【精品】运筹学毕业论文
大学生运筹学论文
大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。
当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。
关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。
而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。
再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。
真的会这样吗?我半信半疑地进行了一点近似的计算。
按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。
(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。
37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。
运筹学结课论文
运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。
关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。
在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。
在如此短的时间内, 如何预警和拦截成为一大难题。
1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。
1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。
因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。
其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。
然而“运筹”发展到现代已成为一门重要的学科“运筹学”。
由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。
所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。
博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。
运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
运筹学论文
运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。
首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。
1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。
运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。
本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。
2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。
它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。
2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。
常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。
3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。
通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。
3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。
运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。
3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。
通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。
4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。
运筹学论文
中国矿业大学运筹学结课论文姓名:魏恒征学院:矿业工程学院班级:采矿工程09-7班学号:01090235教师:付乳燕运筹学的初步学习及认识背景:本学期在付老师的指导下学习了运筹学,初步了解运筹学的发展历史及运筹学在生活实例中的应用。
运筹学是一门和社会生活紧密联系的一门科学,学习运筹学不仅是仅仅的学习知识,运筹学的诸多思想在实际决策中很有指导意义。
关键词:运筹学历史特点学习收获前景一、运筹学简介英语全称为:Operational Research(英国)或者是Operations Resear ch(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。
运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学论文
运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。
2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。
3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。
