等比数列的定义及其通项公式
高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。
等比数列的概念及其通项公式
在
等比数列an
中
,
始
终
有
an1 an
q
例1 判断下列数列是否为等比数列:
(1)1,1,1,1,1;
(2)0,1,2,,4,8;
(3)1, 1 , 1 , 1 , 1 2 4 8 16
例2 求出下列等比数列中的未知项:
(1)2, a,8;
(2) 4,b, c, 1 2
练习:课本 P48 1~3
一、新课引入
1、小故事:国际象棋源于古代印度,国王为奖 励发明者,答应他的任何要求,发明者说:“请 在棋盘的第一个格子放1颗麦粒,在第2个格子放 2颗麦粒,在第3个格子放4颗麦粒,在第4个格子 放8颗麦粒,依此类推,每个格子都是前面格子 的2倍,直到64个格子。请给我足够的粮食实现 上述要求。”你认为国王能满足他的要求吗?
印度国王奖赏国际象棋发明者的实例,得 一个数列:
1,2,22 ,23 ,,263
2、镭的半衰期是1620年如果从现在开始有的 10g镭开始,那么每隔1620年,剩余两依次为:
10,10 1 ,10 ( 1 )2 ,10 ( 1 )3 ,10 ( 1 )4 ,.....
2
2
2
2
3、某人年初投资10000元,如果年收益率是
5%,那么按照复利,5年内各年末的本利和依
次为:
100001.05,100001.052, ,100001.055
思考:与等差数列相比,上面的数列有什 么特点?
二、等比数列的定义:
一般地,如果一个数列从第2项起,每一 项与它的前一项的比都等于同一个常数,那么 这个数列就叫做等比数列,这个常数叫做等比 数列的公比,公比通常用字母q表示。
012
n1
等比数列的概念及通项公式
3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式
练
习
Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?
等比数列的通项与求和公式
等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。
本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。
一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。
通常用字母a表示首项,字母r表示公比,公比r≠0。
二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。
根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。
三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。
1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。
2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。
四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。
2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。
3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。
五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。
2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。
3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。
等比数列的通项公式
等比数列的通项公式等比数列是数学中一个重要的概念,其中每一项与前一项的比值保持不变。
在解决等比数列问题时,掌握通项公式是至关重要的。
本文将详细介绍等比数列的通项公式,并给出相关的例子进行解析。
一、等比数列的定义与性质等比数列是指数列中,每一项与前一项的比值都是固定的常数。
数列的通项公式可以通过等比数列的性质推导出来。
设等比数列的首项为a₁,公比为r,则数列的通项公式可表示为:an = a₁ * r^(n-1)其中,an表示等比数列的第n项。
二、等比数列的通项公式推导接下来,我们通过一个简单的例子来推导等比数列的通项公式。
例1:已知等比数列的首项为2,公比为3,求第10项的值。
解:根据等比数列的定义,我们可以得到:a₁ = 2, r = 3代入通项公式an = a₁ * r^(n-1),则第10项的值为:a₁₀ = 2 * 3^(10-1) = 2 * 3^9通过计算,得到第10项的值为2 * 19683 = 39366。
三、等比数列的应用等比数列的通项公式在实际问题中有广泛的应用。
下面,我们通过一个实例来说明等比数列在日常生活中的应用。
例2:小明每天存钱,第一天存1元,之后每天存的金额是前一天的3倍,求30天内总共存了多少钱。
解:设第n天存的金额为an,根据题意,我们可以得到:a₁ = 1, r = 3代入通项公式an = a₁ * r^(n-1),则第30天存的金额为:a₃₀ = 1 * 3^(30-1) = 1 * 3^29通过计算,得到第30天存的金额为1 * 3^29 = 1 * 594,914,763 = 594,914,763元。
因此,小明在30天内总共存了594,914,763元。
四、等比数列的性质除了通项公式,等比数列还具有以下几个重要的性质:1. 任意项与其后第n项的比值为r^(n-1)。
