程序,推理证明(含答案)教程文件
高三复习导学案——推理、证明、数学归纳法(含详细答案)
1合情推理与演绎推理导学案【学习要求】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异.【课前准备】自主梳理推理⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧合情推理⎩⎪⎨⎪⎧⎩⎨⎪⎧定义:由个别事实推演出 的结论.特点:是由 到整体、由 到一般的推理. ⎩⎪⎨⎪⎧定义:由两个(或两类)对象之间在某些方 面的相似或相同推演出它们在其他方面也相似或相同.演绎推理⎩⎪⎨⎪⎧模式:三段论⎩⎪⎨⎪⎧ ①大前提——已知的 ;②小前提——所研究的 ;③结论——根据一般原理,对作出的判断.特点:演绎推理是由 到 的推理.【自我检测】1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________.2.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是________________________________________________________.3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为____________________________________________________.【活动探究】探究点一 归纳推理例1 在数列{a n }中,a 1=1,a n +1=2a n2+a n,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移1 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二 类比推理例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高分别为h a ,h b ,h c ,则有p a h a +p b h b +p ch c=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22,将此结论类比到空间有___________________________________________探究点三 演绎推理例3 在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.【课堂小结】1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.【课后作业】一、填空题(每小题6分,共48分)1.定义A *B ,B *C ,C *D ,D *A 的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果分别为________________.22.设f (x )=1+x1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2 011(x )=____________.3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a|·|b |”;⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是________.4.有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含有一个数1,第二组含有两个数3,5;第三组含有三个数:7,9,11;第四组含有四个数:13,15,17,19;…试观察每组内各数之和与组的编号数n 的关系为_____.5.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是________.6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____7.定义一种运算“*”:对于自然数n 满足以下运算性质: (1)1] .8.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为___________________________________________________. 二、解答题(共42分)9.(14分)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n +1+2=0(n ≥2).计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.10.(14分)已知函数f (x )=-aa x +a(a >0且a ≠1),(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.11.(14分)如图1,若射线OM ,ON 上分别存在点M 1,M 2与点N 1,N 2,则S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2;如图2,若不在同一平面内的射线OP ,OQ 和OR 上分别存在点P 1,P 2,点Q 1,Q 2和点R 1,R 2,则类似的结论是什么?这个结论正确吗?说明理由.直接证明与间接证明导学案【学习要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程及特点. 2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程及特点.【课前准备】1.直接证明 (1)综合法①定义:从已知条件出发,以______________________为依据,逐步下推,直到推出所要证明的结论为止,这种证明方法叫做综合法.②框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件,Q 表示要证的结论). (2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使________________和______________________为止.这种证明方法叫做分析法.②框图表示:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件.2.间接证明反证法:假设原命题________(即在原命题的条件下,结论不成立),经过正确的推理,最后得出________,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.【自我检测】1.分析法是从要证的结论出发,寻求使它成立的________条件.(填“充分”、“必要”或“充要”) 2.用反证法证明“如果a >b ,那么3a >3b ”的假设内容应是__________________. 3.设a 、b 、c 是互不相等的正数,则下列不等式中不恒成立的是________.(填序号). ①|a -c |≤|a -b |+|c -b |;②a 2+1a 2≥a +1a ;③a +3-a +1<a +2-a ;④|a -b |+1a -b≥2.4.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系为____________________.5.设x 、y 、z ∈R +,a =x +1y ,b =y +1z ,c =z +1x,证明a ,b ,c 中至少有一个不小于2.【活动探究】探究点一 综合法3例1 已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .变式迁移1 设a ,b ,c >0,证明:a 2b +b 2c +c 2a≥a +b +c .探究点二 分析法例2 若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .变式迁移2 已知a >0,求证: a 2+1a 2-2≥a +1a-2.探究点三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+yx<2中至少有一个成立.式迁移3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c中至少有一个大于0.转化与化归思想例 (14分)(2010·上海改编)若实数x 、y 、m 满足|x -m |>|y -m |,则称x 比y 远离m .(1)若x 2-1比1远离0,求x 的取值范围.(2)对任意两个不相等的正数a 、b ,证明:a 3+b 3比a 2b +ab 2远离2ab ab .多角度审题 (1)本题属新定义题,根据“远离”的含义列出不等式,然后加以求解.(2)第(2)小题,实质是证明不等式|a 3+b 3-2ab ab |>|a 2b +ab 2-2ab ab |成立.证明时注意提取公因式及配方法的运用.【答题模板】(1)解 由题意得||x 2-1>1, 即x 2-1>1或x 2-1<-1.[2分]由x 2-1>1,得x 2>2,即x <-2或x >2; 由x 2-1<-1,得x ∈∅.综上可知x 的取值范围为(-∞,-2)∪(2,+∞).[4分](2)证明 由题意知即证||a 3+b 3-2ab ab >||a 2b +ab 2-2ab ab 成立.[8分] ∵a ≠b ,且a 、b 都为正数,∴||a 3+b 3-2ab ab =||(a 3)2+(b 3)2-2a 3b 3=||(a 3-b 3)2=(a a -b b )2,||a 2b +ab 2-2ab ab =||ab (a +b -2ab )=ab (a -b )2=(a b -b a )2,[10分] 即证(a a -b b )2-(a b -b a )2>0,即证(a a -b b -a b +b a )(a a -b b +a b -b a )>0,需证[](a -b )(a +b )[](a -b )(a +b )>0,[12分] 即证(a +b )(a -b )2>0,∵a 、b 都为正数且a ≠b , ∴上式成立.故原命题成立.[14分] 【突破思维障碍】1.准确理解题意,提炼出相应不等式是解决问题的关键.2.代数式|a 3+b 3-2ab ab |与|a 2b +ab 2-2ab ab |中的绝对值符号去掉为后续等价变形提供了方便. 【易错点剖析】1.推理论证能力较差,绝对值符号不会去.2.运用能力较差,不能有效地进行式子的等价变形或中间变形出错.【课堂小结】1.综合法是从条件推导到结论的思维方法,它是从已知条件出发,经过逐步的推理,最后达到待证的结论.即由因导果.2.分析法是从待证结论出发,一步一步地寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.即执果索因,用分析法寻找解题思路,再用综合法书写,这样比较有条理,叫分析综合法.3.用反证法证明问题的一般步骤:(1)反设:假设命题的结论不成立,即假定原结论的反面为真;(否定结论)(2)归谬:从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(推导矛盾) (3)存真:由矛盾结果断定反设不真,从而肯定原结论成立.(结论成立) 【课后作业】(满分:90分)一、填空题(每小题6分,共48分)1.用反证法证明命题“若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数”.假设内容应为____________________________________.2.设a ,b 是两个实数,给出下列条件: (1)a +b >1;(2)a +b =2;(3)a +b >2;(4)a 2+b 2>2;(5)ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是______.(填序号)3.设a 、b 、c ∈(0,+∞),P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P 、Q 、R 同时大于零”的________条件.4.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3; ⑤1a +1b≥2. 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是________三角形(填“锐角”“钝角”或“直角”).6.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是__________________________________________________________________________________________________________________________. 