4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。
5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。
6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。
7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。
8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。
运筹学论文
浅析运筹学【摘要】:早在“孙子兵法”中运筹学思想、方法就被古人实施运用。
他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。
运筹学是一种科学决策的方法,是依据给定目标和条件从众多方案中选择最优方案的最优化技术。
通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。
【Abstract】 As early as in "sun tzu's" operations research ideas and methods will be the ancients implement use. His emergence, development and implementation are with its use in various fields of promotion and thorough popular feeling. Operations research is a scientific decision-making method, is based on a given goal and choose from so many conditions scheme of the best plan optimization technology. Based on a subject of study, I realized the importance of operations research ideasand practical, and was applied in the later study, life and work. 【关键词】:运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学思想的出现可以追溯到很早——“田忌赛马”(对策论)、孙子兵法等都体现了优化的思想。
运筹学课程论文
运筹学课程论文运筹学在现代社会中的应用班级:运筹学2班年级:2014级学院:园艺园林教师:陈涛姓名:宋春雄学号:222014325052030摘要:运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
运筹学在管理方面有着很突出的作用。
管理就是“运筹帷幄之中,决胜千里之外”的最佳解释。
关键字:企业管理,生活,筹划正文:运筹学是现代管理学的一门重要专业基础课。
它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答.运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外"的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却相对较晚。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支.运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
管理运筹学结业论文
运筹学论文运筹学(operational research,缩写O.R.)的“运筹”就是运算、筹划的意思。
实际上,现实生活中几乎在每个人的头脑中都自然地存在着一种朴素的“选优”和“求好”的思想。
例如,当准备去完成一项任务或去做一件事情时,人们脑子里自然地会产生一个想法,就是在条件允许的范围内,尽可能地找出一个“最好”的办法,去把需要做的事情做好。
实际上这就是运筹学的基本思想。
运筹学作为一门科学最早出现在第二次世界大战前夕,英国面临如何抵御德国飞机轰炸的问题。
当时英国的鲍德西雷达站负责人A.P.罗威建议马上展开对雷达系统运用方面的研究。
为区分于技术方面的研究,他提出了“operational research”这个术语,原意为“作战研究”。
当时所研究和解决的问题都是短期和战术性的问题,第二次世界大战结束以后,在英美两国的军队中相继成立了正式的运筹学研究组织。
并以RAND公司为首的一些部门开始着重研究战略性问题。
例如,未来的武器系统的设计和其合理运用的方法,各种轰炸机系统的评价,未来的武器系统和未来战争的战略部署,以及苏联的军事能力和未来的发展预测等问题。
进入了20世纪60年代,运筹学的研究转入了战略力量的构成和数量问题的研究,同时除了军事领域的应用研究以外,相继在工业、农业、经济和社会问题等各领域都有了应用。
与此同时,运筹学的研究进入了快速发展阶段,并形成了运筹学的许多新的应用分支。
O.R.传入中国后,曾一度被译为“作业研究”或“运用研究”。
1956年,中国学术界通过钱学森、许国志等科学家的介绍,在了解了这门学科后,有关专家就译名问题达成共识,即译为“运筹学”。
其译意恰当的反映了运筹学既源于军事决策,又军民通用的特点,并且赋予其作为一门学科的含义。
同时,相继有以华罗庚教授为首的一大批数学家加入了运筹学的研究队伍,使中国运筹学研究的很多分支很快跟上国际水平,并结合我国的特点在国内进行了推广应用。
特别是经济领域,关于投入产出表的研究与应用、质量控制(质量管理)等方面的应用很有特色。
运筹学论文
浅谈企业管理中的运筹学***********学院摘要:运筹学自二战以来开始打来那个应用在除战争以外的许多领域,尤其在企业管理中表现的尤为突出。
