、可编程逻辑控制器要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。
在ELTRA编码器中角位移覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。
接收器的工作是感受光盘转动所产生的光变化,器,从而调节变频器的输出数据。
故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PGpg接线与参数pg之间的连接方式,必须与编码器pg的型号相对应。
一般而言,pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。
如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。
现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺编码器是把角位移或直线位移转换成电信号的一种装置。
前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。
按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
光栅磁栅编码器原理
![光栅磁栅编码器原理](https://img.taocdn.com/s3/m/9986774ff4335a8102d276a20029bd64783e6283.png)
光栅磁栅编码器原理编码器脉冲编码器是一种旋转式脉冲发生器,把机械转角变成电脉冲,是一种常用的角位移传感器。
同时也可作速度检测装置。
脉冲编码器的分类与结构脉冲编码器分为光电式、接触式和电磁感应式三种。
光电式的精度与可靠性都优于其他两种,因此数控机床上只使用光电式脉冲编码器。
脉冲编码器的工作原理当圆光栅与工作轴一起转动时,光线透过两个光栅的线纹部分,形成明暗相间的条纹。
光电元件接受这些明暗相间的光信号,并转换为交替变换的电信号。
该电信号为两组近似于正弦波的电流信号A和B。
A和B信号相位相差90°,经放大和整形变成方形波。
通过两个光栅的信号,还有一个“每转脉冲”,称为Z 相脉冲,该脉冲也是通过上述处理得来的。
Z脉冲用来产生机床的基准点。
后来的脉冲被送到计数器,根据脉冲的数目和频率可测出工作轴的转角及转速。
其分辨率取决于圆光栅的圈数和测量线路的细分倍数。
光电脉冲编码器的应用光电脉冲编码器在数控机床上用作位置检测装置,将检测信号反馈给数控系统。
其反馈给数控系统有两种方式:一是适应带加减计数要求的可逆计数器,形成加计数脉冲和减计数脉冲;二是适应有计数控制和计数要求的计数器,形成方向控制信号和计数脉冲。
光栅光栅是利用光的透射、衍射现象制成的光电检测元件,它主要由标尺光栅和光栅读数头两部分组成。
光栅的工作原理根据光栅的工作原理分为透射直线式和莫尔条纹式光栅两类。
1.透射直线式光栅透射直线式光栅是用光电元件把两块光栅移动时产生的明暗变化转变为电流变化的方式。
长光栅装在机床移动部件上,称为标尺光栅;短光栅装在机床固定部件上,称为指示光栅。
标尺光栅和指示光栅均由窄矩形不透明的线纹和与其等宽的透明间隔组成。
当标尺光栅相对线纹垂直移动时,光源通过标尺光栅和指示光栅再由物镜聚焦射到光电元件上,若指示光栅的线纹与标尺光栅透明间隔完全重合,光电元件接受到的光通量最小。
若指示光栅的线纹与标尺光栅的线纹完全重合,光电元件接受到的光通量最大。
编码器与光栅
![编码器与光栅](https://img.taocdn.com/s3/m/6900004fe518964bcf847ce1.png)
• 三、码盘的寻零 • 每一个增量码盘事先都设置一个零位。 每一个增量码盘事先都设置一个零位。 相对这个零位的转角位置称为绝对位置。 相对这个零位的转角位置称为绝对位置。 • 当码盘转到零位时,输出一个参考脉冲, 当码盘转到零位时,输出一个参考脉冲, 称为零位脉冲。 称为零位脉冲。 • 增量码盘有 个输出端,分别为 、B 增量码盘有3 个输出端,分别为A 和Z 。A 、B 两相的信号相位差 90°, ° 并被处理成相位差是90°的方波。 并被处理成相位差是 °的方波。 • Z 相送出的脉冲就是零位脉冲。 相送出的脉冲就是零位脉冲。
• 二、工作原理 • 光线透过圆盘窄缝 和检测窄缝照到光 电转换器A 电转换器 和B 上。 • 当圆盘转动时, 当圆盘转动时, A 和B输出电信号, 输出电信号, 输出电信号 与转角有关。 与转角有关。
• 二、工作原理 • 通过的光线强度随转角作周期性变化, 通过的光线强度随转角作周期性变化, • 所以光电转换器输出的电流信号随转角 所以光电转换器输出的电流信号随转角 作周期变化, 作周期变化, • 变化周期为窄缝的节距 L。 。
• 增量码盘寻零过程。 增量码盘寻零过程。 • 装有增量码盘的系统,通电开机后首先 装有增量码盘的系统, 执行寻零过程。 执行寻零过程。 • 若系统转轴的转角范围不受限,寻零时 若系统转轴的转角范围不受限, 转轴向任一方向转动,必能找到零位。 转轴向任一方向转动,必能找到零位。 若转角范围有限,零位应在转角范围内。 若转角范围有限,零位应在转角范围内。 开机寻零时先向一个方向转动, 开机寻零时先向一个方向转动, 若到限位处仍没找到零位, 若到限位处仍没找到零位, 则向相反方向转动,必能找到零位。 则向相反方向转动,必能找到零位。