2. 任意项与其前第n项的比值为r^(1-n)。
3. 任意连续两项的比值为相同的常数r。
4. 等比数列的前n项和公式为Sn = a₁ * (1 - r^n) / (1 - r)。
等比数列数学高中公式有哪些
等比数列数学高中公式有哪些等比数列数学高中公式有哪些等比数列数学高中公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=。
=ak·an-k+1,k∈{1,2,。
,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2。
an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.提高数学成绩的窍门一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
等比数列的性质与公式
等比数列的性质与公式数列是数学中常见的一种序列,根据元素之间的规律可以分为等差数列和等比数列等。
在本文中,我们将重点讨论等比数列的性质与公式。
一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
设等比数列的首项为a₁,公比为r,则数列的通项公式为:aₙ = a₁ * r^(n-1)其中aₙ表示第n项的值。
二、等比数列的性质1. 公比的性质公比为r的等比数列中,如果r>1,则数列是递增的;如果0<r<1,则数列是递减的;如果r=1,则数列是恒定的。
2. 通项公式等比数列的通项公式为aₙ = a₁ * r^(n-1),通过该公式可以求出任意项的值。
3. 首项、公比与项数的关系根据等比数列的通项公式aₙ = a₁ * r^(n-1),我们可以得到首项、公比和项数之间的关系:aₙ = a₁ * r^(n-1)a₂ = a₁ * rr = a₂ / a₁a₃ = a₁ * r^2...即等比数列的第n项等于首项乘以公比的n-1次方。
4. 等比数列的前n项和等比数列的前n项和记为Sₙ,可以通过以下公式计算:Sₙ = a₁ * (1 - rⁿ) / (1 - r)其中n表示项数。
三、等比数列的常见问题1. 求等比数列中某一项的值如果已知等比数列的首项a₁、公比r和项数n,我们可以通过通项公式aₙ = a₁ * r^(n-1)计算出该项的值。
2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,可以通过前n项和的公式Sₙ = a₁ * (1 - rⁿ) / (1 - r)求得。
3. 求等比数列的项数已知等比数列的首项a₁、公比r和某一项的值aₙ,可以通过项数的对数形式求得:n = logₐ( aₙ / a₁ ) + 1其中logₐ表示以a为底的对数运算。
四、等比数列的应用等比数列在实际问题中有着广泛的应用。
例如在金融领域,利率、汇率等都可以用等比数列的形式来描述;在自然科学研究中,细胞分裂、物种繁殖等也常常涉及等比数列的计算。
等比数列的通项与公式
等比数列的通项与公式等比数列是数学中的一种重要数列,它的通项与公式在数学中有着广泛的应用和意义。
在等比数列中,每一项与前一项的比值都相同,这个比值称为公比。
一、等比数列的定义与性质等比数列是指数列中的每一项与它前面的一项的比值相等的数列。
设等比数列的首项为a₁,公比为q,则它的通项可以表示为:aₙ = a₁ * q^(n-1)其中,aₙ为第n项,n为项数。
1. 公比的定义与性质在等比数列中,公比q是等于相邻两项的比值,即 q = aₙ / a(n-1)。
2. 通项的推导与性质通过观察等比数列中相邻两项的比值,可以得到通项的推导公式。
假设第n项为aₙ,前一项为a(n-1),则有:q = aₙ / a(n-1) (1)根据等比数列的定义,还可以得到:aₙ = a(n-1) * q (2)将(2)式代入(1)式中,可以得到:q = (a(n-1) * q) / a(n-1)整理得到通项的公式:aₙ = a(n-1) * q^(n-1)二、等比数列的应用举例等比数列在数学中有着广泛的应用。
下面将通过一些具体例子来展示等比数列的应用。
1. 计算等比数列前n项的和对于等比数列,我们常常需要计算前n项的和。
设等比数列的首项为a₁,公比为q,前n项的和为Sₙ,则有以下公式:Sₙ = a₁ * (1 - qⁿ) / (1 - q)这个公式可以帮助我们快速计算等比数列前n项的和。
2. 物质的倍增在一些自然和社会领域中,存在着物质的倍增问题。
比如,细菌的繁殖、人口增长等都可以看作是等比数列的应用。
在这些问题中,公比q常常表示倍增的比例。
三、等比数列的举例与求解下面通过一些具体的例子来展示等比数列的应用与求解过程。
例1:已知等比数列的首项为2,公比为3,求第6项的值。
根据等比数列的通项公式可以得到:a₆ = a₁ * q^(6-1) = 2 * 3^(6-1) = 2 * 3^5 = 2 * 243 = 486所以第6项的值为486。
等比数列及前n项和
Sk , S2k Sk , S3k S2k , S4k S3k ,
(6)若数列 an 是等比数列,当项数为偶数 2 n
s qs 时,
偶
,
奇
; 当项数为奇数
时,
1.在等比数列{an}中,a5=3,则a3·7等于( C ) a A.3 B.6 C.9 D.18
等比数列的前n项和及其性质
例3 (2011年南阳调研)在等比数列{an}中,a1最小, 且a1+an=66,a2·n-1=128,前n项和Sn=126, a (1)求公比q; (2)求n. 【思路点拨】 根据等比数列的性质,a2·n-1= a
a1·n,由此可得关于a1、an的方程,结合Sn=126 a 可求得q和n.
