劳斯判据总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 稳定性
1、稳定性的概念
2、判别系统稳定性的基本原则
线性系统稳定的充要条件为:所有特征根均为负数或具有负的实数部分;即:所有特征根均在复数平面的左半部分。
由于特征根就是系统的极点,因此,线性系统稳定的充要条件也可表述为:系统的极点均在s 平面的左半平面。
显然,稳定性与零点无关。
当有一个根落在右半部,系统不稳定。
当有根落在虚轴上(不包括原点),此时为临界稳定,系统产生持续振荡。
3-2 劳斯稳定判据
劳斯判据
劳斯判据步骤如下: 1)列出系统特征方程:
553(0
0122110->=++⋅⋅⋅+++---a a S a S a S a S a n n n n n
检查各项系数是否大于0,若是,进行第二步。
可见,i a ,1,2,i =是满足系统稳定的必要条件。
2)按系统的特征方程式列写劳斯表
3)考察劳斯阵列表中第一列各数的符号,如果第一列中各数a 0、
a 1、
b 1、
c 1、……的符号相同,系统稳定;如果符号不同,系统不稳
定,且符号改变的次数等于系统具有的正实部特征根的个数。
通常00a >,因此,劳斯稳定判据可以简述为劳斯表中第一列的各数均大于零。
如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征方程式的根在S 的右半平面上的个数,相应的系统为不稳定。
※※ 劳斯判据特殊情况
· I) 劳斯表某一行中的第一项等于零,而该行的其余各项不等于零 用一个很小的正数ε来代替零这一项,据此算出其余的各项,完成劳斯表
如果第一列ε上面的系数与下面的系数符号相同,则表示该方程中有一对共轭虚根存在,相应的系统也属不稳定。
· II )劳斯表中出现全零行
表示相应方程中含有一些大小相等符号相反的实根或共轭虚根。
利用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行,完成劳斯表的排列。
这些大小相等、符号 相反的根可通过求解辅助方程得到,而且其根的数目总是偶数的。
例如:控制系统的特征方程为
0161620128223456=++++++s s s s s s
列劳斯表
16
381662480
00
161220
1612216208101
23456S S S S S S S
由于3s 这一行全为0,用上一行组成辅助多项式
s s ds
s dF 248)
(3+=,由上表可知,第一列的系数均为正值,表明该方程在S 右半平面上没有特征根。
令F(s)=0,
)4)(2(2)86(216122)(222424=++=++=++=s s s s s s s s F
得1,23,4 2s s j =±=±. 求得两对大小相等、符号相反的根
2,2j j ±±,显然这个系统处于临界稳定状态。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。