• 三、寻零 • 增量码盘开机通电后,输出的脉冲数是 增量码盘开机通电后, 相对于起始位置而言。 相对于起始位置而言。 • 起始位置是随机位置, 起始位置是随机位置, 没用。 此时输出的角位置 没用。 • 寻找到零位并将此前的数字清零后, 寻找到零位并将此前的数字清零后, 输出的脉冲数字才表示转角的绝对位置。 输出的脉冲数字才表示转角的绝对位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光栅、编码器基本知识位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。
为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。
其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。
光栅,现代光栅测量技术简要介绍:将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。
这些信号的空间位置周期为W。
下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。
输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
一、栅式测量系统简述从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。
它们有各自的优势,相互补充,在竞争中都得到了发展。
由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。
光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。
测量长度从1m、3m 达到30m和100m。
二、光栅测量技术发展的回顾计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。
1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。
1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。
德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。
1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。
在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。
并在光栅一个参考标记(零位)的基础上增加了距离编码。
在1987年又提出一种新的干涉原理,采用衍射光栅实现纳米级的测量,并允许较宽松的安装。
1997年推出用于绝对编码器的EnDat双向串行快速连续接口,使绝对编码器和增量编码器一样很方便的应用于测量系统。
现在光栅测量系统已十分完善,应用的领域很广泛,全世界光栅直线传感器的年产量在60万件左右,其中封闭式光栅尺约占85%,开启式光栅尺约占15%。
三、当今采用的光电扫描原理及其产品系列光栅根据形成莫尔条纹的原理不同分为几何光栅(幅值光栅)和衍射光栅(相位光栅),又可根据光路的不同分为透射光栅和反射光栅。
光米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100μm至20μm远于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称影像原理。
纳米级的光栅测量是采用衍射光栅,光栅栅距是8μm或4μm,栅线的宽度与光的波长很接近,则产生衍射和干涉现象形成莫尔条纹,其测量原理称干涉原理。
现以Heidenhain产品采用的3种测量原理介绍如下。
1.具有四场扫描的影像测量原理(透射法)采用垂直入射光学系统均为4相信号系统,是将指示光栅(扫描掩膜)开四个窗口分为4相,每相栅线依次错位四分之一栅距,在接收的4个光电元件上可得到理想的4相信号,这称为具有四场扫描的影像测量原理。
Heidenhain的LS系列产品均采用此原理,其栅距为20μm,测量步距为0.5μm,准确度为±10、±5、±3μm三种,最大测量长度3m,载体为玻璃。
2.有准单场扫描的影像测量原理(反射法)反射标尺光栅是采用40μm栅距的钢带,指示光栅(扫描掩膜)用二个相互交错并有不同衍射性能的相位光栅组成,这样一来,一个扫描场就可以产生相移为四分之一栅距的四个图象,称此原理为准单场扫描的影象测量原理。
由于只用一个扫描场,标尺光栅局部的污染使光场强度的变化是均匀的,并对四个光电接收元件的影响是相同的,因此不会影响光栅信号的质量。
与此同时,指示光栅和标尺光栅的间隙和间隙公差能大一些。
Heidenhain LB和LIDA系列的金属反射光栅就是采用这一原理。