二、等比数列的判定方法: an 1 (1)定义法: 常数 an
an
是等比数列 (2)等比中项公式法: n a
是等比数列 an
2
an1 an1
(3)通项公式法: n a 数列
kq an 是等比
n
(4)前n项和法:Sn
是等比数列
k kq an
x2 10x 16 0
的两根,则 a20 a50 a80 的值为( B )
A.32
B.64
C.256 D. 64
9.等比数列 {an } 的各项均为正数,且 a5a6 a4 a7 =18,
则
log3 a1 log3 a2 log3 a10
B.10
=(
B
)
D.2+ log3 5
等比数列及其前n项和
一、等比数列的定义与基本公式:
等比数列的通项公式
等比数列的通项公式在数学中,等比数列是一种常见的数列形式,它的每一项与前一项的比值都相等。
等比数列可以通过通项公式来表示,该公式能够直接计算出数列的任意项。
一、等比数列的定义等比数列是指一个数列中,每一项与前一项的比值都相等的数列。
设等比数列的首项为a,公比为r,则数列的通项可以表示为an = a *r^(n-1),其中an表示数列中的第n项。
二、等比数列的性质1. 公比的正负性:若公比r大于0且不等于1,则数列递增;若公比r小于0且不等于-1,则数列递减。
2. 公比的绝对值:若公比的绝对值|r|小于1,则数列递减趋于0;若公比的绝对值|r|大于1,则数列递增或递减趋于正负无穷。
3. 通项公式的推导:通过求解数列中的两个相邻项,可以得到通项公式。
假设第k项与第(k+1)项分别为ak和a(k+1),则有ak * r = a(k+1),可得到通项公式为an = a * r^(n-1)。
4. 等比数列的求和公式:由于等比数列的每一项与前一项的比值相等,可以使用求和公式来计算数列的和。
求和公式为Sn = a * (1 - r^n) /(1 - r),其中n表示求和的项数。
三、应用例题例题1:求等比数列2,4,8,16,...的第8项和前8项的和。
解析:首先计算公比r,可通过相邻两项的比值来求解。
第二项4除以第一项2等于2,第三项8除以第二项4等于2,以此类推可以得到公比r=2。
利用通项公式an = a * r^(n-1),可得到第8项a8 = 2 *2^(8-1) = 2 * 2^7 = 256。
其次,利用求和公式Sn = a * (1 - r^n) / (1 - r),代入首项a=2,公比r=2,项数n=8,可以得到前8项的和S8 = 2 * (1 - 2^8) / (1 - 2) = 2 * (1 - 256) / -1 = 510。
例题2:若等比数列的首项为3,第5项为48,求公比和前10项的和。
等比数列的三个公式
等比数列的三个公式等比数列是指一个数列中任意两个相邻的项之间的比值都相等的数列。
首先,我们来定义等比数列的一般项表示法和通项公式。
一、一般项表示法:对于等比数列a₁,a₂,a₃,...,aₙ,其中a₁是首项,r是公比,则第n项被表示为aₙ=a₁*r^(n-1),其中n≥1二、通项公式:通项公式指的是通过首项和公比来直接计算出等比数列的任意一项的公式。
1.第n项的通项公式:已知等比数列a₁,a₂,a₃,...,aₙ,其中a₁是首项,r是公比。
则第n项的通项公式可以表示为:aₙ=a₁*r^(n-1),其中n≥12.前n项和的通项公式:已知等比数列a₁,a₂,a₃,...,aₙ,其中a₁是首项,r是公比。
则前n项和的通项公式可以表示为:Sn=a₁*(1-r^n)/(1-r),其中n≥1接下来,我们来推导这两个通项公式。
首先,我们假设等比数列的首项为a₁,公比为r。
那么等比数列的第二项a₂可以表示为a₂=a₁*r第三项a₃可以表示为a₃=a₁*r^2,依此类推,第n项aₙ可以表示为aₙ=a₁*r^(n-1)。
要计算前n项和Sn,我们将每一项与公比相除可得:Sn=a₁*(1+r+r^2+...+r^(n-1))接下来,我们用Sn乘以公比r:r*Sn=a₁*(r+r^2+...+r^n)将以上两式相减可得:Sn-r*Sn=a₁*(1-r^n)对于左边的Sn-r*Sn,我们可以因式分解:Sn(1-r)=a₁*(1-r^n)最后,我们将两边整理得到前n项和的通项公式:Sn=a₁*(1-r^n)/(1-r)这就是等比数列的常见公式:一般项表示法和通项公式。
