内燃机压缩比介绍
内燃机车题库名词解释
名词解释:1、内燃机:燃料在气缸内部燃烧,所放出的热能转变为机械能的机器叫内燃机。
2、上死点:活塞上行时到达距曲轴中心最远的距离叫上死点。
3、下死点:活塞下行时到达距曲轴中心最远的距离叫下死点。
4、活塞行程:活塞从上死点到下死点或活塞从下死点到上死点所移动的距离叫活塞行程。
5、燃烧室容积:活塞位于上死点时,活塞与缸盖组成的空间。
6、气缸总容积:活塞在下死点时,缸盖与活塞组成的空间。
7、压缩比:气缸总容积与燃烧室容积之比。
8、气门间隙:指冷机(小于40度)状态下,气门各传动件之间的间隙之和。
9、气门重叠角:在进排气过程中,进排气门同时开启时段曲轴转过的角度。
10、供油提前角:喷油泵出油阀开始出油时所对应的曲轴转角与该缸活塞位于工作行程上止点时对应的曲轴转角之差。
11、柴油机弹性系数:柴油机最大转速与最小转速之比12、换挡:一个变扭器排油与另一个变扭器充油的过程13、牵引工况:传动箱发出与机车运行方向相同的牵引力时的工况称为牵引工况。
14、制动工况:传动箱发出与机车运行方向相反的牵引力时的工况称为制动工况。
15、可透变扭器:变扭器泵轮的扭矩随涡轮转速变化而变化的变扭器称可透变扭器。
16、非可透变扭器:变扭器泵轮的扭矩不随涡轮转速变化而变化的变扭器称非可透变扭器。
17、甩缸:单独停止某缸供油,使其不再作功。
18、飞车:柴油机转速失去控制,大大超过规定最高使用转速。
19、万有特性:柴油机各性能参数相互关系综合特性。
20、曲柄半径:曲柄销中心到主轴颈中心的距离。
21、燃油消耗率:单位时间内发出单位有效功率所消耗的燃料。
22、粘度:液体分子间内聚力抵抗拉力和剪切力的属性。
23、游车:柴油机转速变化有规律性的重复,或是有节奏性的变化,且变化的振幅总是很大。
24、“Z12V190BJ”各组数字与字母的含义:Z表示增压,12表示12个缸,V表示气缸V形排列,190为气缸直径,B表示换型产品,J表示机车用,四冲程水冷柴油机。
米勒循环压缩比
米勒循环压缩比
米勒循环(Miller Cycle)是一种内燃机工作循环,与传统的奥托循环和迈凯轮循环不同。
米勒循环通常用于增强发动机的燃油效率,其中压缩比是一个关键参数。
压缩比(Compression Ratio)是指发动机在工作循环中气缸容积的最大值与最小值之比。
对于米勒循环,由于在压缩冲程中,进气阀关闭晚于传统循环,因此在相同工况下,压缩冲程的气缸容积较小。
一般而言,米勒循环的压缩比相对较低,这是为了避免在压缩冲程中因过高的压缩比导致爆震(knocking)问题。
米勒循环通过调整进气阀的关闭时机,以减少压缩冲程的实际气缸容积,从而提高燃油效率。
需要注意的是,具体的米勒循环压缩比可以因不同的发动机设计和制造而有所不同。
压缩比的选择需要在考虑燃烧效率、功率输出和爆震风险等多个因素的基础上进行平衡。
这个压缩比通常会被工程师根据具体应用和性能要求进行优化。
柴油机平均有效压力与压缩比
柴油机平均有效压力与压缩比一、前言柴油机是一种内燃机,它的工作原理是将燃油喷入高温高压的气体中,使其自燃并释放出能量,从而推动活塞运动。
在柴油机中,平均有效压力和压缩比是两个重要的参数,对于发动机的性能和效率有着重要的影响。
二、什么是平均有效压力1.定义平均有效压力(Mean Effective Pressure,MEP)是指发动机在一个工作循环内所产生的平均功率所对应的气缸内平均气体压力。
2.计算公式MEP = Pmean - Pexh其中,Pmean为气缸内平均气体压力,单位为Pa;Pexh为排气末端的大气压力,单位为Pa。
三、什么是压缩比1.定义压缩比(Compression Ratio,CR)是指进气冲程中空气被压缩后与排气冲程中空气容积之比。
2.计算公式CR = Vc + Vd / Vd其中,Vc为活塞上死点时汽缸容积,单位为m³;Vd为活塞下死点时汽缸容积,单位为m³。
四、平均有效压力与压缩比的关系1.影响因素平均有效压力和压缩比是互相影响的,它们的大小取决于以下因素:(1)进气道和排气道的设计;(2)燃油喷射系统的性能;(3)活塞、气门、气缸壁等部件的摩擦和热损失;(4)发动机转速和负荷等工作条件。
2.关系在理想情况下,平均有效压力与压缩比成正比。
也就是说,当压缩比增加时,平均有效压力也会增加。
这是因为在相同进气量和燃油喷射量的情况下,高压下空气密度增大,燃料充分混合后自燃能力增强,从而产生更大的爆发力。
但实际上,由于各种因素的影响,两者之间并不完全成线性关系。
3.应用在柴油机设计和优化中,平均有效压力和压缩比都是重要参数。
通过对它们进行分析和计算,可以评估发动机功率、效率、排放等方面的表现,并指导设计和改进工作。
五、结论平均有效压力和压缩比是柴油机的两个重要参数,它们的大小取决于多种因素。
在实际应用中,需要根据具体情况进行分析和计算,并对发动机进行优化和改进,以达到更好的性能和效率。
发动机压缩比