LIDA系列开式光栅其栅距为40μm和20μm,测量步距0.1μm,准确度有±5μm、±3μm,测量长度可达30m,最大速度480m/min。
LB系列闭式光栅栅距都是40μm,最大速度可达120m/min。
3.单场扫描的干涉测量原理对于栅距很小的光栅,指示光栅是一个透明的相位光栅,标尺光栅是自身反射的相位光栅,光束是通过双光栅的衍射,在每一级的诸光束相互干涉,就形成了莫尔条纹,其中+1和-1级组干涉条纹是基波条纹,基波条纹变化的周期与光栅的栅距是同步对应的。
光调制产生3个相位相差120°的测量信号,由3个光电元件接收,随后又转换成通用的相位差90°的正弦信号. Heidenhain LF、LIP、LIF系列光栅尺是按干涉原理工作,其光栅尺的载体有钢板、钢带、玻璃和玻璃陶瓷,这些系列产品都是亚微米和纳米级的,其中最小分辨力达到1纳米。
在80年代后期栅距为10μm的透射光栅LID351(分辨力为0.05μm)其间隙要求就比较严格为(0.1±0.015)mm。
由于采用了新的干涉测量原理对纳米级的衍射光栅安装公差就放得比较宽,例如指示光栅和标尺光栅之间的间隙和平行度都很宽(表1所示)。
只有衍射光栅LIP372的栅距是0.512μm,经光学倍频后信号周期为0.128μm,其他栅距均为8μm和4μm,经光学二倍频后得到的信号周期为4μm和2μm,其分辨力为5nm和50nm,系统准确度为±0.5μm和±1μm,速度为30m/min。
LIF系列栅距是8μm,分辨力0.1μm,准确度±1μm,速度为72m/min。
其载体为温度系数近于0的玻璃陶瓷或温度系数为8ppm/K的玻璃。
衍射光栅LF系列是闭式光栅尺,其栅距为8μm,信号周期为4μm,测量分辨力0.1μm,系统准确度±3μm和±2μm,最大速度60m/min,测量长度达到3m,载体采用钢尺和钢膨胀系数(10ppm/K)一样的玻璃。
四、光栅测量系统的几个关键问题1.测量准确度(精度)光栅线位移传感器的测量准确度,首先取决于标尺光栅刻线划分度的质量和指示光栅扫描的质量(栅线边沿清晰至关重要),其次才是信号处理电路的质量和指示光栅沿标尺光栅导向的误差。
影响光栅尺测量准确度的是在光栅整个测量长度上的位置偏差和光栅一个信号周期内的位置偏差。
光栅尺的准确度(精度)用准确度等级表示,Heidenhain定义为:在任意1m测量长度区段内建立在平均值基础上的位置偏差的最大值Fmax均落在±α(μm)之内,则±α为准确度等级。
Heidenhain准确度等级划分为:±0.1、±0.2、±0.5、±1、±2、±3、±5、±10和±15μm。
由此可见Heidenhain光栅尺的准确度等级和测量长度无关,这是很高的一个要求,现在还没有见到其他生产厂家能够达到这一水平。
现在Heidenhain玻璃透射光栅和金属反射光栅的栅距只采用20μm和40μm,对衍射光栅栅距采用4μm和8μm,(1nm光栅除外)光学二倍频后信号周期为2μm和4μm。
Heidenhain 要求开式光栅一个信号周期的位置偏差仅为±1%,闭式光栅仅为±2%,光栅信号周期及位置偏差见表2。
表2--------------------------------------------------------------------光栅类别信号周期(μm)一个信号周期内的位置偏差(μm)--------------------------------------------------------------------几何光栅20和40 开启式光栅尺±1%,即±0.2~±0.4封闭式光栅尺±2%,即±0.4~±0.8--------------------------------------------------------------------衍射光栅2和4 开启式光栅尺±1%,即±0.02~±0.04封闭式光栅尺±2%,即±0.02~±0.08--------------------------------------------------------------------2.信号的处理及栅距的细分光栅的测量是将一个周期内的绝对式测量和周期外的增量式测量结合在一起,也就是说在栅距的一个周期内将栅距细分后进行绝对的测量,超过周期的量程则用连续的增量式测量。
为了保证测量的精度,除了对光栅的刻划质量和运动精度有要求外,还必须对光栅的莫尔条纹信号的质量有要求,因为这影响电子细分的精度,也就是影响光栅测量信号的细分数(倍频数)和测量分辨力(测量步距)。
栅距的细分数和准确性也影响光栅测量系统的准确度和测量步距。
对莫尔条纹信号质量的要求主要是信号的正弦性和正交性要好;信号直流电平漂移要小。
对读数头中的光电转换电路和后续的数字化插补电路要求频率特性好,才能保证测量速度大。
Heidenhain有专门为光栅传感器和CNC相联结设计了光栅倍频器,也就是将光栅传感器输出的正弦信号(一个周期是一个栅距)进行插补和数字化处理后给出相位相差90°的方波,其细分数(倍频数)有5、10、25、50、100、200和400,再考虑到数控系统的4倍频后对栅距的细分数有20、40、100、200、400、800和1600,能实现测量步距从1nm到5μm,倍频数选择取决于光栅信号一个栅距周期的质量。