运筹学的思想贯穿了企业管理的始终,在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用,对企业管理的发展产生重要影响。
本文主要通过对运筹学和企业管理的分析,浅谈了运筹学在企业管理中的具体应用以及运筹学对企业管理的影响。
关键词:运筹学;企业管理;企业发展运筹学是一门定量优化的决策科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。
运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。
它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。
运筹学早期应用在军事领域,二战后转为民用,并且在企业管理中的越来越广泛,取得了良好的经济效益。
运筹学的思想贯穿了企业管理的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。
优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。
只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。
作为企业的管理者,把握并运用好运筹学的理念定会取得“运筹帷幄之中,决胜千里之外”之功效。
一、运筹学的原则及工作步骤、企业管理的基本阐述运筹学在其发展过程中形成了一些原则,如:合伙原则、催化原则、互相渗透原则、独立原则、宽容原则、平衡原则。
而这些原则在企业管理中也得到了充分的应用。
比如说,在管理学中,“协调”是管理的重要职能之一,强调彼此之间的合作,管理者必须在组织分工的基础之上努力争取合作,使个人、部门目标与企业整体目标保持一致[1]。
【精编完整版】运筹学毕业论文
(此文档为word格式,下载后您可任意编辑修改!)运筹学课程设计目录第一章自编题一、运输规划问题包头市某冰箱工厂有三个分厂,生产同一种冰箱,供应该厂在市内的四个门市部销售。
已知三个分厂的日生产能力分别是50、60、50台。
四个门市部的日销售量分别是40、40、60、20台。
从各个分厂运往各门市部的运费如表1-11所示。
试安排一个运费最低的运输计划。
表1-11解,(1)运用最小元素法求解,得初始基本可行解,如下表1-12表1-12(2)用位势法计算所有非基变量检验数,求得如下表1-13表1-13(3)利用闭回路法进一步求解:表1-14(4)得出新方案,如表1-15表1-15(5)经检验所有空格的检验数均大于等于零,故此方案为最优解。
最优解为:X13=30,X14=20,X22=30,X23=30,X31=40,X32=10最优方案运费Z=30×9+20×6+30×3+30×7+40×6+10×4=970元(6)运用软件进行检验:最优解如下********************************************起至销点发点 1 2 3 41 0 0 30 202 0 30 30 03 40 10 0 0此运输问题的成本或收益为: 970二、指派问题现有四项不同的任务,分别由四个人去完成。
因四个人的专长不同,所以每个人完成的任务所需的时间也不同(如表1-21),试问如何安排他们的工作才能使总的工作时间最少?表1-21 (单位:小时)解:(1)变换效率系数矩阵,使其每行没列都出现0元素10 9 7 8 (-7) 3 2 0 1C ij = 5 8 7 7 (-5) 0 3 2 25 46 5 (-4) 1 0 2 52 3 4 5(-2) 0 1 2 3(2)进行试指派3 2 0 10 3 2 21 02 50 1 2 3(3)作最少的直线覆盖所有的0元素,以确定该系数矩阵中能找到最多0元素3 2 0 10 3 2 21 02 50 1 2 3(4)对矩阵进行变换,以增加0元素3 2 0 14 2 0 00 3 2 2 0 2 1 01 02 5 2 0 2 00 1 2 3 0 0 1 1(5)重复第二步,找到最优解4 2 0 0 4 2 0 00 2 1 0 或 0 2 1 02 0 2 0 2 0 2 00 0 1 1 0 0 0 1最优方案1:乙→1,丁→2,甲→3,丙→4最少时间Z=7+5+5+3=20小时最优方案2:丁→1,丙→2,甲→3,乙→4最少时间Z=7+7+4+2=20小时因为软件原因,无法进行检验三、最小支撑树问题某网络公司为沿着友谊大街8个居民点架设网线,连接8个居民点的道路如图1-31所示,边表示可架设网络道路,边权为道路的长度,设计一网线网络连通这8个居民点,并使总的输电线长度最短。
运筹学论文(合集5篇)
运筹学论文(合集5篇)第一篇:运筹学论文摘要:运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
运筹学可以用来很好的解决生活中的许多问题。
运筹学有着广泛的应用,对现代化建设有重要作用。
关键词:运筹学;应用;最优方案人们无论从事任何工作,不管采取什么行动,都希望所制订的工作或行动方案,是一切可行方案中的最优方案,以期获得满意的结果诸如此类的问题,通常称为最优化问题。
运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
求解最优化问题的关键,一是建立粗细适宜的数学模型,把实际问题化为数学问题;二是选择正确而简便的解法,以通过计算确定最优解和最优值。
最优解与最优值相结合,便是最优方案。
人们按照最优方案行事,即可达到预期的目标。
运筹学是现代数学的一个重要分支,属于信息科学和数学的综合科学,是20世纪4O年代发展起来的一门具有较强实践性的综合学科,它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物等的组织管理、筹划调度问题,以发挥系统的最大效益。
它的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。
对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。