7.对于任意实数a ,b 定义运算a *b =(a +1)(b +1)-1,给出以下结论: ①对于任意实数a ,b ,c ,有a *(b +c )=(a *b )+(a *c ); ②对于任意实数a ,b ,c ,有a *(b *c )=(a *b )*c ;4③对于任意实数a ,有a *0=a .则以上结论正确的是________.(写出你认为正确的结论的所有序号) 8.已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.二、解答题(共42分)9.(14分)已知非零向量a 、b ,a ⊥b ,求证:|a |+|b ||a -b |≤ 2.10.(14分)已知a 、b 、c >0,求证:a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).11.(14分)已知a 、b 、c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.学案37 数学归纳法【学习要求】1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.【课前准备】1.归纳法由一系列有限的特殊事例得出一般结论的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为完全归纳法和不完全归纳法.2.数学归纳法设{P n }是一个与正整数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切正整数成立.3.数学归纳法公理(1)(归纳奠基)证明当n 取第一个值__________时命题成立.(2)(归纳递推)假设______________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.【自我检测】1.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”在验证n =1时,左端计算所得的项为___.2.如果命题P (n )对于n =k (k ∈N *)时成立,则它对n =k +2也成立,又若P (n )对于n =2时成立,则下列结论中正确的序号有________.①P (n )对所有正整数n 成立;②P (n )对所有正偶数n 成立;③P (n )对所有正奇数n 成立;④P (n )对所有大于1的正整数n 成立.3.证明n +22<1+12+13+14+…+12n <n +1(n >1),当n =2时,中间式子等于______________.4.用数学归纳法证明“2n >n 2+1对于n >n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________. 5.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为______________;由此猜想S n =__________.【活动探究】探究点一 用数学归纳法证明等式例1 对于n ∈N *,用数学归纳法证明:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1=16n (n +1)(n +2).变式迁移1 用数学归纳法证明:对任意的n ∈N *,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .探究点二 用数学归纳法证明不等式例2 用数学归纳法证明:对一切大于1的自然数,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝⎛⎭⎫1+12n -1>2n +12均成立.变式迁移2 已知m 为正整数,用数学归纳法证明:当x >-1时,(1+x )m ≥1+mx . 探究点三 用数学归纳法证明整除问题例3 用数学归纳法证明:当n ∈N *时,a n +1+(a +1)2n -1能被a 2+a +1整除.变式迁移3 用数学归纳法证明:当n 为正整数时,f (n )=32n +2-8n-9能被64整除.从特殊到一般的思想例 (14分)已知等差数列{a n }的公差d 大于0,且a 2、a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n }、{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.【答题模板】解 (1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12a 2a 5=27,又∵{a n }的公差大于0,∴a 5>a 2,∴a 2=3,a 5=9.∴d =a 5-a 23=9-33=2,a 1=1,∴a n =1+(n -1)×2=2n -1.[2分]∵T n =1-12b n ,∴b 1=23,当n ≥2时,T n -1=1-12b n -1,∴b n =T n -T n -1=1-12b n -⎝⎛⎭⎫1-12b n -1, 化简,得b n =13b n -1,[4分]∴{b n }是首项为23,公比为13的等比数列,即b n =23·⎝⎛⎭⎫13n -1=23n ,∴a n =2n -1,b n =23n .[6分](2)∵S n =1+n -2n =n 2,∴S n +1=(n +1)2,1b n =3n 2.5以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,∴1b 1<S 2,当n =2时,1b 2=92,S 3=9,∴1b 2<S 3,当n =3时,1b 3=272,S 4=16,∴1b 3<S 4,当n =4时,1b 4=812,S 5=25,∴1b 4>S 5.[9分]猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k 2>(k +1)2.[11分] 那么,n =k +1时,1b k +1=3k +12=3·3k2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1,∴n =k +1时,1b n>S n +1也成立.由①②可知n ∈N *,n ≥4时,1b n >S n +1都成立.综上所述,当n =1,2,3时,1b n <S n +1,当n ≥4时,1b n>S n +1.[14分]【突破思维障碍】1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.2.数列是定义在N *上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.【易错点剖析】1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.2.在进行n =k +1命题证明时,一定要用n =k 时的命题,没有用到该命题而推理证明的方法不是数学归纳法.【课堂小结】1.数学归纳法:先证明当n 取第一个值n 0时命题成立,然后假设当n =k (k ∈N *,k ≥n 0)时命题成立,并证明当n =k +1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n 取第一个值n 0时,命题成立,这样假设就有了存在的基础,至少k =n 0时命题成立,由假设合理推证出n =k +1时命题也成立,这实质上是证明了一种循环,如验证了n 0=1成立,又证明了n =k +1也成立,这就一定有n =2成立,n =2成立,则n =3成立,n =3成立,则n =4也成立,如此反复以至无穷,对所有n ≥n 0的整数就都成立了.2.(1)第①步验证n =n 0使命题成立时n 0不一定是1,是使命题成立的最小正整数.(2)第②步证明n =k +1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.【课后作业】一、填空题 1.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是________(填序号).①假设n =k (k ∈N *)时命题成立,证明n =k +1命题成立;②假设n =k (k 是正奇数)时命题成立,证明n =k +1命题成立; ③假设n =2k +1 (k ∈N *)时命题成立,证明n =k +1命题成立; ④假设n =k (k 是正奇数)时命题成立,证明n =k +2命题成立.2.已知f (n )=1n +1n +1+1n +2+…+1n2,则f (n )中共有_______项;当n =2时,f (2)=___.3.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是________(填序号).①P (n )对n ∈N *成立;②P (n )对n >4且n ∈N *成立;③P (n )对n <4且n ∈N *成立;④P (n )对n ≤4且n ∈N *不成立.4.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上______.5.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是__________.6.用数学归纳法证明“1+2+3+…+n +…+3+2+1=n 2 (n ∈N *)”时,从n =k 到n =k +1时,该式左边应添加的代数式是________.7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________________.8.凸n 边形有f (n )条对角线,凸n +1边形有f (n +1)条对角线,则f (n +1)=f (n )+________. 二、解答题9.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).10.数列{a n }满足a n >0,S n =12(a n +1a n),求S 1,S 2,猜想S n ,并用数学归纳法证明.11.已知函数f (x )=1x 2e -1|x |(其中e 为自然对数的底数).(1)判断f (x )的奇偶性;(2)在(-∞,0)上求函数f (x )的极值;(3)用数学归纳法证明:当x >0时,对任意正整数n 都有f (1x)<n !·x 2-n .合情推理与演绎推理导学案答案【课前准备】归纳推理 一般性 部分 个别 类比推理 ①一般性原理 ②特殊对象 ③特殊对象 一般 特殊 【自我检测】1.-g (x ) 解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.2 解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.3.1∶8 解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212 解析 由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大63,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除 大前提 2100+1是奇数 小前提 所以2100+1不能被2整除 结论 【活动探究】例1 解题导引 归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解 在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n=1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n =1+(n -1)×12=12n +12, 所以通项公式a n =2n +1.变式迁移1 解 猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明如下:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin 2α+⎝⎛⎭⎫32cos α-12sin α⎝⎛⎭⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.例2 解题导引 类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为p a ,p b ,p c ,p d ,且相应各面上的高分别为h a ,h b ,h c ,h d ,则有p a h a +p b h b +p c h c +p dh d=1.