利用这两个公式,我们可以方便地计算等比数列中的任意一项或前n项的和。
总结起来,等比数列的三个公式分别是:1.一般项表示法:aₙ=a₁*r^(n-1),其中n≥12.第n项的通项公式:aₙ=a₁*r^(n-1),其中n≥13.前n项和的通项公式:Sn=a₁*(1-r^n)/(1-r),其中n≥1。
等比数列的通项公式
二、等比数列的通项公式
如果一个数列
a 1 , a 2 , a 3 , …,a n , …,
是等比数列,它的公比是q,那么
a 2 a1 q
a 3 a 2 q a1 q
2 3
a 4 a 3 q a1 q
a 5 a 4 q a1 q
4
……
由此可知,等比数列
10
n
10 9 8 7 6 5 4
3 2 1 0
an
(1)数列:4,4,4,4,4,4,4,…
●
●
●
●
●
●
●
●
●
●
1
2
3
4
5
6
7
8
9
10
n
an
10 9 8 7 6 5 4
3 2 1 0
(1)数列:1,-1,1,-1,1,-1,1,…
●
●
●
●
●
1
2
●
3
4
●
5
6
●
7
8
●
9
10
●
n
四、举例
例1 培育水稻新品种,如果第1代得到120粒种子,并且从第1代 起,以后各代的每一粒种子都可以得到下一代的120粒种子,到第5 代大约可以得到这种新品种的种子多少粒(保留两个有效数字)? 解: 由于每代的种子数是它的前一代种子数的120倍, 因此,逐代的种子数组成等比数列,记为 a n
等比数列的 通项公式
一、等比数列的定义
1、观察数列
(1)2,4,6,8,10,… (2)-1,-3,-5,-7, … (3)-6,-3,0,3,6,9,… (4) 2,4,8,16,32,64. (5) 1,3,9,27,81,243,… (6) (7)
等比数列性质公式总结
等比数列性质公式总结引言在数学中,数列是由一系列有序的数字按一定规律排列而成的序列。
其中,等差数列和等比数列是两种常见的数列类型。
本文将重点总结等比数列的性质公式。
等比数列的定义等比数列是指一个数列中的每一项(除首项外)都与它前一项成等比关系的数列。
设等比数列的首项为a,公比为r,那么该数列的通项公式可以表示为:an = a * r^(n-1),其中an为第n项。
性质公式一:第n项公式等比数列的第n项公式可通过通项公式进行推导。
设等比数列的首项为a,公比为r,那么第n项an可表示为:an = a * r^(n-1)这个公式可以帮助我们在已知公比和首项的情况下,快速计算出任意一项的值。
性质公式二:前n项和公式等比数列的前n项和公式可以帮助我们计算等比数列前n项的和。
设等比数列的首项为a,公比为r,那么前n项的和Sn可表示为:Sn = a * (1 - r^n) / (1 - r)性质公式三:通项公式与首项之间的关系在等比数列中,通项公式与首项之间存在一定的关系。
设等比数列的通项公式为an = a * r^(n-1),那么首项a可表示为:a = an / r^(n-1)这个公式可以帮助我们在已知公比、任意一项的值以及项数的情况下,求解出首项的值。
性质公式四:公比和项数之间的关系在等比数列中,公比和项数之间也存在一定的关系。
设等比数列的通项公式为an = a * r^(n-1),那么公比r可表示为:r = (an / a)^(1 / (n-1))这个公式可以帮助我们在已知首项、任意一项的值以及项数的情况下,求解出公比的值。
性质公式五:等比数列的特殊性质等比数列还有一些特殊性质,如首项为1,公比为正数,则数列的前n项和公式可以简化为:Sn = (1 - r^n) / (1 - r)其中,r不等于1。
总结等比数列是数学中常见的数列类型之一,我们通过总结上述性质公式,可以更好地理解和应用等比数列。
这些性质公式包括了等比数列的第n项公式、前n项和公式以及通项公式与首项之间的关系等。
等比数列的概念和通项
= q(n≥2)
a n = a 1q
(?) n-1
已知等比数列 {an } (1) 首项
思考:
a1 能否是零?其它项呢 为什么 能否是零?其它项呢?为什么 为什么?