通常在遇到这些复杂繁琐的事的时候,人们不会考虑太多,仅是凭着第一直觉去处理,结果也因为处理方式的不同而不同。
有的人第一直觉好,就能把事情处理的很好,而有的人却只能接受糟糕的结果。
生活中,如果我们能理智的去分析问题,找到处理问题的最佳办法,那么我们将会避免很多损失和烦恼,取得更大的成功和收获。
关于运筹学论文范例整理分享(共5篇)
关于运筹学论文范例整理分享(共5篇)运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件.第1篇:新业态下民航类专业运筹学教学模式改革研究从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。
在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。
航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。
新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。
信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。
运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
通常以最优、最佳等作为决策目标,避开最劣的方案[1]。
近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。
本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。
一、运筹学教育教学现况郑州航院交通运输(航空物流)专业、安全工程(民航方向)及工业工程(航空方向)着重培养能够从事民航运输管理、机场运营管理、航空安全管理、跨境电商等经营与管理应用型人才。
运筹学本科论文
.毕业设计(论文)论文(设计)题目:运筹学在运输问题中的应用姓名¥¥¥学院¥¥学院专业¥¥¥年级¥¥¥级指导教师¥¥¥2013年5 月23 日.目录摘要 (1)正文 (3)1、前言 (3)1.1论文研究的背景与意义 (3)1.2运筹学在运输问题中的现状 (3)1.3本文的主要工作及结构安排 (3)2、预备知识 (4)2.1运筹学的基本问题及概念 (4)2.11运筹学简介: (4)2.12 线性规划问题 (5)2.13多阶段决策问题 (6)2.14动态规划的最优化原理 (6)2.2几种常见的运输物流问题 (7)2.21最短路问题 (7)2.22产销平衡的运输问题 (7)2.23产销不平衡的运输问题 (7)2.3解决运输问题的几种方法 (8)2.31最小元素法 (8)2.32伏格尔方法(Vogel) (8)2.33表上作业法 (9)3、经典运输问题中运筹学的应用 (9)3.1最短路问题 (9)3.11提出问题 (9)3.12分析问题 (10)3.13解决问题 (10)3.2产销平衡的运输问题 (12)3.21提出问题 (12)3.22分析问题 (12)3.23解决问题 (13)3.24结果分析: (23)4、总结与反思 (23)参考文献: (24)附录 (25)摘要运筹帷幄之中,决胜千里之外。
运筹学作为一种科学决策的方法,早在《孙子兵法》中其思想和方法就被古人实施运用。
在运输问题领域里,可以运用运筹学的知识,通过分析、计算得出最优的方案,以提高运输效率,节约运输成本,为运输企业和整个社会创造更高的经济效益。
随着社会的发展和人们生活水平的提高,运输路线越来越复杂、运输企业也越来越多,在资源和人员有限的情况下,进行资源的优化配置和人员的合理分工,显得越来越重要。
本文将从理论知识和实际应用这两大方面,对运输方案的优化进行全面、系统的解析,力求能让更多的人了解运筹学,应用运筹学,在提高企业效益的基础上,为运筹学的发展壮大尽一份力。
运筹学期末论文
运筹管理学论文引言:运筹学是一门寻求由于运筹学研究的广泛性和复杂性,人们至今没有形成一个统一的定义。
以下给出几种定义:运筹学是一种科学决策的方法。
运筹学是依据给定目标和条件从众多方案中选择最优方案的最优化技术。
运筹学是一门寻求在给定资源条件下,在给定资源条件下,如何设计和运行一个系统的科学决策的方法。
运筹学与管理科学(Management Science MS)关系:管理科学涵盖的领域比运筹学更宽一些。
可以说,运筹学是管理科学最重要的组成部分。
运筹学研究的特点:科学性(1)它是在科学方法论的指导下通过一系列规范化步骤进行的;(2)它是广泛利用多种学科的科学技术知识进行的研究。
运筹学研究不仅仅涉及数学,还要涉及经济科学、系统科学、工程物理科学等其他学科。
实践性运筹学以实际问题为分析对象,通过鉴别问题的性质、系统的目标以及系统内主要变量之间的关系,利用数学方法达到对系统进行最优化的目的。
更为重要的是分析获得的结果要能被实践检验,并被用来指导实际系统的运行。
系统性运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达到最优状态。
综合性运筹学研究是一种综合性的研究,它涉及问题的方方面面,应用多学科的知识,因此,要由一个各方面的专家组成的小组来完成。
下面我们通过一个运筹学案例和它的分析过程,来反应运筹学的一些特点和性质。
配矿计划编制一、问题的提出某大型冶金矿山公司共有14个出矿点,年产量及各矿点矿石的平均品位(含铁量的百分比)均为已知(见表1)。
定的品位值T Fe进行不同品位矿石的混合配料,然后进入烧结工序,最后,将小球状的烧结球团矿送入高炉进行高温冶炼,生产出生铁。
该企业要求:将这14个矿点的矿石进行混合配矿。
依据现有生产设备及生产工艺的要求,混合矿石的平均品位T Fe规定为45%。
问:如何配矿才能获得最佳的效益?二、分析与建立模型我们可以很快判定此项目属于运筹学中最成熟的分支之一——线性规划的范畴。
运筹学论文
运筹学论文论文摘要:运筹学是一门定量决策科学,它利用定量分析的方法(数学、管理科学、计算机科学)进行科学决策以实现最有效的管理来获得满意的经济效益,是现代管理的重要理论基础。