发动机压缩比要说明一台发动机的技术参数,可以概略地用功率与扭矩的大小来标示出来,然而影响功率、扭矩输出的因素却很多,其中一个重要因素就是发动机的压缩比,可压缩比这个术语似乎令不少维修人员模糊,知道它的数值大小不如知道气缸压力的数值实用,然而压缩比确是对发动机至关重要的参数。
什么是发动机的压缩比?不论这辆车上所选装的是汽油发动机还是柴油发动机,能保持稳定且适当的压缩比才能使发动机的运转得以平顺和稳定。
压缩比压缩比的定义就是发动机混合气体被压缩的程度,用压缩前的气缸总容积与压缩后的气缸容积(即燃烧室容积)之比来表示。
目前,绝对大部分汽车采用所谓的'往复式发动机',简单地讲,就是在发动机气缸中,有一只活塞周而复始地做着直线往复运动,且一直循环不已,所以在这周而复始又持续不断的工作行程之中有其一定的运动行程范围。
就发动机某个气缸而言,当活塞的行程到达最低点,此时的位置点便称为下止点,整个气缸包括燃烧室所形成的容积便是最大行程容积,当活塞反向运动,到达最高点位置时,这个位置点便称为上止点,所形成的容积为整个活塞运动行程容积最小的状况,需计算的压缩比就是这最大行程容积与最小容积的比值。
压缩比定义内燃机气缸总容积与燃烧室容积的比值,是内燃机的重要结构参数(见图)。
活塞处于下止点时气缸有最大容积,用Va表示;活塞处于上止点时气缸内的容积称为燃烧室容积,用Vc表示。
内燃机的压缩比ε为ε=Va/Vcε 为几何压缩比,它表示活塞从下止点移动到上止点时气缸内气体被压缩的程度。
活塞位于下止点时进气门或进、排气口尚未关闭,故有时须用有效压缩比ε0的概念。
ε0指内燃机进、排气门(口)开始全部关闭瞬时的气缸容积与气缸压缩容积之比。
凡未经特别指明的压缩比均指几何压缩比。
压缩比对内燃机性能有多方面的影响。
压缩比越高,热效率越高,但随压缩比的增高,热效率增长幅度越来越小。
压缩比增高使压缩压力、最高燃烧压力均升高,故使内燃机机械效率下降。
内燃机原理名词解释
内燃机原理名词解释上/下止点:活塞顶离曲轴中心最远/近处压缩比:气缸总容积与燃烧室容积之比发动机排量:发动机所有气缸工作容积的总和四冲程发动机:曲轴旋转两周,活塞上下止点间往返四次完成一个工作循环爆燃:由于压缩比过高导致压缩终了时气体的温度、压力过高,在火花塞点火之后燃烧室内离点燃中心较远处的末端可燃混合气自燃,而引起不正常燃烧的现象;表面点火:在火花塞点火之前,燃烧室内灼热表面点燃可燃混合气而引起的另一种不正常燃烧的现象;发动机负荷:发动机在某一转速下输出的实际功率与同一转速下能输出的最大功率之比;发动机速度特性:发动机的有效转矩、有效功率、有效燃油消耗率随发动机转速的变化关系;发动机热效率:发动机的有效功率与燃料燃烧释放热量之比;充气系数:在进气行程中,实际进入气缸内的新鲜气体质量与在标准大气压状态下充满气缸的新鲜气体质量之比;过量空气系数:燃烧过程中实际供给的空气质量与理论上完全燃烧时所需要的空气质量之比点火提前角:火花塞点火时与活塞位于压缩上止点时分别的曲轴曲拐位置之间的夹角;第一章循环热效率:工质做循环功与循环加热量之比,用以评定循环经济性;循环平均压力:单位气缸容积所做的循环功;泵气损失:工质流动时,需要克服进、排气阻力而消耗的功;●指示指标(i):以工质对活塞所做之功为计算基础的指标;指示功:气缸完成一个工作循环所得到的有用功;平均指示压力:单位气缸容积一个循环所做的指示功;指示功率:单位时间内做的指示功指示热效率:发动机实际循环指示功与所消耗的燃料热值的比值指示燃油消耗率:单位指示功的耗油量●有效指标(e):以曲轴输出功为计算基础的指标有效功、有效功率、有效转矩、平均有效压力●经济指标:有效热效率-----实际循环的有效功与得到此有效功所消耗的热量的比值;有效燃油消耗率-----发动机每输出1kw.h的有效功所消耗的燃油量;●强化指标(me):声功率-----发动机每升工作容积所发出的有效功率;比质量-----发动机的质量与所给出的标定功率之比;强化系数-----平均有效压力与活塞平均速度的乘积,与活塞单位面积的功率成正比机械效率:有效效率和指示效率的比值;第二章排气损失:从排气门打开起,直到进气过程开始、缸内压力达到大气压力之前,所损失的循环功;充量系数:每缸每循环实际吸入新鲜空气的质量与进气状态下理论计算充满气缸工作容积的空气质量的比值;进气状态:指空气滤清器后进气管内的气体状态,即进入气缸前气体的热力学状态,如温度与压力等。
发动机压缩比计算
发动机压缩比计算发动机是现代交通工具的核心部件,而发动机的压缩比则是发动机性能的重要指标之一。
本文将从计算压缩比的基本公式、影响压缩比的因素以及如何优化压缩比三个方面进行阐述。
一、计算压缩比的基本公式压缩比是指发动机在工作过程中,气缸内气体的最大压力与最小压力之比。
计算压缩比的基本公式为:压缩比 = 气缸内最大容积 / 气缸内最小容积其中,气缸内最大容积指的是活塞在上止点时气缸内的容积,而气缸内最小容积则是活塞在下止点时气缸内的容积。
这两个容积可以通过测量气缸的直径、行程和活塞顶部与气缸顶部的距离来计算得出。
二、影响压缩比的因素1. 活塞行程活塞行程是指活塞从上止点到下止点的距离。
行程越大,气缸内最小容积就越小,从而压缩比就越高。