能否是零? (2)公比 能否是零?为什么 )公比q能否是零 为什么? 公比q=1时是什么数列? 时是什么数列? 公比 时是什么数列 (3)奇数项 偶数项 的符号有什么特点 奇数项(偶数项 的符号有什么特点? 奇数项 偶数项)的符号有什么特点
(2)在数列{an }中,如果对于任意的正整数n(n ≥ 2),都有
2 an = an −1 ⋅ an +1,那么数列{an }一定是等比数列吗?
等比数列的通项公式 如果一个数列 a , a , a , …,a , …, 1 2 3 n
是等比数列,它的公比是 , 是等比数列,它的公比是q,那么
a2 = a1 ⋅ q a3 = a2 ⋅ q = a1 ⋅ q 2
如果在a与 中间入一个数 中间插入一个数G, 如果在 与b中间插入一个数 ,使a,G,b成等 , , 成等 比数列,那么G叫做 叫做a与 的等比中项。 比数列,那么 叫做 与b的等比中项。
G = ± ab
等比数列 {an }中:
性质 1: an = am q
n− m
,特别地, an = a1q 特别地
3. 各项都是正数的等比数列{an}的公比q ≠ 1, 各项都是正数的等比数列{a }的公比 a1a5 + a1a6 a2=1,则 = a4 + a5
4. {an}是等比数列, an>0, 2a4+2a3a5+a4a6 是等比数列, a 且
=25 则 a3+a5=
a a 满足: 例 4. 已知数列{an }满足: 1 = 1, n+1 = 2an + 1( n ∈ N * )
等比数列的定义和通项公式
等比数列的定义和通项公式一、等比数列的定义和通项公式1.等比序列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母$q$表示$(q≠0)$,即$\frac{a_n}{a_{n-1}}=q(n\geqslant2)$。
(1)等比序列中的任何项都不是0,公共比率为$Q≠ 0 $.(2)若一个数列为常数列,则此数列一定是等差数列,但不一定是等比数列,如:0,0,0,0,$\cdots$。
2.等比序列的通项公式(1)通项公式如果比例序列${a_n}$的第一项是$a_1$,公共比率是$q$,那么这个比例序列的一般项公式是$a_n=a_1q^{n-1}(a_1,q≠0)$。
在记忆公式时,要注意$q$的指数比项数$n$小1这一特点。
注:通过$a_n=a_1q^{n-1}$,$a_m=a_1q^{m-1}$,您可以启动$\frac{a_n}{a_m}=q^{n-m}$,即$a_n=a_mq^{n-m}$所以有:①在已知等比数列${a_n}$中任一项$a_m$及公比$q$的前提下,可以使用$a_n=a_mq^{n-m}$求得等比数列中的任意项$a_n$。
② $a在已知的比例序列${a_n}${M$和$a_n$中,可以使用$\frac{a_n}{a_M}=q^{n-M}$来找到公共比率。
(2)等比数列中项的正负对于比例序列${a_n}$,如果$Q<0$,则${a_n}$中正负项之间的间隔,如序列1、-2、4、-8、16、$\cdots$;如果$Q>0$,则序列${a_n}$中的所有项都具有相同的编号。
总之,等比序列的奇数项必须有相同的符号,偶数项也必须有相同的符号。
3、等比中项如果插入一个数字$g(g≠ 0)$在$a$和$B$之间,因此$a$,$g$,$B$处于等比序列中,$g$被称为$a$和$B$等比的中间。
等比数列的通项与求和公式
等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,它的每一项与前一项的比值都是一个常数。
在等比数列中,我们可以通过一些公式来求解其通项和求和。
一、等比数列的定义与性质等比数列是指一个数列中,每一项与前一项的比值都是一个常数。
这个常数称为等比数列的公比,通常用字母q表示。
对于一个等比数列{a₁, a₂, a₃, ...},它的公比为q,那么可以得到以下性质:1. 第n项与第m项的比值等于q的n-m次方,即aₙ/aₙ = q^(n-m)。
2. 等比数列的任意一项都可以表示为第一项乘以公比的n-1次方,即aₙ = a₁* q^(n-1)。
3. 等比数列的前n项和可以表示为第一项乘以公比的n次方减一,再除以公比减一,即Sₙ = a₁ * (q^n - 1) / (q - 1)。
二、等比数列的通项公式的推导为了推导等比数列的通项公式,我们可以利用等比数列的性质。