证明如下:p a h a =13S △BCD ·pa 13S △BCD ·h a=V P —BCDV A —BCD,同理有p b h b =V P —CDA V B —CDA ,p c h c =V P —BDA V C —BDA ,p d h d =V P —ABCV D —ABC,V P —BCD +V P —CDA +V P —BDA +V P —ABC =V A —BCD ,∴p a h a +p b h b +p c h c +p d h d =V P —BCD +V P —CDA +V P —BDA +V P —ABC V A —BCD=1. 变式迁移2 在三棱锥A —BCD 中,若AB 、AC 、AD 两两互相垂直,且AB =a ,AC =b ,AD =c ,则此三棱锥的外接球半径R =a 2+b 2+c 22例3 解题导引 在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明 (1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABD 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ADB 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提而M 是Rt △ADB 斜边AB 的中点,DM 是斜边上的中线,——小前提所以DM =12AB .——结论同理EM =12AB ,所以DM =EM .变式迁移3 解 证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定. 【课后作业】1.B *D ,A *C 解析 由(1)(2)(3)(4)图得A 表示|,B 表示□,C 表示—,D 表示○,故图(A)(B)表示B *D 和A *C .2.x -1x +1 解析 计算f 2(x )=f ⎝ ⎛⎭⎪⎫1+x 1-x =1+1+x 1-x 1-1+x 1-x =-1x , f 3(x )=f ⎝⎛⎭⎫-1x =1-1x 1+1x =x -1x +1,f 4(x )=1+x -1x +11-x -1x +1=x ,f 5(x )=f 1(x )=1+x1-x, 归纳得f 4k +i (x )=f i (x ),k ∈N *,i =1,2,3,4.∴f 2 011(x )=f 3(x )=x -1x +1.3.2 解析 只有①、②对,其余错误.4.每组内各数之和等于n 3 解析 1=13,3+5=23,7+9+11=33.猜想每组内各数之和等于n 3.5.(5,7) 解析 观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n +1的数对有n 个,多个数对的排序是按照横坐标依次增大的顺序来排的,由n (n +1)2=60⇒n (n +1)=120,n ∈Z ,n =10时,n (n +1)2=55(个)数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),∴第60个数对是(5,7).6.空间正四面体的内切球的半径是高的14解析 利用体积分割可证明.7.n 解析 由(n +1)*1=n *1+1,得n *1=(n -1)*1+1=(n -2)*1+2=…=1] 8.n +(n +1)+…+(3n -2)=(2n -1)2解析 ∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n 个等式为n +(n +1)+…+(3n -2)=(2n -1)2.9.解 当n =1时,S 1=a 1=-23.(2分) 当n =2时,1S 2=-2-S 1=-43,∴S 2=-34.(5分)当n =3时,1S 3=-2-S 2=-54,∴S 3=-45.(8分)当n =4时,1S 4=-2-S 3=-65, ∴S 4=-56.(11分)7猜想:S n =-n +1n +2(n ∈N *).(14分)10.(1)证明 函数f (x )的定义域为R ,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ).(2分) 由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,(4分)f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ).即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称.(7分) (2)解 由(1)有-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1.(10分) ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f(1)=-1,则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.(14分)11.解 类似的结论为:VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.(4分)这个结论是正确的,证明如下:如图,过R 2作R 2M 2⊥平面P 2OQ 2于M 2,连结OM 2. 过R 1在平面OR 2M 2作R 1M 1∥R 2M 2交OM 2于M 1,则R 1M 1⊥平面P 2OQ 2.由VO —P 1Q 1R 1=13S △P 1OQ 1·R 1M 1=13·12OP 1·OQ 1·sin ∠P 1OQ 1·R 1M 1=16OP 1·OQ 1·R 1M 1·sin ∠P 1OQ 1,(8分) 同理,VO —P 2Q 2R 2=16OP 2·OQ 2·R 2M 2·sin ∠P 2OQ 2.所以VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1·OQ 1·R 1M 1OP 2·OQ 2·R 2M 2.(10分)由平面几何知识可得R 1M 1R 2M 2=OR 1OR 2.(12分)所以VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1·OQ 1·OR 1OP 2·OQ 2·OR 2.所以结论正确.(14分)直接证明与间接证明导学案答案【课前准备】1.(1)①已知的定义、公理、定理 (2)①结论成立的条件 已知条件或已知事实吻合 2.不成立 矛盾 【自我检测】1.充分 解析 由分析法的定义可知.2.3a ≤3b 解析 3a >3b 的否定是3a ≤3b .3.④ 解析 ④选项成立时需得证a -b >0.①中|a -b |+|c -b |≥|(a -b )-(c -b )|=|a -c |,②作差可证; ③移项平方可证.4.a b 2+b a 2≥1a +1b 解析 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2=(a -b )⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 5.证明 假设a ,b ,c 均小于2,则a +b +c <6. ①又a +b +c =x +1y +y +1z +z +1x =(x +1x )+(y +1y )+(z +1z)≥6,这与①式相矛盾,∴假设不正确.∴a ,b ,c 至少有一个不小于2. 【活动探究】例1 解题导引 综合法证明不等式,要特别注意基本不等式的运用和对题设条件的运用.这里可从基本不等式相加的角度先证得a 2+b 2+c 2≥ab +bc +ca 成立,再进一步得出结论.证明 ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 三式相加得a 2+b 2+c 2≥ab +bc +ca ,∴3a 2+3b 2+3c 2≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2.∴a 2+b 2+c 2≥13(a +b +c )2;∵a 2+b 2+c 2≥ab +bc +ca ,∴a 2+b 2+c 2+2(ab +bc +ca )≥ab +bc +ca +2(ab +bc +ca ), ∴(a +b +c )2≥3(ab +bc +ca ).∴原命题得证.变式迁移1 证明 ∵a ,b ,c >0,根据基本不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ).即a 2b +b 2c +c 2a≥a +b +c .例2 解题导引 当所给的条件简单,而所证的结论复杂,一般采用分析法.含有根号、对数符号、绝对值的不等式,若从题设不易推导时,可以考虑分析法.证明 要证lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a 2>abc .(中间结果)因为a ,b ,c 是不全相等的正数,则a +b 2≥ab >0,b +c 2≥bc >0,c +a2≥ca >0.且上述三式中的等号不全成立,所以a +b 2·b +c 2·c +a2>abc .(中间结果)所以lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .变式迁移2 证明 要证 a 2+1a 2-2≥a +1a -2,只要证 a 2+1a 2+2≥a +1a+ 2.∵a >0,故只要证 ⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22, 即a 2+1a 2+4 a 2+1a 2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥2⎝⎛⎭⎫a +1a ,只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a2≥2,而该不等式显然成立,故原不等式成立.例3 解题导引 (1)当一个命题的结论是以“至多”、“至少”、“惟一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是①与已知条件矛盾,②与假设矛盾,③与定义、公理、定理矛盾,④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.(2)利用反证法证明问题时,要注意与之矛盾的定理不能是用本题的结论证明的定理,否则,将出现循环论证的错误.证明 假设1+x y <2和1+y x <2都不成立,则有1+x y ≥2和1+yx≥2同时成立,因为x >0且y >0,所以1+x ≥2y ,且1+y ≥2x ,8两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2,这与已知条件x +y >2相矛盾,因此1+x y <2与1+y x<2中至少有一个成立.变式迁移3 证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0.∵a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,∴x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+(π-3)≤0, ①又∵(x -1)2+(y -1)2+(z -1)2≥0,π-3>0,∴(x -1)2+(y -1)2+(z -1)2+(π-3)>0. ② ①式与②式矛盾,∴假设不成立,即a ,b ,c 中至少有一个大于0. 【课后作业】1.假设a 、b 、c 都不是偶数2.(3)解析 若a =12,b =23,则a +b >1,但a <1,b <1,故(1)推不出;若a =b =1,则a +b =2,故(2)推不出;若a =-2,b =-3,则a 2+b 2>2,故(4)推不出; 若a =-2,b =-3,则ab >1,故(5)推不出;对于(3),即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾, 因此假设不成立,故a ,b 中至少有一个大于1.3.充要 解析 必要性是显然成立的,当PQR >0时,若P 、Q 、R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.4.①③⑤ 解析 ①ab ≤(a +b 2)2=1,成立.②欲证a +b ≤2,即证a +b +2ab ≤2,即2ab ≤0,显然不成立. ③欲证a 2+b =(a +b )2-2ab ≥2,即证4-2ab ≥2,即ab ≤1,由①知成立.