数学北师大版八年级下册分式方程第二课时教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计与反思
课题:北师大版八年级下册第五章分式与分式方程第4节分式方程第二课时
一、学情分析
1、学生基本了解分式方程的概念,如何寻找最简公分母,熟悉等式的性质并能利用等式的性质解一元一次方程,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,并理解每一步的根据是什么,从而能通过观察类比的方法,探索分式方程的解法并能理解解题步骤的根据.
2、本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想..
二、教材分析
1、本节是分式的第4节,这是第二课时,本课时主要研究分式方程的解法,只要求会解可化为一元一次方程的分式方程(方程中的分式不超过两个).解分式方程的关键是把分式方程转化为整式方程,在引导学生探索分式方程的解法时,要注意体现这种转化的思想.
2、在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课旨在学会解分式方程,能从中体会数学转化思想的深刻含义。
三、教学目标
1. 知识与技能:学生掌握解分式方程的基本方法和步骤;
2.过程与方法:经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
3.情感态度与价值:培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的学习态度;运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.
四、教学重点与难点
教学重点:掌握解分式方程的一般步骤
教学难点:体会分式方程到整式方程的转化思想,了解分式方程验根的必要性
教具准备:课件,小黑板
五、教学过程分析
第一环节 复习回顾
活动内容:
1.请写出
214x -与42x x
-的最简公分母. 2.解一元一次方程 21134x x +-= 活动目的:回顾最简公分母,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母.
注意事项:着重复习去分母的步骤,为学生过渡到分式方程去分母,提醒学生注意解一元一次方程每一步易犯的错误,同时老师还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.
第二环节 探究新知
活动内容:
例1.解下列分式方程:
x
x 321=-
活动目的:通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解。通过教师对例题讲解,让学生明确解分式方程的一般步骤。
注意事项:通过观察类比,学生容易发现只要方程两边同时乘以相同的因式,可以去分母,使方程变为学过的一元一次方程,从而解决
了问题.
第三环节 小试牛刀
活动内容:
例2.解方程 480600452x x -= 活动目的:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解.
注意事项:让学生注意规范书写过程.在解题过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.
第四环节 感悟升华
例3.解分式方程
22121--=--x
x x 将原方程变形为11222x x x --=--- 方程两边都乘以2x - ,得:112(2)x x -=---
解这个方程,得:2x =
你认为2x =是原方程的根?与同伴交流。
活动目的:让学生通过解这个方程,并思考问题,展开讨论,了解分式方程会产生增根,体会分式方程检验的必要性。
注意事项:在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.通过仔细观察,积极讨论,学生都发现 2=x 使原方程无意义,了解增根的概念及产生的原因,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否则不是)
第五环节 巩固练习
活动内容:
解方程:(1)
11112-=-x x (2)y
y y --=--31232 (3)
x x 413=- (4)423532=-+-x x x (1)
)1(516++=+x x x x (2)21321--=+-x x x (3)
312132++=+-x x x (4)21321--=+-x x x
活动目的:通过学生的反馈练习,使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.
注意事项:让学生注意规范书写过程,不要忘记验根。
第五环节 自我小结
让学生自己总结本节课学到的内容?
1、解分式方程的基本思路是什么?
2、解分式方程有哪几个步骤?
3、什么是分式方程的增根?
4、验根有哪几种方法?
活动目的:通过学生的回顾与反思,强化学生对解分式方程的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解.
注意事项:学生在解方程过程中易犯的错误:1、解方程时忘记检验;2、去分母时忘记加括号;3、去分母时漏乘不含分母的项.
板书设计:解分式方程的一般步骤:
六、教学反思
对于解分式方程,学生已经学过等式的基本性质,分式的通分,一元一次方程的解法,所以,解分式方程的根本是在于去分母,将分式方程化为整式方程,而要去分母,方程的两边要同乘以最简公分母,这是关键,因此,要在解分式方程之前先将最简公分母复习一遍,给学生铺好路,另外要给学生一个例子,就是方程两边都乘以最简公分母时,要求每一项都乘以最简公分母,让学生看到去分母的过程,这样,就可以避免出现很多的问题,也能让学生理解得更透彻。在教学中,注意引导学生理解化归的思想,即将未知的知识转化成已知的知识,分式方程转化为整式方程。