假设等比数列的第一项为a₁,公比为q,那么根据等比数列的性质2,第n项可以表示为aₙ = a₁ * q^(n-1)。
三、等比数列的求和公式的推导同样地,为了推导等比数列的求和公式,我们可以利用等比数列的性质。
假设等比数列的第一项为a₁,公比为q,那么根据等比数列的性质3,前n项和可以表示为Sₙ = a₁ * (q^n - 1) / (q - 1)。
四、等比数列的应用举例等比数列的通项公式和求和公式在实际问题中有广泛的应用。
以下是一些应用举例:1. 财务投资:假设某人每年向银行存入1000元,年利率为5%。
那么他每年的存款金额就可以构成一个等比数列,其中第一项为1000,公比为1.05。
通过等比数列的通项公式,可以计算出第n年的存款金额。
而通过等比数列的求和公式,可以计算出n年内的总存款金额。
2. 科学实验:在某个科学实验中,每次实验的结果都是前一次实验结果的一半。
这个实验结果就可以构成一个等比数列,其中第一项为1,公比为0.5。
通过等比数列的通项公式,可以计算出第n次实验的结果。
等比数列知识点并附例题及解析
等比数列知识点并附例题及解析1、等比数列的定义:2、通项公式:一a1qn?1.a1nq?A.bn?a1?Q0,a?B0第一项:A1;工笔:qqana?QN阿曼曼?QQ0 n?2和N?n*Q被称为公共比率an?1.晋升:安?amqn?Mqn?M3.等比平均项:(1)如果a,a,b成等比数列,那么a叫做a与b的等差中项,即:a2?ab或A.注:只有两个具有相同符号的数字具有相等比率的中间项,并且它们的相等比率的中间项具有两个((2)系列?一这是一个等比序列吗?an2?一1.一14.等比序列的前n项和Sn的公式:(1)当q?1时,sn?na1(2)当q?1时,sn??a1?1?qn?1?q?a1?anq1?qa1a?1qn?a?a?bn?a'bn?a'(a,b,a',b'为1?q1?q常数)5.比例顺序的判断方法:(1)用定义:对任意的n,都有an?1?qan或为等比数列(2)等比例中位数:an2?一1安?1(an?1an?1?0)?{an}是比例序列(3)的通项公式:an?A.bn?A.B0{an}是等比序列6和等比序列的证明方法:an?1?q(q为常数,an?0)?{an}an依据定义:若一QQ0 n?2和N?n*?还是一个?1.卡恩?{an}是等比序列吗?17.等比序列的性质:(2)对任何m,n?n*,在等比数列{an}中,有an?amqn?m。
(3)如果我?NsT(m,N,s,T?N*),那么?是像尤其是当我?N在2K,一个?是Ak2注:A1?一a2?一1.a3an?2.ak(4)数列{an},{bn}为等比数列,则数列{},{k?an},{ank},{k?an?bn},{n}bnan(k为非零常数)均为等比数列。
(5)序列{an}是一个等比序列。
每k(k?N*)取出一件物品(am、am?k、am?2K、am?3k、?)这仍然是一个等比序列(6)如果{an}是各项均为正数的等比数列,则数列{logaan}是等差数列(7)若{an}为等比数列,则数列sn,s2n?sn,s3n?s2n,???,成等比数列(8)若{an}为等比数列,则数列a1?a2?????an,an?1?an?2?????a2n,a2n?1?a2n?2??????a3n成等比数列a1?0,那么{an}是递增序列{(9)① 什么时候问?1,A1?0,那么{an}是递减序列A1吗?0,则{an}是递减序列② 当0{③ 什么时候问?1、序列为常数序列(此时序列也是等距序列);④ 什么时候问?0,该序列是一个摆动序列。
等比数列的概念及通项公式 课件
等比数列的通项公式
[典例]
(1)在等比数列{an}中,a1=
1 2
,q=
1 2
,an=
1 32
,则
项数n为
()
A.3
B.4
C.5
D.6
(2)已知等比数列{an}为递增数列,且a
2 5
=a10,2(an+an+2)=
5an+1,则数列{an}的通项公式an=________.
[解析]
(1)因为an=a1qn-1,所以
式为an=2n.
[答案] (1)C (2)2n
等比数列通项公式的求法 (1)根据已知条件,建立关于a1,q的方程组,求出a1,q后 再求an,这是常规方法. (2)充分利用各项之间的关系,直接求出q后,再求a1,最 后求an,这种方法带有一定的技巧性,能简化运算.