④a 3+b 3=(a +b )(a 2-ab +b 2)≥3⇔a 2-ab +b 2≥32⇔(a +b )2-3ab ≥32⇔4-32≥3ab ⇔ab ≤56,由①知,ab ≤56不恒成立.⑤欲证1a +1b ≥2,即证a +b ab≥2,即ab ≤1,由①知成立.5.钝角 解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾,所以假设不成立,所以△A 2B 2C 2是钝角三角形.6.“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|,则|f (x 1)-f (x 2)|≥12”7.②③ 解析 按新定义,可以验证a *(b +c )≠(a *b )+(a *c );所以①不成立;而a *(b *c )=(a *b )*c 成立,a *0=(a +1)(0+1)-1=a .所以正确的结论是②③. 8.18 解析 由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时“=”号成立).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时“=”成立),∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18. 9.证明 ∵a ⊥b ,∴a·b =0. (2分)要证|a |+|b ||a -b |≤2,只需证:|a |+|b |≤2|a -b |, (6分)平方得:|a |2+|b |2+2|a||b |≤2(|a |2+|b |2-2a·b ),(10分)只需证:|a |2+|b |2-2|a||b |≥0, (12分)即(|a |-|b |)2≥0,显然成立.故原不等式得证. (14分)10.证明 ∵a 2+b 2≥2ab ,a 、b 、c >0, ∴(a 2+b 2)(a +b )≥2ab (a +b ), (3分)∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2,∴a 3+b 3≥a 2b +ab 2.(7分) 同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2,将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.(10分)∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a +b +c )(a 2+b 2+c 2).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).(14分)11.证明 方法一 假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,(3分)∵a 、b 、c ∈(0,1),∴三式同向相乘得(1-a )b (1-b )c (1-c )a >164.(8分)又(1-a )a ≤⎝⎛⎭⎫1-a +a 22=14,(10分)同理(1-b )b ≤14,(1-c )c ≤14,∴(1-a )a (1-b )b (1-c )c ≤164,(12分)这与假设矛盾,故原命题正确.(14分)方法二 假设三式同时大于14,∵0<a <1,∴1-a >0,(2分)(1-a )+b 2≥ (1-a )b > 14=12,(8分)同理(1-b )+c 2>12,(1-c )+a 2>12,(10分) 三式相加得32>32,这是矛盾的,故假设错误,∴原命题正确.(14分)数学归纳法导学案答案【课前准备】3.(1)n 0 (n 0∈N *) (2)n =k (k ∈N *,且k ≥n 0) n =k +1 【自我检测】1.1+a +a 2 解析 当n =1时左端有n +2项,∴左端=1+a +a 2.2.② 解析 由n =2成立,根据递推关系“P (n )对于n =k 时成立,则它对n =k +2也成立”,可以推出n =4时成立,再推出n =6时成立,…,依次类推,P (n )对所有正偶数n 成立”.3.1+12+13+14 解析 当n =2时,中间的式子1+12+13+122=1+12+13+14.4.5 解析 当n =1时,21=12+1;当n =2时,22<22+1;当n =3时,23<32+1;当n =4时,24<42+1.而当n =5时,25>52+1, ∴n 0=5.5.32,74,158,2n-12n -1 【活动探究】例1 解题导引 用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.证明 设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. (1)当n =1时,左边=1,右边=1,等式成立;。
2019年最新最全选修1-2第二章推理与证明(教案及答案含知识点典型例题经典题型)
选修1-2第二章推理与证明2.1合情推理与演绎证明阅读与思考科学发现中的推理2.2直接证明与间接证明精美教案一份,高考必考5分题。
目录:1、《推理与证明》知识归纳总结-----------------------------------2页(1)第一部分合情推理---------------------------------------------2页(2)第二部分演绎推理---------------------------------------------4页(3)第三部分直接证明与间接证明-----------------------------5页(4)第四部分数学归纳法------------------------------------------6页2、推理与证明经典例题讲解:教师版(含解析)-------------8页3、推理与证明经典例题讲解:学生版-----------------------------13页4、推理与证明高考题型回顾------------------------------------------16页5、推理与证明高考题型回顾答案----------------------------------25页6、推理与证明之数学归纳法精讲------------------------------------29页《推理与证明》知识归纳总结第一部分 合情推理学习目标:了解合情推理的含义(易混点)理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳:合情推理可分为归纳推理和类比推理两类: 归纳推理:1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.2.归纳推理的一般步骤:第一步,通过观察个别情况发现某些相同的性质;第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究:1.归纳推理的结论一定正确吗?2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?题型1 用归纳推理发现规律1.对于任意正实数,a b≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式[解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f133)1(6181261)(2+-=-+++++=∴n n n n f总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.2.类比推理的一般步骤:第一步:找出两类对象之间可以确切表述的相似特征;第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想.思考探究:1.类比推理的结论能作为定理应用吗?2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?(2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论?题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是______.【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=⇒⨯==,类比问题的解法应为等体积法, h r Sr Sh V 4131431=⇒⨯==即正四面体的内切球的半径是高41 总结:(1)不仅要注意形式的类比,还要注意方法的类比(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等合情推理1.定义:归纳推理和类比推理都有是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.简言之,合情推理就是合乎情理的推理.2.推理的过程:→→ 思考探究:1.归纳推理与类比推理有何区别与联系?1)归纳推理是由部分到整体,从特殊到一般的推理。
2019-2020数学人教A版选修2-2讲义:第二章推理与证明2.3 Word版含答案
姓名,年级:时间:1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想—证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n =1时,结论成立;(2)假设当n =k 时结论成立,证明n =k +1时结论也必定成立. 当n =1时,结论成立――→,利用2错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×”)(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( )(2)数学归纳法的第一步n 0的初始值一定为1.( )(3)数学归纳法的两个步骤缺一不可.( )答案 (1)× (2)× (3)√ 2.做一做(1)已知f (n )=1n+错误!+错误!+…+错误!,则f (n )共有________项,f (2)=________.(2)定义一种运算“*”,对于正整数n ,满足以下运算性质:①1] 。
2018版高考数学文人教大一轮复习讲义 教师版文档第十
1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × ) (4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N *).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________. 答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *). 5.(2016·青岛模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46,f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58,推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4;⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5;…照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n . 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为___________________________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .(2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183. 题型二 类比推理例5 (1)(2017·西安月考)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0. (2)令1+12+1…=x ,则有1+12+1x =x , 解得x =1+32(负值已舍去).思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y =4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2, 则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, ∵x 1<x 2,∴f (x 2)-f (x 1)>0, ∴f (x 2)>f (x 1).∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y =4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+24y x ·9x y )=254, 当且仅当⎩⎨⎧ 4y x =9xy ,4x +9y =4,即⎩⎨⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案(1)C(2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:①b 2 014是数列{a n }的第________项; ②b 2k -1=________.(用k 表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N *,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 014=⎝⎛⎭⎫2 0142×5⎝⎛⎭⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2.(2)对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②;对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.答案 (1)①5 035 ②5k (5k -1)2(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程 D .没有出错答案 A解析 推理形式正确,但大前提错误,故得到的结论错误.故选A. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确答案 C 解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( )A .29B .30C .31D .32答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+(2n +1)]2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中.5.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2.其中正确结论的个数是( )A .0B .1C .2D .3 答案 B解析 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案 x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 8.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S △△=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.答案 111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 9.设f (x )=13x+3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3 =11+3+13(1+3) =33(1+3)+13(1+3)=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3(3+3x )=3+3x 3(3+3x )=33. 10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)*11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1), 所以f (12+x )+f (12-x )=2, 即f (x )+f (1-x )=2.故f (12 017)+f (2 0162 017)=2, f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
精品-2019年高中数学第5章推理与证明章末小结讲义含解析湘教版选修1_2
第5章推理与证明1.两种合情推理(1)归纳推理:归纳推理是由部分到整体,由个别到一般的推理,步骤如下:①通过观察个别对象发现某些相同性质;②由相同性质猜想一般性命题.(2)类比推理:类比推理是由特殊到特殊的推理,步骤如下:①找出两类对象之间的相似性或一致性;②由一类对象的性质去猜测另一类对象的性质,得出一个明确的命题.2.演绎推理演绎推理是由一般到特殊的推理,一般模式为三段论.演绎推理只要前提正确,推理的形式正确,那么推理所得的结论就一定正确.注意错误的前提和推理形式会导致错误的结论.3.直接证明——综合法和分析法(1)综合法是“由因导果”,即从已知条件出发,利用定理、定义、公理和运算法则证明结论.(2)分析法是“执果索因”,即从结论逆向转化,寻找一个已证的命题(已知条件或定义、公理、定理、公式等).注意:①分析法是从结论出发,但不可将结论当作条件.②在证明过程中,“只要证”“即证”等词语不能省略.4.间接证明——反证法反证法证题的步骤为:反设-归谬-结论,即通过否定结论,得出矛盾来证明命题.注意:反证法的关键是将否定后的结论当条件使用.[例1]表1 1表21 34表3 …1 3 5 4 8 12其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).[解] 表4为1 3 5 7 4 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.简单的归纳猜想问题通过观察所给的数表、数阵或等式、不等式即可得到一般性结论,较复杂的问题需将已知转换为同一形式才易于寻找规律.[例2] 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.[解析] 因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1. [答案]373n 2-3n +1解答此类题目时,需要细心观察图形,寻找每一项与序号之间的关系,同时还要联系相关的知识.本题注意从图形中抽象出等差数列.1.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是 .解析:分别观察正方体的个数为:1,1+5,1+5+9,…归纳可知,第n 个叠放图形中共有n 层,构成了以1为首项,以4为公差的等差数列,所以S n =n +[n (n -1)×4]÷2=2n 2-n ,所以S 7=2×72-7=91.答案:912.如图,给出了3层的六边形,图中所有点的个数S3为28,按其规律再画下去,可得n (n ∈N +)层六边形,试写出S n 的表达式.解:设每层除去最上面的一个点的点数为a n , 则a n 是以5为首项,4为公差的等差数列,则S n =a 1+a 2+…+a n +1=n[5+5+-2+1=2n 2+3n +1(n ∈N +).[例3] 在△ABC 求证:1AD2=1AB2+1AC2,那么在四面体ABCD 中,类比上述论据,你能得到怎样的猜想,并说明理由.[证明] 如右图所示,由射影定理,AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD2=1BD·DC =BC2BD·BC·DC·BC =BC2AB2·AC2. ∵BC 2=AB 2+AC 2, ∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2. ∴1AD2=1AB2+1AC2. 猜想:类比AB ⊥AC ,AD ⊥BC ,猜想四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD2.证明上述猜想成立.如右图所示,连接BE 交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . 而AF ⊂平面ACD , ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE2=1AB2+1AF2. 在Rt △ACD 中,AF ⊥CD , ∴1AF2=1AC2+1AD2. ∴1AE2=1AB2+1AC2+1AD2. 故猜想正确.(1)类比是以旧知识作基础,推测新的结果,具有发现的功能.(2)类比推理的常见情形有:平面与空间类比;向量与数类比;不等与相等类比等.3.若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m -n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:_________________________.答案:数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n ,(m ,n ∈N *,m ≠n ),则T m -n =14.在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径为r =12a2+b2,把上述结论类比到空间,写出相似的结论.解:取空间中三条侧棱两两垂直的四面体A BCD 且AB =a ,AC =b ,AD =c , 则此四面体的外接球的半径为R =12a2+b2+c2.[例4] 设a >0,b >0,a +b =1,求证:a +b +ab ≥8.[证明] 法一:(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4.又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4,∴1a +1b +1ab ≥8⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立.法二:(分析法)∵a >0,b >0,a +b =1,要证1a +1b +1ab≥8,只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab ≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8, 即证1a +1b≥4.也就是证a +b a +a +bb ≥4.即证b a +ab≥2.由基本不等式可知,当a >0,b >0时,b a +a b ≥2⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立成立, 所以原不等式成立.综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法和综合法可相互转换,相互渗透,充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径.5.已知函数f (x )=log a (a x-1)(a >0,a ≠1). (1)证明:函数f (x )的图象在y 轴一侧;(2)设A (x 1,y 1),B (x 2,y 2)(x 1<x 2)是图象上的两点,证明直线AB 的斜率大于零. 证明:(1)由a x-1>0,得a x >1.①当a >1时,x >0,函数图象在y 轴右侧; ②当0<a <1时,x <0,函数图象在y 轴左侧. 故函数图象总在y 轴一侧. (2)由于k AB =y1-y2x1-x2,又由x 1<x 2,故只需证y 2-y 1>0即可.因为y 2-y 1=log a (a x2-1)-log a (a x1-1) =log a a x2-1a x1-1.①当a >1时,由0<x 1<x 2,得a 0<a x 1<a x 2,即0<a x 1-1<a x2-1.故有a x2-1a x1-1>1,log a a x2-1a x1-1>0,即y 2-y 1>0. ②当0<a <1时, 由x 1<x 2<0, 得a 0>a x 1>a x2>1. 即a x 1-1>a x2-1>0. 故有0<a x2-1a x1-1<1,∴y 2-y 1=log a a x2-1a x1-1>0,即y 2-y 1>0.综上,直线AB 的斜率总大于零.[例5] 已知a ,b ,c 均为实数,且a =x 2-2y +2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.[证明] 假设a ,b ,c 都不大于0, 即a ≤0,b ≤0,c ≤0,得a +b +c ≤0,而a +b +c =(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0, 与a +b +c ≤0矛盾,故假设不成立. ∴a ,b ,c 中至少有一个大于0.(1)用反证法证题时,先假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.(2)反证法证题的思路是:“假设—归谬—存真”.6.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.答案:A。