2. 活塞直径活塞直径是指活塞的直径大小。
直径越大,气缸内最大容积就越大,从而压缩比就越低。
3. 活塞顶部与气缸顶部的距离活塞顶部与气缸顶部的距离是指活塞在上止点时与气缸顶部的距离。
距离越小,气缸内最大容积就越小,从而压缩比就越高。
4. 气门开闭时间气门开闭时间是指气门开启和关闭的时间。
气门开启时间越长,气缸内的气体就越充分,从而压缩比就越高。
三、如何优化压缩比1. 改变活塞行程通过改变活塞行程,可以调整气缸内最小容积的大小,从而改变压缩比。
但是,改变行程需要重新设计发动机,成本较高。
2. 改变活塞直径通过改变活塞直径,可以调整气缸内最大容积的大小,从而改变压缩比。
但是,改变直径也需要重新设计发动机,成本较高。
3. 调整气门开闭时间通过调整气门开闭时间,可以让气缸内的气体更充分地进出,从而改变压缩比。
但是,调整气门开闭时间需要对发动机进行调整,成本较高。
综上所述,发动机的压缩比是影响发动机性能的重要指标之一。
通过计算压缩比的基本公式,我们可以了解到压缩比的计算方法。
同时,我们也可以通过改变活塞行程、直径和气门开闭时间等方式来优化压缩比,从而提高发动机的性能。
内燃机原理名词解释
内燃机原理名词解释上/下止点:活塞顶离曲轴中心最远/近处压缩比:气缸总容积与燃烧室容积之比发动机排量:发动机所有气缸工作容积的总和四冲程发动机:曲轴旋转两周,活塞上下止点间往返四次完成一个工作循环爆燃:由于压缩比过高导致压缩终了时气体的温度、压力过高,在火花塞点火之后燃烧室内离点燃中心较远处的末端可燃混合气自燃,而引起不正常燃烧的现象;表面点火:在火花塞点火之前,燃烧室内灼热表面点燃可燃混合气而引起的另一种不正常燃烧的现象;发动机负荷:发动机在某一转速下输出的实际功率与同一转速下能输出的最大功率之比;发动机速度特性:发动机的有效转矩、有效功率、有效燃油消耗率随发动机转速的变化关系;发动机热效率:发动机的有效功率与燃料燃烧释放热量之比;充气系数:在进气行程中,实际进入气缸内的新鲜气体质量与在标准大气压状态下充满气缸的新鲜气体质量之比;过量空气系数:燃烧过程中实际供给的空气质量与理论上完全燃烧时所需要的空气质量之比点火提前角:火花塞点火时与活塞位于压缩上止点时分别的曲轴曲拐位置之间的夹角;第一章循环热效率:工质做循环功与循环加热量之比,用以评定循环经济性;循环平均压力:单位气缸容积所做的循环功;泵气损失:工质流动时,需要克服进、排气阻力而消耗的功;●指示指标(i):以工质对活塞所做之功为计算基础的指标;指示功:气缸完成一个工作循环所得到的有用功;平均指示压力:单位气缸容积一个循环所做的指示功;指示功率:单位时间内做的指示功指示热效率:发动机实际循环指示功与所消耗的燃料热值的比值指示燃油消耗率:单位指示功的耗油量●有效指标(e):以曲轴输出功为计算基础的指标有效功、有效功率、有效转矩、平均有效压力●经济指标:有效热效率-----实际循环的有效功与得到此有效功所消耗的热量的比值;有效燃油消耗率-----发动机每输出1kw.h的有效功所消耗的燃油量;●强化指标(me):声功率-----发动机每升工作容积所发出的有效功率;比质量-----发动机的质量与所给出的标定功率之比;强化系数-----平均有效压力与活塞平均速度的乘积,与活塞单位面积的功率成正比机械效率:有效效率和指示效率的比值;第二章排气损失:从排气门打开起,直到进气过程开始、缸内压力达到大气压力之前,所损失的循环功;充量系数:每缸每循环实际吸入新鲜空气的质量与进气状态下理论计算充满气缸工作容积的空气质量的比值;进气状态:指空气滤清器后进气管内的气体状态,即进入气缸前气体的热力学状态,如温度与压力等。
发动机压缩比
发动机压缩比要说明一台发动机的技术参数,可以概略地用功率与扭矩的大小来标示出来,然而影响功率、扭矩输出的因素却很多,其中一个重要因素就是发动机的压缩比,可压缩比这个术语似乎令不少维修人员模糊,知道它的数值大小不如知道气缸压力的数值实用,然而压缩比确是对发动机至关重要的参数。
什么是发动机的压缩比?不论这辆车上所选装的是汽油发动机还是柴油发动机,能保持稳定且适当的压缩比才能使发动机的运转得以平顺和稳定。
压缩比 压缩比的定义就是发动机混合气体被压缩的程度,用压缩前的气缸总容积与压缩后的气缸容积(即燃烧室容积)之比来表示。
目前,绝对大部分汽车采用所谓的'往复式发动机',简单地讲,就是在发动机气缸中,有一只活塞周而复始地做着直线往复运动,且一直循环不已,所以在这周而复始又持续不断的工作行程之中有其一定的运动行程范围。
就发动机某个气缸而言,当活塞的行程到达最低点,此时的位置点便称为下止点,整个气缸包括燃烧室所形成的容积便是最大行程容积,当活塞反向运动,到达最高点位置时,这个位置点便称为上止点,所形成的容积为整个活塞运动行程容积最小的状况,需计算的压缩比就是这最大行程容积与最小容积的比值。
压缩比定义 内燃机气缸总容积与燃烧室容积的比值,是内燃机的重要结构参数(见图)。
活塞处于下止点时气缸有最大容积,用Va 表示;活塞处于上止点时气缸内的容积称为燃烧室容积,用Vc 表示。