等比中项
[典例]
(1)在等比数列{an}中,a1=
2.等比中项
如果在a与b中间插入一个数G,使a,G,b成 等比数列 ,那
么G叫做a与b的等比中项,这三个数满足关系式G=± ab. [点睛] (1)G是a与b的等比中项,则a与b的符号相同,符
号相反的两个实数不存在等比中项.
G=± ab,即等比中项有两个,且互为相反数. (2)当G2=ab时,G不一定是a与b的等比中项.例如02= 5×0,但0,0,5不是等比数列. 3.等比数列的通项公式 等比数列{an}的首项为a1,公比为q(q≠0),则通项公式 为:an= a1qn-1.
[典例] 在数列{an}中,若an>0,且an+1=2an+3(n∈N*).证 明:数列{an+3}是等比数列.
证明:[法一 定义法] ∵an>0,∴an+3>0. 又∵an+1=2an+3, ∴aan+n+1+33=2ana+n+3+ 3 3=2aann++33=2. ∴数列{an+3}是首项为a1+3,公比为2的等比数列.
等比数列的相关公式和性质
等比数列的相关公式和性质 1、等比数列的定义:()()12nn a q q n a -=≠≥0,q 为公比 2、通项公式:11n n a a q -=,1a 为首项,q 为公比推广公式:n m n m a a q -=, 从而得n m nma q a -= 3、等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅ 4、等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==--= 5、等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列(2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 (3) 通项公式:()0n n a A B A B =⋅⋅≠⇔{}n a 为等比数列 (4) 前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列6、 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列 7、等比数列相关技巧:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设项的技巧,一般可设为通项:11n n a a q -=如奇数个数成等比,可设为…,22,,,,a aa aq aq q q…(公比为q ,中间项用a 表示);注意隐含条件公比q 的正负 8、等比数列的性质: (1) 当1q ≠时①等比数列通项公式()1110n nn n a a a q q A B A B q-===⋅⋅≠是关于n 的带有系数的类指数函数,底数为公比q ②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A qq q q--==-=-⋅=-----,系数和常数项是互为相反数的类指数函数,底数为公比q(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式。
等比数列的通项
等比数列的通项等比数列是数学中非常重要的一种数列,它的通项公式与等差数列的通项公式相似,但它们的增量是相乘而非相加的。
在本文中,我们将介绍等比数列的通项公式及其性质。
一、等比数列的定义等比数列是一个由各项元素乘以同一个比例数得出的数列,这个比例数叫做等比数列的公比。
用符号 q 来表示公比,第 n 项为 $a_n$ 则有:$$a_n = a_1 q^{n-1}$$其中,$a_1$ 是等比数列的首项。
二、等比数列的通项公式等比数列的通项公式可以通过递推公式及通项公式推导出来。
1. 递推公式等比数列的递推公式可以表示为:$$a_{n+1}=q\\times a_n$$该公式说明了等比数列中的每一项都是前一项乘以公比。
例如,第二项是第一项乘以公比,第三项是第二项乘以公比,以此类推。
2. 通项公式由递推公式可以得到以下的推导过程:$$a_{n+1}=q\\times a_n$$$$a_n=q\\times a_{n-1}$$$$a_{n-1}=q\\times a_{n-2}$$将第二个式子代入第一个式子中,可以得到:$$a_{n+1}=q\\times q\\times a_{n-1} = q^2\\times a_{n-2}$$继续将第三个式子代入第二个式子中,可以得到:$$a_{n+1}=q\\times q\\times q\\times a_{n-2} = q^3\\times a_{n-3}$$ 以此类推,可以得到通项公式:$$a_n=a_1 \\times q^{n-1}$$三、等比数列的性质1. 通项公式的说明等比数列的通项公式表明,每一项是上一项乘以公比而得。
这说明等比数列是一个不断等比放大的过程,每一项都是前一项的一定倍数。
2. 公比 q 的作用公比 q 决定了等比数列的增量。
如果 q 大于 1,则等比数列是一个不断增长的数列;如果 q 小于 1,则等比数列是一个递减的数列;如果 q 等于 1,则等比数列是一个常数序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列的定义及其通项公式
【基础回顾】
1.等比数列的定义
1
n n a q a -=(q 为常数且0q ≠,n ∈N +且2n ≥) 2.等比数列的通项公式及其性质
11n n m n n m a a q a a q --−−−→==←−−−推广
特例 等比数列中没有零这个项且其中的项要么全部是正或全部是负或正负间隔出现,总之,等比..数列的奇数项符号相同..........,偶数项的符号相同.........等比数列的通项形式是指数式...