以下是结合个人所学专业,经济学,对运筹学的一些理解。
一、运筹学的产生人们一般认为运筹学最早出现在第二次世界大战初期,英国军事部门迫切需要研究如何将非常有限的屋子以及人力分配与使用到各种军事活动中,已达到最好的作战效果。
在世界第二次大战期间,德国已经拥有一支强大的空军,飞机从德国起飞17分钟即到达英国本土。
在如此短的时间内,如何预警和拦截成为一大难题。
1935年,为了对付德国空军力量的严重威胁,德国在海岸的鲍德西成立了关于作战控制技术的研究机构。
1938年,鲍德西科学小组负责人把他们从事的工作称为运筹学。
因此,人们把鲍德西作为运筹学的诞生地,将1935—1938年这一段时间作为运筹学产生的酝酿时期。
第二次世界大战期间,运筹学成功地解决了许多重要作战问题,显示了科学的巨大物质威力,这也为运筹学后来的发展铺平了道路。
当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。
对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。
二、运筹学在当今社会的发展与应用运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
运筹学在实际生活中的应用研究毕业论文
本科毕业论文(设计)论文题目:运筹学在实际生活中的应用研究毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作与取得的研究成果。
据我所知,除文中已经注明引用的容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分容。
的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体与大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录引言................................................................... . (1)1 运筹学思想的产生和学科发展概述................................................................... .. (2)2 运筹学的主要研究容................................................................... . (4)2.1 确定型模型...................................................................... .. (4)2.1.1线性规划 (4)2.1.2非线性规划 (5)2.1.3图与网络 (6)2.1.4动态规划2.2 概率型模型................................................................... ......................................72.2.1存贮论................................................................... ...........................................72.2.2排队论................................................................... . (8)2.2.3决策分析 (10)2.2.4博弈论 (11)3 运筹学解决现实问题举例与研究................................................................... . (13)3.1机械产品生产计划问题....... ........................................................... . (13)3.2存贮过程中的费用最小问题................................................................... . (16)4 运筹学在应用情况分析................................................................ (20)5 总结................................................................... . (22)参考文献................................................................... (23)致 ................................................................. (24)运筹学在实际生活中的应用研究摘要:本文主要对运筹学在实际生活中的应用进行研究,使大家对运筹学在生活中的应用方法与产生的效果有大致认识。
运筹学毕业论文
运筹学毕业论文运筹学毕业论文运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涵盖了数学、统计学和计算机科学等多个学科的知识,通过建立数学模型和运用各种优化方法,帮助人们解决实际问题。
作为一门交叉学科,运筹学在现代社会中扮演着重要的角色,对于提高效率、优化资源利用以及解决各种决策问题具有重要意义。
一、运筹学的基本原理运筹学的基本原理可以概括为三个要素:模型建立、优化方法和决策分析。
首先,模型建立是运筹学的基础。
通过对问题进行抽象和建模,将实际问题转化为数学问题,从而能够运用数学方法进行求解。
模型建立需要考虑问题的目标、约束条件以及相关的变量和参数,以此来描述问题的本质和特点。
其次,优化方法是解决运筹学问题的核心。