内燃机的压缩比ε为 ε=Va/Vc ε 为几何压缩比,它表示活塞从下止点移动到上止点时气缸内气体被压缩的程度。
活塞位于下止点时进气门或进、排气口尚未关闭,故有时须用有效压缩比ε0的概念。
ε0指内燃机进、排气门(口)开始全部关闭瞬时的气缸容积与气缸压缩容积之比。
凡未经特别指明的压缩比均指几何压缩比。
压缩比对内燃机性能有多方面的影响。
压缩比越高,热效率越高,但随压缩比的增高,热效率增长幅度越来越小。
压缩比增高使压缩压力、最高燃烧压力均升高,故使内燃机机械效率下降。
汽油机和柴油机
汽油机和柴油机是目前广泛应用在工农业生产和交通运输部门的热机。
它们的区别主要在于压缩比、点火方式、所用燃料及用途。
压缩比是指活塞在气缸中运动时,气缸中出现气体的最大体积和最小体积之比。
活塞在最低点时气缸中气体体积最大,活塞在最高点时气缸中气体体积最小,前者叫气缸总容积,后者叫气缸燃烧室容积。
压缩比规定为压缩比=汽缸总容积/燃烧室容积压缩比是内燃机的重要指标,压缩比越大,其压强越大,温度越高。
汽油机的压缩比为4~6。
柴油机的压缩比为15~18。
从理论上讲,压缩比越大,效率越高。
但因为气缸受材料强度的限制,而且气缸内工质的温度不能超过燃料的燃点,所以压缩比不能太大。
它们的点火方式不同,汽油机是把吸入气缸的汽油蒸汽与空气混合、加压,然后用火花塞点火。
柴油机是由喷油嘴喷出的雾状柴油与空气混合、加压,靠压缩来提高混合气体的温度自动点火。
汽油机是用汽油做燃料,柴油机是用柴油做燃料。
它们的名称就是由此而来的。
汽油机使用铝合金、塑料等材料制成。
体积小,重量轻,起动方便,运转平稳,转速快,适用于汽车、飞机等要求体积孝速度快的运输工具。
柴油机的压缩比大,气缸因为要承受较大的压力而做得较为牢固笨重,一般用钢板,铁板等材料制成。
它的功率大,适用于载重较大的大型卡车、拖拉机、机车和船舰。
汽油车和柴油车由于使用油料不同,发动机结构、混合气形成方式和燃烧方式不同,其污染物排放规律也不同。
两者排放物的主要区别表现在以下几个方面:1、汽油具有很强的挥发性,而柴油很难挥发,因此汽油车污染物中有燃料蒸发排放物,其组分是碳氢化合物(HC)。
2、汽油具有容易与空气混合,且混合后不易分离的特性。
汽油车燃料混合气的形成是在发动机燃烧室外进行的(在化油器和/或进气管),在点燃之前又经过进气、压缩过程,有相对较长的混合时间。
因此汽油与空气可以混合得很均匀,基本不存在局部过浓或过稀和液态油滴的情况。
汽油的分子又小,决定了汽油车排放物中颗粒物较少。
发动机的压缩比概念
发动机的压缩比概念
嘿,大伙!今天咱来聊聊发动机的压缩比是啥。
有一次我和朋友聊车,他老说啥压缩比高好,压缩比低不好的。
我就懵了,这压缩比到底是啥玩意儿呢?
压缩比呢,简单来说就是发动机里一个挺重要的概念。
它就是气缸里的混合气被压缩前和压缩后的体积比。
比如说,压缩前是这么大一团气,压缩后变成了这么小一团,这两个体积的比就是压缩比。
我记得有一回我们去看赛车比赛,那些赛车的发动机压缩比就挺高的。
为啥呢?因为压缩比高,发动机的效率就可能更高,能产生更大的动力。
就像你给气球吹气,吹得越狠,气球里的压力就越大,等你放开的时候,那股劲就更大。
咱平时开的车,压缩比也有不同。
有的车压缩比高,动力强,但可能对油品要求也高。
有的车压缩比低一点,可能就更皮实耐用。
所以啊,压缩比就是发动机的一个特点。
以后咱聊车的时候,也能知道压缩比是咋回事了。
好了,今天就聊到这儿,拜拜!。
内燃机压缩比名词解释
内燃机压缩比名词解释
内燃机的压缩比:内燃机的压缩比指气缸总容积与燃烧室容积的比值,用ε表示,一般为ε=6-14;压缩比是影响内燃机性能指标
最重要的结构参数之一,对内燃机的整体性能有很大影响。
膨胀比表示被膨胀气体在膨胀冲程结束时刻的体积与该气体
膨胀开始时刻的体积之比。
压缩比则表示被压缩气体在压缩冲程开始时刻的体积与压缩冲程终了时刻的体积比。
若膨胀气体在高温吸热时膨胀,则对外界作正功,而在低温时被压缩,则对外界作负功(也即气体被压缩时需要外界对它作正功)。
一般内燃机(奥托循环)膨胀比与压缩比是相等的,而对于阿特金森循环和米勒循环,压缩比要小于膨胀比。
发动机原理公式
发动机原理公式
发动机原理公式是指用于描述发动机工作原理的数学公式。
下面列举了几个常见的发动机原理公式:
1. 内燃机功率公式:
功率(P)= 主燃料热值(Hc)* 燃料消耗率(m)/ 燃料的燃烧效率(ηc)
2. 燃烧室中的空气质量公式:
空气质量(m)= 空气密度(ρ)* 燃烧室体积(Vc)
3. 压缩比的计算公式:
压缩比(r)= 排气压力(Pe)/ 进气压力(Pi)
4. 理论的最高热效率公式:
最高热效率(ηth)= 1 - (1 / 压缩比(r))^ (γ-1)
其中,Hc表示主燃料热值,m为燃料消耗率,ηc为燃料的燃烧效率,ρ为空气密度,Vc表示燃烧室体积,Pe表示排气压力,Pi为进气压力,γ为热容比。
这些公式是发动机工程师用于计算和分析发动机性能的重要工具。