. 3.等比中项
2211(2)(1)()n n n n n k n k m n p q a a a n a a a n k a a a a m n p q -+-+−−−→−−−→=≥=≥+=+=+←−−−←−−−推广推广特例特例
4.等比数列的证明
(1)定义法:1
(2n n a q n a -=≥,n ∈N +,q 是非零常数) (2)等比中项法:211n n n a a a -+=⋅(2n ≥,且0n a ≠)
(3)通项公式法:n n a kq =(,k q 为常数,且0kq ≠)
(4)求和法:n n S Aq B =+,且0A B +=,0AB ≠.
5.函数性质
【典型例题】
例1 已知无穷等比数列{}n a 的首项为1a ,公比为q .
(1)数列n a ,1n a -, ,2a ,1a 也成等比数列吗?如果是,写出它的首项和公比;
(2)依次取出{}n a 的所有奇数项,组成一个新数列,这个数列还是等比数列吗?如果是,写出它的首项和公比;
(3)数列{}n ca (其中c 为常数且0c ≠)是等比数列吗?如果是,写出它的首项和公比. 例2 在等比数列{}n a 中.
(1)已知13a =,2q =-,则6a = ;(2)已知32n n a =⨯,则1a = ,d = ;
(3)它的首项和公比均为2,若它的末项为32,则这个数列共有 项;
(4)已知12a =,7128a =,则q = ;(5)已知427a =,3q =-,则7a = ;
(6)已知320a =,6160a =,则n a = ;(7)若4n n a a +=,则q = . 例3 (1)已知{}n a 为等比数列,且243546225a a a a a a ++=,那么35a a +的值等于 ;
(2)已知等比数列{}n a 中,3833a a +=,4732a a =,且数列{}n a 是递增数列,则数列{}n a 的公比q 为 .
练习:(1)等比数列1a -,2a ,8a , 的第四项为 ;
(2)已知各项均为正数的等比数列{}n a 中,1235a a a ⋅⋅=,78910a a a =,则456a a a = . 例4 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数和第三个数的和是12,求这四个数.
【夯实基础】
1.在等比数列{}n a 中,如果66a =,99a =,那么3a 的值为( )
A.4
B.
32 C.169
D.2 2.已知数列a ,(1)a a -,2(1)a a -, 是等比数列,则实数a 的取值范围是( )
A.1a ≠
B.1a ≠或0a ≠
C.0a ≠
D.1a ≠且0a ≠
3.公差不为0的等差数列{}n a 中,2a 、3a 、6a 依次成等比数列,则公比等于( ) A.12 B.13
C.2
D.3 4.已知数列{}n a 的前n 项和1n n S a =-(a 是不为0的常数),那么数列{}n a 是( ) A.一定是等差数列 B.一定是等比数列
C.或者是等差数列,或者是等比数列
D.既不是等差数列,也不是等比数列
5. ABC 的三边a 、b 、c 成等比数列,则角B 的取值范围是( ) A.[0,]6π B.(0,]6π C.[0,]3π D.(0,]3
π 6.已知等比数列32781,,,,,41632
x y -- ,则x = ,y = . 7.若正项等比数列{}n a 的公比1q ≠,且356,,a a a 成等差数列,则3546
a a a a ++等于 . 8.在83和272
之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 9.设a 、b 、c 成等比数列,x 是a 、b 的等差中项,y 是b 、c 的等差中项,则a c x y
+= .
10.已知{}n a 成等差数列,{}n b 成等比数列,且公差与公比均为d (0d >,且1d ≠).若11a b =,333a b =,555a b =,求n a 和n b .
11.已知有穷数列{}n a 共有2k 项(整数2k ≥),首项12a =,设该数列的前n 项和为n S ,且1(1)2n n a a S +=-+(1,2,,21n k =- ),其中常数1a >.
(1)求证:数列{}n a 是等比数列;
(2)若2
212k a -=,数列{}n b 满足2121log ()(1,2,,2)n n b a a a n k n
== ,求数列{}n b 的通项公式.
12.已知数列{}n a 中,n S 表示前n 项和,若11a =,142n n S a +=+(n ∈N +)
(1)求证:1{2}n n a a +-为等比数列;(2)求证:{}2n n a 为等差数列;(3)求n a ,n S ;。