11程序12推理证明
十一程序:定义通常指按照一定规律解决某一类问题的明确和有限的步骤,或指计算的方法或指某一类问题的规律或必经之路,或指按步就班的程序化机械化特点;2:算法特征具有确定性:算法的每一步必须是确切定义的,且无二义性,算法只有唯一的一条执行路径,对于相同的输入只能得出相同的输出.有效性:一个算法必须在执行有穷次运算后结束,在规定的时间和空间内若不能获得正确结果其算法是不能被采用的. 有限性:算法的每一个步骤必须用精确表达的可行指令,并且在有限步骤内完成.有输出算法一定能得到问题的解,有一个或多个结果输出,没有输出结果的算法是没意义的.例如上Q,棋谱,3程序框图:又称流程图,是一种由程序框,流程线,以及文字说明表示算法的图形.算法与框图的关系:算法通过框图或语言表示.圆角矩形是起止框,表示算法的起始和结束:平四边是输入输出框,表示算法的输入输出;∴是连结点,内须有数字指明连接部件4程序结构:开始+初始条件+结构体+输出+结束.①顺序结构的程序只能自上而下,依次执行,不能逆转②条件结构的程序自上而下,有分支带问号,先判断后执行,有双选结构和单选择结构两种.③循环结构的程序有逆分支带问号分两类:当型先判断后执行循环体,直到型是先执行循环体后判断.循环体必包含累计函数和数循环次数函数.▲难点是如何求出循环体:练/.1)1⨯2⨯3⨯4⨯.....n=n i 循环体s=s.i,i=i+1 练/.2求2+23+34+45+...+n 1n +的和?解:n 1n +=n+n 1,原式化为n+(1+21+31+...+n 1)=s+1i 1+∴s=s+1i 1+,i=i+1 练/.3)求1+22+32+42+...+1002的和?循环体s=s+i 2,i=i+1练/.4)求1⨯3⨯5⨯7⨯.....99的积?循环体s=s.i,i=i+1练/.5)求1⨯2+2⨯3+3⨯4+....+99⨯100?s=s+i(i+1)5算法语句(全要大写):计算机能识别的语言.通常是编程人员写出算法步骤画好框图→算法语句→译成英语及C 语言以便计算机能识别.格式:输入语句input"提示内容";变量. 输出语句print"提示内容";变量.提示内容可省略不写.赋值语句:变量=表达式;练1)要输入x=2,y=4,的语句如何表示?INPUT"X=,Y=";2,4.条件语句:if+条件+then+语句体+end if,每个IF 后面必需有一个END 配套循环语句:do+循环体+Loop until+判断条件或wile+判断条件+循环体+wend6运算符号:+-不变,⨯用※,/表示除和商;MOD 表示余数,n 次方用∧;算术平方根用SQR(x),绝对值用ABS;平均数用the average 7注意:循环结构中当型和直到型转换时判断条件要构成对立事件即互补.直到型结构是+结束;当型结构否+结束.简记"直是当否结束"练/.有算法如下运行:开始→k=0→s=0→s<100?→是运行s=s+2s,k=k+1,否则输出k,结束.求k? 8:A,B 两变量值的互换必需引入第三个空变量以便能让两者之一先存放再互换.9:最大公约数求法:≠最小公倍数:1)展转相除法:先用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ; 若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;…… 依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数. 例:(8251,6105)=372)更相减损术:任意给出两个正数;判断它们是否都是偶数。
程序推理证明(含答案解析)
复数练习1.【2012高考真题理2】 已知i 是虚数单位,则31ii+-= A .1-2i B.2-i C.2+i D .1+2i2.【2012高考真题新课标理3】下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 343.【2012高考真题理2】复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i - 【答案】B【解析】22(1)1221222i i i ii i i--+-===- 4.【2012高考真题理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( ) A.充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B.【解析】00=⇔=a ab 或0=b ,而复数bi a iba -=+是纯虚数00≠=⇔b a 且,iba ab +⇐=∴0是纯虚数,故选B. 5.【2012高考真题理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b6.【2012高考真题理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【答案】A 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
7.【2012高考真题理2】复数22ii-=+ (A)3455i - (B)3455i + (C) 415i - (D) 315i + 9.【2012高考真题理1】 设i 为虚数单位,则复数56ii-=A .6+5iB .6-5iC .-6+5iD .-6-5i 【答案】D 【解析】56i i-=i ii i i 56156)65(2--=-+=-.故选D .10.【2012高考真题理1】若复数z 满足zi=1-i ,则z 等于 A.-1-I B.1-i C.-1+I D.1=i 【答案】A.【解析】根据i zi -=1知,i iiz --=-=11,故选A. 11.【2012高考真题理3】设a ,b ∈R 。
高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.1 直接证明讲义(含解析)苏教版选
直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。
程序,推理证明(含答案)复习课程
程序,推理证明(含答案)仅供学习与交流,如有侵权请联系网站删除 谢谢2复数练习1.【2012高考真题浙江理2】 已知i 是虚数单位,则31ii+-= A .1-2i B.2-i C.2+i D .1+2i2.【2012高考真题新课标理3】下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 343.【2012高考真题四川理2】复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i - 【答案】B【解析】22(1)1221222i i i ii i i--+-===- 4.【2012高考真题陕西理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】00=⇔=a ab 或0=b ,而复数bi a iba -=+是纯虚数00≠=⇔b a 且,iba ab +⇐=∴0是纯虚数,故选B. 5.【2012高考真题上海理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b6.【2012高考真题山东理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【答案】A 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
7.【2012高考真题辽宁理2】复数22ii-=+ (A)3455i - (B)3455i + (C) 415i - (D) 315i +仅供学习与交流,如有侵权请联系网站删除 谢谢39.【2012高考真题广东理1】 设i 为虚数单位,则复数56ii-= A .6+5i B .6-5i C .-6+5i D .-6-5i 【答案】D 【解析】56i i-=i ii i i 56156)65(2--=-+=-.故选D .10.【2012高考真题福建理1】若复数z 满足zi=1-i ,则z 等于 A.-1-I B.1-i C.-1+I D.1=i 【答案】A.【解析】根据i zi -=1知,i iiz --=-=11,故选A.11.【2012高考真题北京理3】设a ,b ∈R 。
2018版高考数学理人教大一轮复习讲义教师版文档第十三
1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)程序框图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.(√)(5)5=x是赋值语句.(×)(6)输入语句可以同时给多个变量赋值.(√)1.已知一个算法:(1)m=a.(2)如果b<m,则m=b,输出m;否则执行第(3)步.(3)如果c<m,则m=c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是()A.3 B.6C.2 D.m答案 C解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2,故选C.2.(2016·全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于()A.7 B.12 C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k =2,不满足条件;a =5,s =12+5=17,k =3,满足条件,输出s =17,故选C. 3.(2017·广州调研)下列赋值能使y 的值为4的是( ) A .y -2=6 B .2*3-2=y C .4=y D .y =2*3-2答案 D解析 赋值时把“=”右边的值赋给左边的变量.4.(2017·太原月考)如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6?B .k ≤7?C .k ≤8?D .k ≤9?答案 B解析 第一次执行循环,得到S =10,k =9;第二次执行循环,得到S =90,k =8;第三次执行循环,得到S =720,k =7,此时满足条件.5.若执行如图所示的程序框图,输入N =13,则输出S 的值为________.答案1213解析 由题意可知,S =(1-12)+(12-13)+…+(112-113)=1213.题型一顺序结构与条件结构命题点1顺序结构例1如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.命题点2条件结构例2执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于()A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]答案 A解析 根据程序框图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据程序框图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3;当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与条件结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.(高考改编)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x+y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2. 题型二 循环结构命题点1 由程序框图求输出结果例3 (2016·全国乙卷)执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 答案 C解析 执行题中的程序框图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x ,故选C.命题点2 完善程序框图例4 (2017·保定质检)如图给出的是计算12+14+16+…+120的值的一个框图,其中菱形判断框内应填入的条件是( )A .i >10?B .i <10?C .i >11?D .i <11?