通过对这些公式的应用,可以提高发动机的效率,降低排放,并优化燃料经济性。
自然吸气柴油机 云内 压缩比
自然吸气柴油机云内压缩比
自然吸气柴油机是一种内燃机,它利用空气的压缩来点燃燃料。
在柴油机中,压缩比是指气缸内活塞在下行行程时所形成的最大容
积与上行行程时所形成的最小容积之比。
这个比值决定了柴油机的
压缩效率和性能。
在云内,柴油机的压缩比通常取决于具体的柴油机型号和设计。
一般来说,大型柴油机的压缩比相对较高,通常在15:1到20:1之间,而小型柴油机的压缩比可能会略低一些,大约在14:1到18:1
之间。
高压缩比可以提高柴油机的热效率,因为它可以使空气更充分
地与燃料混合,从而在点火后产生更强的推力。
然而,过高的压缩
比也会增加柴油机的机械应力,对发动机的设计和材料提出更高的
要求。
因此,压缩比的选择需要考虑多个因素,包括发动机的设计、
用途、燃料类型、排放标准等。
不同压缩比的柴油机适用于不同的
工况和环境,压缩比的确定需要在发动机设计中进行综合考虑。
内燃机复习资料-名词解释
名词解释:压缩比:气缸总容积与燃烧室容积之比,表示气体被压缩的程度配气定时: 指内燃机每个气缸的进\排气门从开始开启到完全关闭所经历的曲轴转角气门重叠角点火提前角喷油提前角: 喷油泵安装于柴油机上时喷油泵柱塞关闭进回油孔开始压油到柴油机活塞上止点所经历的曲轴转角增压中冷:利用冷却风扇加车辆运行过程中所产生的高速气体流动来冷却增压空气偶件喷油规律: 指在喷油过程中,单位凸轮转角(或单位时间)内从喷油器喷入气缸的燃油量指示效率指示压力平均指示压力:指单位气缸容积一个循环所做的指示功有效指示压力指示热效率:指发动机实际循环指示功与所消耗的燃料热量的比值有效热效率:实际循环的有效功与为得到此有效功所消耗的热量的比值平均有效压力:使活塞移动一个行程所做的功等于每循环所做的有效功的一个假想的\平均不变的压力有效燃料消耗率be:指单位有效功的耗油量指示功率: 内燃机单位时间内所做的指示功有效功率: 指示功率扣除机械损失功率即为有效功率升功率: 在标定工况下发动机每升气缸工作容积所发出的有效功率充量系数Φc :每循环吸入气缸的空气量换算成进气管状态的体积与活塞排量之比过量空气系数Φa:燃烧1kg燃料的实际空气量与理论空气量之比空燃比α: 空气质量流量/燃料质量流量机械效率:有效功率与指示功率之比机械损失:运动件的摩擦损耗功与附件所消耗的功压力升高率dp/dφ增压比残余废气系数:上一循环残留在缸内的废气mr与每循环缸内气体的总质量m0之比排气再循环:在一个循环吸入的新鲜充量m1中,若其中一部分是来自发动机的排气,用来稀释可燃混合气,以降低燃烧温度,控制NOx的生成与排放,称为排气再循环率:参与再循环的排气的质量mEGR占新鲜充量m1的百分比排气损失:膨胀损失与推出损失之和为排气损失泵气功:强制排气和吸气行程中缸内气体对活塞所做的功。
进气损失:内燃机在进气过程中所造成的功德减少称为泵气损失:与理论循环比,活塞在泵气过程所造成的功的损失。
氢气内燃机 标准
氢气内燃机标准
1.术语和定义
本标准所涉及的术语和定义适用于氢气内燃机,包括但不限于以下内容:
1.1 氢气内燃机:一种使用氢气作为燃料的内燃机。
1.2 氢气:一种双原子分子,化学式为H2,具有高能量密度和清洁燃烧特性。
1.3 压缩比:指气缸总容积与燃烧室容积之比,是衡量内燃机性能的重要指标。
1.4 性能参数:包括功率、扭矩、燃油消耗率等,用于评价内燃机的性能。
2.燃料品质
氢气内燃机应使用纯度不低于99.95%的高纯度氢气作为燃料。
此外,燃料中不应含有有害成分,如一氧化碳、硫化物等。
3.发动机性能
3.1 启动性能:氢气内燃机应能够在温度范围为-20℃至50℃的环境下顺利启动。
3.2 功率和扭矩:氢气内燃机的功率和扭矩应符合相关规定,确保车辆行驶性能良好。
3.3 燃油消耗率:氢气内燃机的燃油消耗率应不高于常规内燃机的水平。
4.安全要求
4.1 内燃机结构:应确保内燃机结构强度满足要求,能抵抗正常工作时的振动和冲击。
4.2 安全防护装置:应配备必要的安全防护装置,如防火装置、超压保护装置等。
4.3 操作安全性:应确保操作人员易于进行安全操作,且在操作过程中不会受到伤害。
5.排放控制
5.1 一氧化碳和碳氢化合物:氢气内燃机的排放应符合相关标准,其中一氧化碳和碳氢化合物含量应低于规定值。
5.2 氮氧化物:氢气内燃机的氮氧化物排放应低于规定值。
5.3 颗粒物:氢气内燃机的颗粒物排放应低于规定值。
6.设备与安装
6.1 内燃机设备:应确保内燃机设备齐全、完好无损,且满足正常运行要求。
压缩比
压缩比是指发动机气缸的总容积(即工作容积+燃烧室容积)
与燃烧室容积之比(压缩比=气缸的总容积/燃烧室容积)。
从动力性和经济性方面来说,压缩比应该越大越好。
压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。
但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油发动机的压缩比又不能太大。