优化方法包括线性规划、整数规划、动态规划、图论等多种方法,根据问题的性质和特点选择不同的方法进行求解。
优化方法的目标是寻找问题的最优解,即在满足约束条件的前提下,使目标函数达到最小或最大值。
最后,决策分析是对优化结果进行评估和决策的过程。
通过对优化结果进行分析,评估其对问题的解决程度和可行性,从而为决策者提供决策依据。
决策分析需要综合考虑问题的经济、社会和环境等方面因素,以及决策者的偏好和目标。
二、运筹学在实际问题中的应用运筹学在各个领域都有广泛的应用,下面以物流管理和生产调度为例,介绍其在实际问题中的应用。
物流管理是指对物流过程进行规划、组织、实施和控制的管理活动。
在物流管理中,通过建立供应链网络模型和运用优化方法,可以实现最优的物流路径选择、仓库位置布局、运输调度等,从而降低物流成本、提高物流效率。
例如,通过运筹学方法,可以确定最佳的配送路线和配送车辆数量,使得物流成本最小化,同时满足客户需求。
生产调度是指对生产过程进行规划和控制的管理活动。
在生产调度中,通过建立生产调度模型和运用优化方法,可以实现最优的生产计划和生产调度,从而提高生产效率、降低生产成本。
例如,在工厂生产调度中,通过运筹学方法可以确定最佳的生产顺序和机器调度,使得生产效率最大化,同时满足交货期限和资源约束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学课程设计目录第一章自编题一、运输规划问题包头市某冰箱工厂有三个分厂,生产同一种冰箱,供应该厂在市内的四个门市部销售。
已知三个分厂的日生产能力分别是50、60、50台。
四个门市部的日销售量分别是40、40、60、20台。
从各个分厂运往各门市部的运费如表1-11所示。
试安排一个运费最低的运输计划。
表1-11解,(1)运用最小元素法求解,得初始基本可行解,如下表1-12表1-12(2)用位势法计算所有非基变量检验数,求得如下表1-13表1-13(3)利用闭回路法进一步求解:表1-14(4)得出新方案,如表1-15表1-15(5)经检验所有空格的检验数均大于等于零,故此方案为最优解。
最优解为:X13=30,X14=20,X22=30,X23=30,X31=40,X32=10最优方案运费Z=30×9+20×6+30×3+30×7+40×6+10×4=970元(6)运用软件进行检验:最优解如下********************************************起至销点发点 1 2 3 41 0 0 30 202 0 30 30 03 40 10 0 0此运输问题的成本或收益为: 970二、指派问题现有四项不同的任务,分别由四个人去完成。
因四个人的专长不同,所以每个人完成的任务所需的时间也不同(如表1-21),试问如何安排他们的工作才能使总的工作时间最少?表1-21 (单位:小时)解:(1)变换效率系数矩阵,使其每行没列都出现0元素10 9 7 8 (-7) 3 2 0 1C ij = 5 8 7 7 (-5) 0 3 2 25 46 5 (-4) 1 0 2 52 3 4 5(-2) 0 1 2 3(2)进行试指派3 2 0 10 3 2 21 02 50 1 2 3(3)作最少的直线覆盖所有的0元素,以确定该系数矩阵中能找到最多0元素3 2 0 10 3 2 21 02 50 1 2 3(4)对矩阵进行变换,以增加0元素3 2 0 14 2 0 00 3 2 2 0 2 1 01 02 5 2 0 2 00 1 2 3 0 0 1 1(5)重复第二步,找到最优解4 2 0 0 4 2 0 00 2 1 0 或 0 2 1 02 0 2 0 2 0 2 00 0 1 1 0 0 0 1最优方案1:乙→1,丁→2,甲→3,丙→4最少时间Z=7+5+5+3=20小时最优方案2:丁→1,丙→2,甲→3,乙→4最少时间Z=7+7+4+2=20小时因为软件原因,无法进行检验三、最小支撑树问题某网络公司为沿着友谊大街8个居民点架设网线,连接8个居民点的道路如图1-31所示,边表示可架设网络道路,边权为道路的长度,设计一网线网络连通这8个居民点,并使总的输电线长度最短。
图1-311 2 673 54 8解:(1)利用破圈法求解:图1-321 2 673 54 8图1-331 2 673 54 8图1-341 2 673 54 8图1-351 2 673 54 8图1-361 2 673 54 8图1-371 2 673 54 8至此,无圈,图1-37为最小树,各边权之和为18,或如下1-38图:各边权之和也为18图1-381 2 673 54 8(2)运用软件进行检验:此问题的最小生成树如下:*************************起点终点距离---- ---- ----1 3 23 4 21 2 42 5 25 7 37 8 27 6 3此问题的解为:18第二章上机题一、线性规划1. max z =s. t.运算检验:目标函数最优值为 : 21变量最优解相差值 5 03 0约束松弛剩余变量对偶价格 1 0 .73 0 .84 5 0目标函数系数范围 :变量下限当前值上限X1 1 3 无上限X2 -1.5 2 6常数项数范围 :约束下限当前值上限1 12 22 26.2862 7 10 无上限3 4.5 7 124 -4 1 无上限2. max z=s.t.运算检验:目标函数最优值为 : 31变量最优解相差值13 05 0约束松弛剩余变量对偶价格2 9 03 0 .54 0 .5目标函数系数范围 :变量下限当前值上限1 2 3.667 1 2常数项数范围 :约束下限当前值上限1 5 10 无上限2 51 60 无上限3 14.667 18 19.3854 38 44 543. min z=s.t.运算检验:目标函数最优值为 : 55变量最优解相差值2 01 0约束松弛剩余变量对偶价格1 0 -52 7 03 0 -10目标函数系数范围 :变量下限当前值上限15 20 3010 15 20常数项数范围 :约束下限当前值上限1 3.6 5 62 -43 无上限3 2.5 3 44. max z=s.t.