感应电机高性能无速度传感器控制系统--回顾、现状与展望

电气传动2004年第l期

感应电机高性能无速度传感器控制系统

——回顾、现状与展望

李篡嚣才m3月

摘要文章对感应电机岛|生能无速度传感;}{}控制的策略进行分析和分类,将当前该研究领域的土要控制策略分为基1:电机理想模型的方案和基于电机非理想特性的方案加以介绍.并且列…了无速度传感器控制的研究热点。

关键词:感应电机无速度传感器柠制磁通观测

speedsensorlesscontroJofInduction

MotorwithHighPerformance

LiYo“gdo“gl』iMingc“

Abstract:ThI。”畔7(Il…sesthe8pced

scns。rle…nductJ。…ac¨㈣untrolmeth。dswIthhlghper【ormⅢ1ce.a11d【1.1sslflPsthemintotwocatezorIesmet】10dsb…d…dea】mot…odcIandbased01111。n】de“chtlractcrlstIcs

l'he…renⅢse…hfu“I…dprobkmslnthlsareaa…Jsolnlrod…d

Keywords:¨1(1ucIlotl¨Iott……orle引ontrolfl…bs…atIoll

1引言

随着感应电机无速度传感器控制理论和电机控制专用cPU的发展,感应电机高性能无速度传感器控制的实现有了很好的硬件和软件条件,可以实现更完整的电机建模及更先进复杂的观测和控制算法。

在电机的动态方程中,转速是电机模型的一个参数,无速度传感器控制省去了复杂昂贵的转速榆测器件.因此带来一系列问题。

1)转速闭环只能采用辩识的转速进行反馈,转速控制的精度依赖于速度辨识的精度。

2)一些磁通观测方法不能独立使用。例如:包含转速的电机电流模型和全阶观测器无法独立应用。在无速度传感器控制时,这些模型可作为模型参考自适应系统的参考模型或可调模型用于转速和磁通同时计算。因此无速度传感器系统不仅是少r转速闭环所需的反馈信号,更重要的是少了一个稳定磁通计算的电机参数——转速。

3)低频范围磁链观测难度大。感应电机的无速度传感器控制的关键在于磁链的准确观测,而磁链的观测在本质上都是对电机反电势的积4分o]。直接对反电势积分会存在积分初值和飘移问题,因此在无速度传感器控制中如何避免纯积分的问题是关键所在。异步电机在定子供电频率为零时,定子电压电流中不包含转子转速和参数的信息;在定子供电频率很低时电压和反电势很低,电压电流检测误差、PwM脉冲宽度的误差、开关器件的压降等对于电机线电压的重构和反电势计算的影响较大,定子电阻的误差对反电势计算误差影响也变大。所以零频率附近无速度传感器控制具有理论上和实际中的双重限制。

4)多参数辨识受到限制:shinnaka等人从理论上证明了在无速度传感器控制中,在转子磁通幅值恒定的条件下,转子电阻和转速不可能同时辨识出来o。,这给无速度传感器控制中转子电阻辨识增加了难度。转子电阻误差影响滑差计算的精度,在无速度传感器控制中,速度精度主要受滑差精度的影响[3]。

本文对感应电机高性能无速度传感器控制的策略进行分析和分类,将当前该研究领域的主要控制策略分为基于电机理想模型的方案和基于电机非理想特性的方案加以介绍,并且列出了无速度传感器控制的一些结论和研究热点。文中讨论

 万方数据

相关主题
相关文档
最新文档