通常,压缩比在7.5~8.0应选用90号车用汽油;压缩比在8.0~8.5应选用90号~93号车用汽油;压缩比在8.5~9.5应选用93号~95号车用汽油;压缩比在9.5~10应选用95号~97号车用汽油。
一般可以在汽车说明书中查到压缩比,除说明书以外,汽车生产厂也会在油箱盖内侧标注推荐使用的燃油标号。
车主应严格按汽车发动机不同的压缩比,选用相应标号的车用汽油,才能使发动机发挥出最佳的效能。
如使用比规定要求低号数的无铅汽油,发动机将出现爆震现象。
一般在急加速及爬坡时出现,如果由于汽油标号低,使发动机长期出现爆震,将会损坏发动机,甚至打坏活塞、缸体等。
但是选择汽油也不是标号越高越好,汽油标号选择的主要依据是发动机的压缩比。
压缩比、点火提前角等参数已经在发动机电脑中设置,车主只要严格按照使用说明的要求选择汽油就没有问题。
盲目使用高标号汽油,其高抗爆性的优势无法发挥出来,还会造成金钱的浪费。
内燃机学名词解释
内燃机学名词解释内燃机学名词解释压缩比:气体压缩前的容积与气体压缩后的容积之比,即εc =V V c 。
配气正时:(亦称配气相位)是指内燃机每个气缸的进、排气门从开始开启到完全关闭所经历的曲轴转角。
气门重叠角:是指发动机进气门和排气门处于同时开启的一段时间用曲轴转角来表示称为气门重叠角。
点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度称为点火提前角。
喷油提前角:喷油器开始喷油时,活塞距离压缩达上止点的曲轴转角。
增压中冷:是当涡轮增压器将新鲜空气压缩经中段冷却器冷却,然后经进气歧管、进气门流至汽缸燃烧室。
偶件:一对制造精密,配合严密的零件。
喷油规律:是指在喷油过程中,单位凸轮转角、曲轴转角或单位时间从喷油器喷入气缸的燃油量。
即喷油率随凸轮转角的变化关系。
指示效率:发动机实际循环指示功W i 与所消耗的燃料热量Q 1的比值,即ηit =W i指示压力、平均指示压力和有效指示压力(定义,表达式):平均指示压力是指单位气缸容积一个循环所做的指示功,即p mi =W V s ;平均有效压力是一个假想的、平均不变的压力作用30τP ex 在活塞顶上,使活塞移动一个行程所做的功等于每循环所做的有效功,即p me =。
指示热效率和有效热效率(定义,表达式):指示热效率是指发动机实际循环指示功与所消耗的燃料热量的比值,即ηi t =W i平均有效压力和有效燃料消耗率b e :平均有效压力是一个假想的、平均不变的压力作用在活塞顶上,使活塞移动一个行程所做的功等于每循环所做的有效功,即p me=30τP e料消耗率b e ,是指单位有效功的耗油量。
通常用单位千瓦小时有效功所消耗的燃料克数【g/(kw.h)】,即b e =e ⨯103。
指示功率、有效功率和升功率(定义,表达式):内燃机单位时间内所做的指示功称为指示功率,即P i =p m i V s ni30;内燃机单位时间内所做的有效功称为有效功率,即P e =p m e V s ni30;在额定工况下,发动机每升汽缸工作容积所发出的有效功率,称为升功率,P L=P e充量系数Φc :若把每循环洗入汽缸的空气量换算成进气管状态(p s , T s )的体积V 1,其值一般要比活塞排量V s 小,两者的比值定义为充量系数Φc ,即Φc=V1过量空气系数Φa :燃烧单位燃料的实际空气量与理论空气量之比,称为过量空气系数Φa ,即Φa =m 1b 0,其中m 1是实际进入气缸的新鲜空气的质量,g b 为每循环燃料供给量(kg ); l 0为单位质量燃料完全燃烧所需的理论空气质量,成为化学计量空燃比。
往复机压缩比
往复机压缩比
往复式内燃机是一种常见的发动机类型,它的压缩比是一个非常重要的参数。
压缩比是指发动机缸内空气压缩前后的比值。
高压缩比可以提高发动机的燃烧效率,从而提高功率和燃油经济性。
往复式内燃机的压缩比通常在7:1到12:1之间。
一般来说,压缩比越高,发动机的性能就越好。
但是,高压缩比也会导致发动机过热和预燃现象。
因此,设计师必须在达到最高性能的同时保证发动机的可靠性和安全性。
压缩比还与燃料的种类有关。
例如,柴油机通常具有更高的压缩比,因为柴油具有较高的自燃温度。
而汽油机的压缩比则较低,因为汽油的自燃温度较低。
总之,往复式内燃机的压缩比是一个重要的参数,它直接影响着发动机的性能和燃油经济性。
设计师必须在考虑到各种因素的情况下选择最佳的压缩比,以达到最佳的性能和可靠性。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、内燃机的构造和有关名词为了说明内燃机的工作原理,首先介绍一下内燃机的构造和有关名词。
柴油机的主体部分为圆柱的气缸体4,在气缸体内有上下移动的圆柱形活塞,为了防止燃烧气体泄漏,在活塞上装有密封气体的活塞环。
气缸体的上部为气缸盖,在气缸盖上进气通道和排气通道以及进气门和排气门,进、排气门之间装有喷油器。
活塞中部装有活塞销,通过它与连杆上部相接,连杆下部连接曲轴,通过曲轴末端的飞轮输出功率。