运算检验:目标函数最优值为 : 18变量最优解相差值21 024 00 2约束松弛剩余变量对偶价格1 0 12 0 13 7 0目标函数系数范围 :变量下限当前值上限限x2 -1.333 -1 无上限x3 无下限 1 3 常数项数范围 :约束下限当前值上限 1 -6 15 无上限2 无下限 -3 43 -34 无上限5. min z=s.t.,无约束,运算检验:目标函数最优值为 : 6变量最优解相差值2 00 00 3.286约束松弛剩余变量对偶价格1 8 02 0 -0.8573 0 0.143目标函数系数范围 :变量下限当前值上限无下限 1 1无下限 -2 1.286 常数项数范围 :约束下限当前值上限 1 4 12 无上限2 -6 8 83 6 6 无上限6.minz=-3x1+x2+x3-x4s.t..运算检验:目标函数最优值为 : 7变量最优解相差值1 01 03 00 32.333约束松弛剩余变量对偶价格1 0 .6672 0 73 0 -11.667目标函数系数范围 :变量下限当前值上限无下限 -3 3.929 -6.462 1 无上限 -3.467 3 无上限 -33.333 -1 无上限常数项数范围 :约束下限当前值上限1 -3 0 无上限2 8 9 103 5.4 6 6.757. min z=s.t.(j=1, (4)运算检验:目标函数最优值为 : 5变量最优解相差值0 90 01 01 0约束松弛剩余变量对偶价格1 0 -22 0 3目标函数系数范围 :变量下限当前值上限-4 5 无上限 -2 -2 无上限3 3 无上限无下限 2 2常数项数范围 :约束下限当前值上限1 6 7 92 2.333 3 3.5二、运输问题8.下列表中的数据是某公司的甲、乙、丙三个分厂向公司所属四个门市部运送单位产品的运费。
请给出总运费最低的运费值。
表2-7运算检验:最优解如下********************************************起至销点发点 1 2 3 41 0 0 0 52 5 0 5 103 0 10 5 0此运输问题的成本或收益为: 2059.运输问题运算检验:最优解如下********************************************起至销点发点 1 2 3 41 5 0 0 12 03 2 03 0 0 2 6此运输问题的成本或收益为: 4710.运输问题运算检验:最优解如下********************************************起至销点发点 1 2 3 41 2 0 5 02 1 0 0 33 0 6 0 3此运输问题的成本或收益为: 7911.运输问题运算检验:最优解如下********************************************起至销点发点 1 2 3 41 0 0 7 02 12 0 13 03 0 10 0 15此运输问题的成本或收益为: 206三、最短路问题12.最短路问题ADS B TEC从节点S到节点T的最短路*************************起点终点距离---- ---- ----S A 4A B 1B D 5D T 6此问题的解为:1613.最短路问题1 3V1 V2 2 4运算检验:从节点 v1到节点v2的最短路*************************起点终点距离---- ---- ----7 1 91 3 13 6 3此问题的解为:1314.最短路问题V1 V2VsV3 V4运算检验:从节点 Vs到节点Vt的最大流*************************起点终点距离---- ---- ----Vs V1 2V1 V3 1V1 V2 2V3 V1 0V3 V4 0V2 V4 0V2 V3 0V2 Vt 3V4 Vt 0此问题的解为:3四、最大流问题15.最大流问题251 3 764从节点1到节点7的最大流*************************起点终点距离---- ---- ----1 2 701 3 501 4 302 5 302 6 403 5 504 6 305 7 806 7 70此问题的解为:15016.最大流问题A DS TB C运算检验:从节点 1到节点6的最大流*************************起点终点距离---- ---- ----S A 3S B 2A C 0B D 3B C 2C A 0C D 0C T 2D T 3此问题的解为:517.最小费用最大流问题s t2 3运算检验:从节点 4到节点5的最大流*************************起点终点流量费用---- ---- ---- ----s 1 4 1s 2 8 41 2 2 21 32 32 3 3 12 t 7 63 t 5 2此问题的最大流为:12此问题的最小费用为:10118.最小费用最大流问题1 2s t3 4运算检验:从节点 s到节点t的最大流*************************起点终点流量费用---- ---- ---- ----s 1 7 2s 2 8 101 32 71 2 5 32 3 5 12 4 8 43 4 5 23 t 10 94 t5 3此问题的最大流为:15此问题的最小费用为:275五、最小支撑树问题19.最小支撑树问题1 43 5 72 6运算检验:此问题的最小生成树如下:*************************起点终点距离---- ---- ----1 3 13 2 23 5 25 4 25 6 34 7 3此问题的解为:1320.最小支撑树问题21 3 5 74 6运算检验:此问题的最小生成树如下:*************************起点终点距离---- ---- ----1 2 22 3 23 4 13 6 36 5 15 7 5此问题的解为:14参考文献:《运筹学》作者:宋学峰东南大学出版社 2011年一月出版《运筹学基础及应用》作者:胡运权高等教育出版社 2008年6月出版《运筹学实用教程》作者:宁宣熙科学出版社 2007年4月出版。