答案 A解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10?”. 命题点3 辨析程序框图的功能例5 如果执行如图的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 答案 C解析 不妨令N =3,a 1<a 2<a 3, 则有k =1,x =a 1,A =a 1,B =a 1; k =2,x =a 2,A =a 2; k =3,x =a 3,A =a 3, 故输出A =a 3,B =a 1,故选C.思维升华 与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.(2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v的值为()A.9 B.18 C.20 D.35答案 B解析初始值n=3,x=2,程序运行过程如下:v=1i=2v=1×2+2=4i=1v=4×2+1=9i=0v=9×2+0=18i=-1跳出循环,输出v=18,故选B.题型三基本算法语句例6阅读下面两个算法语句:图1图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.答案i=4i=2解析执行图1中语句,得到(i,i·(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出i =4.执行图2中语句的情况如下:i=1,i=i+1=2,i·(i+1)=6<20(是),结束循环,输出i=2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015·江苏改编)根据如图所示的语句,可知输出的结果S=________.答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出S=7.19.程序框图中变量的取值典例执行如图所示的程序框图所表示的程序,则输出的A等于()A.2 047 B.2 049C.1 023 D.1 025错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 C现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 A纠错心得程序框图对计数变量及求和变量取值时,要注意两个变量的先后顺序.()A .3B .4C .5D .6 答案 B解析 第一次循环a =6-4=2,b =6-2=4,a =4+2=6,s =6,n =1; 第二次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =10,n =2; 第三次循环a =6-4=2,b =6-2=4,a =4+2=6,s =16,n =3;第四次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =20,n =4,满足题意,结束循环.2.(2016·北京)执行如图所示的程序框图,输出的S 值为( )A .8B .9C .27D .36 答案 B解析 ①S =0+03=0,k =0+1=1,满足k ≤2; ②S =0+13=1,k =1+1=2,满足k ≤2;③S =1+23=9,k =2+1=3,不满足k ≤2,输出S =9.3.如图,若依次输入的x 分别为5π6、π6,相应输出的y 分别为y 1、y 2,则y 1、y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定答案 C解析 由程序框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin 5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=32,所以y 1<y 2.4.阅读程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11 答案 B解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出i =9.5.(2017·成都调研)定义某种运算,ab 的运算原理如图所示.设S =1x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为( )A .2B .-1C .4D .3 答案 A解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.(2015·课标全国Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a 等于( )A .0B .2C .4D .14答案 B解析 由题知,若输入a =14,b =18,则 第一次执行循环结构时,由a <b 知, a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知, a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知, a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知, a =a -b =6-4=2,b =4;第五次执行循环结构时,由a <b 知, a =2,b =b -a =4-2=2;第六次执行循环结构时,由a =b 知,输出a =2,结束. 故选B.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)答案 24解析 n =6,S =12×6×sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12×12×sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n 的值为24.8.以下给出了一个程序,根据该程序回答:(1)若输入4,则输出的结果是________;(2)该程序的功能所表达的函数解析式为________. 答案 (1)15 (2)y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3解析 (1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)当x <3时,y =2x ,当x >3时,y =x 2-1;否则, 即x =3,y =2.∴y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3.9.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为 a =40+41+43+43+44+46+47+488=44,所以S =(-4)2+(-3)2+(-1)2+(-1)2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为:(1)____________; (2)______________.答案(1)n3<1 000(2)n3≥1 000解析第一个图中,n不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n3<1 000;第二个图中,当n≥10时,循环应该结束,所以填写n3≥1 000.11.(2017·武汉质检)设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.答案495解析取a1=815⇒b1=851-158=693≠815⇒a2=693;由a2=693⇒b2=963-369=594≠693⇒a3=594;由a3=594⇒b3=954-459=495≠594⇒a4=495;由a4=495⇒b4=954-459=495=a4⇒b=495.12.(2016·抚州质检)某框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是________.答案k>8?解析由题意可知输出结果为S=20,第1次循环,S=11,k=9,第2次循环,S=20,k=8,此时S满足输出结果,退出循环,所以判断框中的条件为“k>8?”.13.(2016·长沙模拟)运行如图所示的程序框图,若输出的y值的范围是[0,10],则输入的x值的范围是________.答案 [-7,9]解析 该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10恒成立; 当x >1时,由0≤x +1≤10可得1<x ≤9. 综上,输入的x 值的范围是[-7,9].*14.(2016·宣城模拟)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).程序框图如图所示,若输出的结果S >2 0152 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015? ②n ≤2 016? ③n >2 015? ④n >2 016?答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0, 得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x (x +1)=1x -1x +1. 由程序框图可知S =0+g (1)+g (2)+…+g (n ) =0+1-12+12-13+…+1n -1n +1=1-1n +1,由1-1n +1>2 0152 016,得n >2 015. 故可填入②.。
高中数学第一章推理与证明3反证法教案含解析北师大版选修2_2
3反证法1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a,b,c不可能都是奇数的反面是什么?此时,还满足条件a2+b2=c2吗?提示:a,b,c都是奇数.此时不满足条件a2+b2=c2.1.反证法的定义在证明数学命题时,先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而断定命题结论的反面不可能成立,由此断定命题的结论成立,这种证明方法叫作反证法.2.反证法的证题步骤(1)作出否定结论的假设;(2)进行推理,导出矛盾;(3)否定假设,肯定结论.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题结论的目的.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与假定矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] ,b,c不成等差数列.[思路点拨] 此题为否定形式的命题,可选用反证法,证题关键是利用等差中项、等比中项.[精解详析] 假设a ,b ,c 成等差数列, 则a +c =2b , 即a +c +2ac =4b ,而b 2=ac ,即b =ac ,∴a +c +2ac =4ac , ∴(a -c )2=0,即a =c ,从而a =b =c ,与a ,b ,c 不成等差数列矛盾, 故a ,b ,c 不成等差数列. [一点通](1)对于这类“否定”型命题,显然从正面证明需要证明的情况太多,不但过程繁琐,而且容易遗漏,故可以考虑采用反证法.一般地,当题目中含有“不可能”“都不”“没有”等否定性词语时,宜采用反证法证明.(2)反证法证明“肯定”型命题适宜于结论的反面比原结论更具体更容易研究和掌握的命题.1.如图,正方体ABCD A 1B 1C 1D 1中,点M 是A 1D 1的中点,点N 是CD 的中点,用反证法证明直线BM 与直线A 1N 是两条异面直线.证明:假设直线BM 与A 1N 共面. 则A 1D 1平面A 1BND 1,且平面A 1BND 1∩平面ABCD =BN ,由正方体特征知A 1D 1∥平面ABCD ,故A 1D 1∥BN , 又A 1D 1∥BC ,所以BN ∥BC .这与BN ∩BC =B 矛盾,故假设不成立. 所以直线BM 与直线A 1N 是两条异面直线.2.直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.当点B在W 上且不是W 的顶点时,求证:四边形OABC 不可能为菱形.证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2), 则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k2,设AC 的中点为M ,则M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k.