内燃机在工作时活塞处于上下两个极端位置示意图。
(1)上止点(又叫上死点)——活塞顶面位移到距离曲轴中心线最远时的位置。
(2)下止点(又叫下死点)——活塞顶面位移到距离曲轴中心线最近时的位置。
(3)活塞冲程(又叫活塞行程)——活塞的上止点与下止点间的距离,单位为毫米。
活塞移动一个行程时,曲轴旋转半圈(180度)。
因此,活塞冲程等于曲柄半径的两倍。
(4)燃烧室容积(又叫压缩室容积)——活塞在上止点时,活塞顶以上(包括活塞顶部的凹坑)和气缸盖底部(包括气缸盖内部的辅助燃烧室)之是所构成空间的容积,单位为升。
(5)气缸工作容积——活塞在上下止点位置时其间的气缸容积,单位为升。
(6)发动机排量——一台内燃机各个气缸工作容积之和(对单缸内燃机其排量就是气缸工作容积),单位为升。
(7)气缸总容积——活塞在下止点位置时,活塞上部所有密封容积,单位为升。
气缸总容积=燃烧室容积+气缸工作容积(8)压缩比——气缸总容积与燃烧室容积的比值压缩比=气缸总容积—————燃烧室莼?BR> 压缩比表示活塞由下止点移到上止点时,气体在气缸内被压缩的程度。
压缩比越大,压缩时气体在气缸内被压缩得就越高。
柴油机压缩比的范围一般为16~20。
汽油机压缩比的范围一般为6~8。
二、内燃机的工作原理内燃机的工作原理是利用燃料在气缸内燃烧产生的热能,通过气体受热膨胀推动活塞移动,再经过连杆传递到曲轴使其旋转做功。
内燃机在实际工作时,由热能到机械能的转变是无数次的连续转变。
而每次能量转变,都必须经历进气、压缩、作功和排气四个过程。
每进行一次进气、压缩、作功和排气叫做一个工作循环。
若曲轴每转两圈,活塞经过四人冲程完成一个工作循环的叫做四冲程内燃机;若曲轴每转一圈,活塞只经过两个冲程就完成一个工作循环的叫做二冲程内燃机。
(一)四冲程柴油机的工作过程四冲程柴油机的工作过程1、进气冲程进气冲程是实现吸进新鲜空气的过程。
靠飞轮旋转惯性的作用车动曲轴,将活塞由上止点位置逐渐拉向下止点,这时通过配气机构开启进气门、关闭排气门,随着活塞向下移动,气缸内的容积逐渐增大,产生真空吸力,新鲜空气不断地被吸进气缸。
活塞移动到下止点(即活塞移动一冲程),进气冲程结束,进气门关闭。
2、压缩冲程在飞轮带动下,曲轴继续旋转推动活塞由下止点向上止点运动。
这时进、排气门均关闭,在活塞移动中气缸内的容积逐渐减小,而气体的压力和温度逐渐升高。
当活塞移动到上止点时,气缸内气体的压力可达到2940~4410千帕(30~45千克力.平方厘米),温度可达500~700摄试度(比柴油的自燃温度高150~250摄试度)。
至此活塞移动了第二个冲程,曲轴累计回转了一圈,压缩冲程终了。
3、作功冲程当压缩冲程接近终了时,进、排气门继续关闭,喷油器开始向气缸内喷入雾状柴油,在气缸内高温空气的作用下,油雾很快被蒸发,并与高温空气混合成可燃混合气体而迅速自行着火燃烧,放出大量热能,使气缸内气体受热发生猛烈膨胀,气体的压力迅速增到5900~8800千帕(60~90千克力/平方厘米),温度可达1500~2000摄试度。
从而产生很大的推力迫使活塞从上止点向下止点运动,并通过连杆使曲轴旋转,从而带动飞轮旋转,起储能作用,将柴油发出的热能转变为曲轴旋转的机械能。
随着活塞向下止点运动,气缸内气体的压力和温度下降。
至活塞移动到下止点,曲轴累计回转了一圈半,作功冲程终了。
4、排气冲程由飞轮带动,曲轴继续旋转,活塞由下止点移向上止点,通过配气机构开启排气门,气缸中燃烧后的废气被向上运动的活塞挤压,经排气门排出气缸,排气的温度为300~500摄试度,压力为103~122千帕(1.05~1.25千克力/平方厘米),活塞到达上止点时,排气冲程结束,排气门关闭。
至此,活塞移动了四个冲程,曲轴累计回转两圈。
上述四个冲程完成后,即完成了一个工作循环。
当活塞再次从上止点移向下止点时,又开始了第二个工作循环。
这样周而复始,柴油机连续运转,不断向外输出动力。
在这个工和循环中曲轴回转了两圈,活塞经过了四个冲程,所以称这种柴油机为四冲程柴油机。
(二)四冲程汽油机的工作过程四冲程汽油机的工作过程与四冲程柴油机的工作过程基本相同,每一个工作循环同样有进气、压缩、作功、排气四个冲程。
其主要区别有以下几点:1、在进气过程中,进入气缸的不是纯空气,而是空气与汽油相混合的可燃混合气。
在进气通道上装有化油器,空气在进气冲程的吸力作用下,以较高的流速流经化油器,将被吸入化油器喉管的汽油吹散和雾化,形成可燃混合气进入气缸。
2、汽油机吸入的混合气是由电火花强制点火,而不是压缩自燃(压缩比较小,压力和温度都比较低,不足以引起自燃)。
在气缸兽上装有火花塞,当活塞在压缩冲程运行到临近上止点时,炎花塞在高压电的作用下产生电火花将可燃混合气点燃。
从以上柴油机和汽油机的工作过程中可以见到在工作循环中只有一个作功冲程是活塞驱动曲轴旋转而作功的,其它三个冲程都是为作功冲程作准备,均需要由曲轴带动活塞运动,要消耗一部分能量。
因此,在曲轴的一端均装有一转动惯量较大的飞轮。
在作功冲程驱动曲轴及飞轮旋转,产生转动惯量带动在气缸中运动的。
另外,单缸四冲程内燃机曲轴每旋转两圈只有半圈(作功冲程)作功,运转不均匀,所以会产生较大的震动,因此在单缸机上都有尺寸较大的、重量较重的飞轮来储存能量,保持运转的平稳性。
(三)多缸四冲程内燃机的工作过程具有两个或两个以上气缸的内燃机称为多缸内燃机。
若单机要求较大的功率时,采用单缸内燃机则需加大气缸的直径和冲程,相应的零部件都要加大尺寸,使机器相当笨重。
运动部件的运动惯量增大,难以平衡,导致工作起来不稳定,震动较大。
因此,较大功率的内燃机,一般都不采用单缸加大缸径方式,而是采用较小缸径、多缸的型式。
由于多缸内燃机的作功冲程是相互交替均匀分配的,所以多缸比单缸内燃机旋转均匀、工作稳定。
多缸四冲程内燃机可视为由多个单缸机共用一根曲轴和一个大机体组合而成的,每个气缸与单缸机一样各自完成本身的工作循环,只是各气缸的作功冲程相互错开,使各缸的同一冲程按一定的工作顺序排列组合。
二缸四冲程内燃机曲轴的两个曲柄位于同一平面内,方位相反而相互错开180度。
三缸四冲程内燃机曲轴的曲柄夹角互为120度,其工作顺序为1—2--3缸或1--3--2缸两种方式。
三缸四冲程内燃机作功间隔是均匀的,在每一缸的作功冲程后都有60度的间歇时间,下缸才开始作功,三缸机运转平稳,是小缸径多缸机的发展方向。
(四)二冲程内燃机的工作过程四冲程内燃机的曲轴旋转两圈,活塞经过了四个冲程才完成一个工作循环;而二冲程内燃机的曲轴转一圈,活塞经过两个冲程就可完成一个工作循环,这是四冲程与二冲程内燃机的基本区别。
第一冲程:当活塞从下止点向上止点运动时,活塞起着一个上挤下吸的作用。
在运动中活塞关闭了换气孔和排气孔,在活塞的上部使进入气缸内燃机混合气受到压缩。
当活塞继续上升,活塞的下部将进气孔打开时,开始吸气,由于曲轴箱的容积不断增加,产生吸力,化油器中的可燃混合气便被吸入曲轴箱。
第二冲程:当活塞接近上止点时,火花塞点燃被压缩的可燃混合气,活塞起着上推下压作用。
在活塞上方燃气膨胀产生的压力使活塞向下移动而作功。
当活塞继续向下移动时,在活塞的下方首先关闭气孔,使曲轴箱内的可燃混合气受到挤压,当继续向下移动时,排气孔被打开,气缸中的废气受到燃气压力的作用自行排出。
当活塞再向下移动时,换气孔被打开,曲轴箱内受挤压的可燃气体经换气孔进入气缸,并帮助驱扫废气。
该扫气过程实际上是排气和进气两个工作过程的结合,一直到活塞经过下止点后,再向上运动将换气孔和排气孔封闭后才结束。
由此可知,二冲程汽油机没有一个单独的进气和排气冲程,进气和排气过程分别是与压缩和作功的过程同时进行的。
所以,二冲程汽油机曲轴转一圈,活塞走两个冲程即完成一个工作循环。
内燃机压缩比内燃机气缸最大容积与压缩容积的比值﹐是内燃机的重要结构参数(见图压缩比定义 )。
活塞处于下止点时气缸有最大容积﹐用V α表示﹔活塞处于上止点时气缸内的容积称为压缩容积﹐用Vc 表示。
内燃机的压缩比ε为ε=气缸压缩容积+气缸工作容积/气缸压缩容积=Vc+Vh/Vc=Vα/Vcε为几何压缩比﹐它表示活塞从下止点移动到上止点时气缸内气体被压缩的程度。
活塞位于下止点时进气门或进﹑排气口尚未关闭﹐故有时须用有效压缩比ε0的概念。
ε0指内燃机进﹑排气门(口)开始全部关闭瞬时的气缸容积与气缸压缩容积之比。
凡未经特别指明的压缩比均指几何压缩比。
压缩比对内燃机性能有多方面的影响。
压缩比越高﹐热效率越高﹐但随压缩比的增高﹐热效率增长幅度越来越小。
压缩比增高使压缩压力﹑最高燃烧压力均升高﹐故使内燃机机械效率下降。
汽油机压缩比过高容易产生爆震。
柴油机压缩比过低会使压缩终点温度变低﹐影响冷起动性能。
压缩比能使内燃机排气中有害成分(如NOX﹑烃类﹑CO等)的含量发生变化。
现代柴油机的压缩比一般在12~22之间﹐但超高增压柴油机的压缩比可低至8。
现代汽油机压缩比为6~10。
基本结构往复活塞式内燃机的工作腔称作气缸,气缸内表面为圆柱形。
在气缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,构成曲柄连杆机构。
因此,当活塞在气缸内作往复运动时,连杆便推动曲轴旋转,或者相反。
同时,工作腔的容积也在不断的由最小变到最大,再由最大变到最小,如此循环不已。
气缸的顶端用气缸盖封闭。
在气缸盖上装有进气门和排气门,进、排气门是头朝下尾朝上倒挂在气缸顶端的。
通过进、排气门的开闭实现向气缸内充气和向气缸外排气。
进、排气门的开闭由凸轮轴控制。
凸轮轴由曲轴通过齿形带或齿轮或链条驱动。
进、排气门和凸轮轴以及其他一些零件共同组成配气机构。
通常称这种结构形式的配气机构为顶置气门配气机构。
现代汽车内燃机无一例外地都采用顶置气门配气机构。
构成气缸的零件称作气缸体,支承曲轴的零件称作曲轴箱,气缸体与曲轴箱的连铸体称作机体。
[编辑本段]基本术语1. 工作循环活塞式内燃机的工作循环是由进气、压缩、作功和排气等四个工作过程组成的封闭过程。
周而复始地进行这些过程,内燃机才能持续地作功2.上、下止点活塞顶离曲轴回转中心最远处为上止点;活塞顶离曲轴回转中心最近处为下止点。
在上、下止点处,活塞的运动速度为零。