因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾. 所以四边形OABC 不可能是菱形.[例2] [思路点拨] 一般先证存在性,再用反证法证唯一性.[精解详析] (1)存在性:因为2×⎝ ⎛⎭⎪⎫-12+1=0,所以-12为函数f (x )=2x +1的零点. 所以函数f (x )=2x +1至少存在一个零点.(2)唯一性:假设函数f (x )=2x +1除-12外还有零点x 0⎝ ⎛⎭⎪⎫x 0≠-12,则f ⎝ ⎛⎭⎪⎫-12=f (x 0)=0.即2×⎝ ⎛⎭⎪⎫-12+1=2x 0+1,∴x 0=-12,这与x 0≠-12矛盾.故假设不成立,即函数f (x )=2x +1除-12外没有零点.综上所述,函数f (x )=2x +1有且只有一个零点. [一点通](1)结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的“唯一”型命题,由于反设结论易于导出矛盾,所以用反证法证明简单而又明了.(2)“有且只有”的含义有两层①存在性:本题中只需找到函数f (x )=2x +1的一个零点即可.②唯一性:正面直接证明较为困难,故可采用反证法寻求矛盾,从而证明原命题的正确性.3.设a >1,函数f (x )=(1+x 2)e x-a .证明:f (x )在(-∞,+∞)上仅有一个零点. 证明:因为a >1,所以f (0)=1-a <0,f (ln a )=(1+ln 2a )e ln a -a =a ln 2a >0,所以f (0)·f (ln a )<0,由零点存在性定理可知f (x )在(0,ln a )内存在零点. 假设至少有2个零点,则f (x )在(-∞,+∞)上不单调.由已知得f ′(x )=(1+x 2)′e x +(1+x 2)(e x )′=(1+x )2e x≥0, ∴f (x )在(-∞,+∞)上单调递增,矛盾,∴假设不成立,则f (x )在(-∞,+∞)上仅有一个零点.4.用反证法证明:过已知直线a 外一点A 只有一条直线b 与已知直线a 平行. 证明:假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a . 因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以过直线外一点只有一条直线与已知直线平行.[例0,x 2+2ax -2a =0中至少有一个方程有实数解.[精解详析] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧a 2--4a +<0,a -2-4a 2<0,a 2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,⇒-32<a <-1,-2<a <0.这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.[一点通](1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法. (2)常用的“原结论词”与“反设词”归纳如下表:5.将本例条件改为三个方程中至多有2个方程有实数根,求实数a 的取值范围. 解:假设三个方程都有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2≥0,a 2+4×2a ≥0,即⎩⎪⎨⎪⎧4a 2+4a -3≥0,3a 2+2a -1≤0,a 2+2a ≥0,解得⎩⎪⎨⎪⎧a ≤-32或a ≥12,-1≤a ≤13,a ≤-2或a ≥0.即a ∈∅.所以实数a 的取值范围为实数R.6.已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴(a +b )(c +d )=1, ∴ac +bd +bc +ad =1.而ac +bd +bc +ad >ac +bd >1,与上式矛盾, ∴假设不成立,∴a ,b ,c ,d 中至少有一个是负数.用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与定理、公理相矛盾,但推导出的矛盾必须是明显的.1.三人同行,一人道:“三人行,必有我师”,另一人想表示反对,他该怎么说?( ) A .三人行,必无我师B .三人行,均为我师C .三人行,未尝有我师D .三人行,至多一人为我师解析:选C “必有”意思为“一定有”,其否定应该是“不一定有”,故选C. 2.用反证法证明命题“若实系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数”时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个是偶数D .假设a ,b ,c 至少有两个是偶数解析:选B “a ,b ,c 中至少有一个是偶数”的反面是“a ,b ,c 都不是偶数”,故应假设a ,b ,c 都不是偶数.故选B.3.若a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数是( ) A .0 B .1 C .2D .3解析:选C 因为a ,b ,c 不全相等,所以①正确;②显然正确,③中的a ≠c ,b ≠c ,a ≠b 可以同时成立,所以③错,故选C.4.已知x >0,y >0,z >0,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2解析:选C 假设a ,b ,c 都小于2,则a +b +c <6.而事实上a +b +c =x +1x +y +1y+z+1z≥2+2+2=6,与假设矛盾,所以a ,b ,c 中至少有一个不小于2.5.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b 为实数)”,其反设为____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”,即a ,b 不全为0.答案:a ,b 不全为06.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N +,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:07.如果非零实数a ,b ,c 两两不相等,且2b =a +c , 证明:2b =1a +1c不成立.证明:假设2b =1a +1c 成立,则2b =a +c ac =2bac,故b 2=ac ,又b =a +c2,所以⎝⎛⎭⎪⎫a +c 22=ac ,即(a -c )2=0,a =c .这与a ,b ,c 两两不相等矛盾. 因此2b =1a +1c不成立.8.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,f (c )=0,且当0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明:1a>c .证明:(1)∵f (x )的图像与x 轴有两个不同的交点, ∴f (x )=ax 2+bx +c =0有两个不等实根,设为x 1,x 2. ∵f (c )=0,∴c 是f (x )=0的一个根,不妨令x 1=c .又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根,即1a是函数f (x )的一个零点. (2)由(1)知1a ≠c ,故假设1a<c .∵1a>0,又当0<x <c 时,f (x )>0,∴f ⎝ ⎛⎭⎪⎫1a >0,与f ⎝ ⎛⎭⎪⎫1a =0矛盾,1 a >c.∴假设不成立,∴。
高中数学第二章推理与证明2.1.1合情推理学案含解析新人教A版选修24
类比,然后提出猜想的推理,称为合情推理.
对类比推理的定义的理解
(1)类比推理是两类对象特征之间的推理. (2)对象的各个性质之间并不是孤立存在的,而是相互联系和相互制约的,如果两个对 象有些性质相似或相同,那么它们另一些性质也可能相似或相同. (3)在数学中,我们可以由已经解决的问题和已经获得的知识出发,通过类比提出新问 题和获得新发现.
提示:都是由个别事实推出一般结论. 1.归纳推理的定义
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推 理,或者由个别事实概括出一般结论的推理,称为归纳推理.
2.归纳推理的特征 归纳推理是由部分到整体、由个别到一般的推理.
归纳推理的特点
(1)由归纳推理得到的结论具有猜测的性质,结论是否正确,还需经过逻辑证明和实践
数值发生了怎样的变化.
如图,第 n 个图形由正 n+ 2 边形“扩展”而来 (n= 1, 2,3,… ),则第 n 个图形中的顶
点个数为 ( )
A.(n+ 1)(n+ 2) C. n2
B.(n+ 2)(n+ 3) D.n
解析:选 B 第一个图形共有 12= 3× 4 个顶点,第二个图形共有 20= 4× 5 个顶点,第
四面体的六个二面角的平分面交于一点,且
点是三角形内切圆的圆心
这个点是四面体内切球的球心
1.解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相
关结论类比到立体几何中,相关类比点如下:
平面
平行四
点 线 边长 面积 线线角 三角形
圆
图形
边形
空间
平行六
线 面 面积 体积 二面角 四面体
三个图形共有 30= 5× 6 个顶点,第四个图形共有 42= 6× 7 个顶点,故第 n 个图形共有 (n+
专题十二 推理与证明第三十二讲 推理与证明答案 (1)
专题十二 推理与证明第三十二讲 推理与证明答案部分1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .2.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a-的直线,当0a ≠时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D .解法二 若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .3.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 4.A 【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .5.B 【解析】学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙,一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B .6.A 【解析】“至少有一个实根”的反面为“没有实根”,故选A .7.D 【解析】∵553125=,6515625=,7578125=,85390625=,951953125=,1059765625=,⋅⋅⋅,∴5n (n Z ∈,且5n ≥)的末四位数字呈周期性变化,且最小正周期为4,记5n(n Z ∈,且5n ≥)的末四位数字为()f n , 则(2011)(50147)f f =⨯+(7)f =,∴20115与75的末位数字相同,均为8 125,选D .8.D 【解析】由给出的例子可以归纳推理得出:若函数()f x 是偶函数,则它的导函数是奇函数,因为定义在R 上的函数()f x 满足()()f x f x -=,即函数()f x 是偶函数,所以它的导函数是奇函数,即有()g x -=()g x -,故选D 。
程序框图与推理证明
第2练程序框图与推理证明1.(2020·全国Ⅱ)执行如图所示的程序框图,若输入的k=0,a=0,则输出的k为()A.2 B.3 C.4 D.5答案 C解析程序框图运行如下:a=2×0+1=1<10,k=1;a=2×1+1=3<10,k=2;a=2×3+1=7<10,k=3;a=2×7+1=15>10,k=4.此时输出k=4,程序结束.2.(2017·全国Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在◇和▭两个空白框中,可以分别填入()A .A >1 000?和n =n +1B .A >1 000?和n =n +2C .A ≤1 000?和n =n +1D .A ≤1 000?和n =n +2 答案 D解析 因为题目要求的是“满足3n -2n >1 000的最小偶数n ”,所以n 的叠加值为2,所以▭内填入“n =n +2”.由程序框图知,当◇内的条件不满足时,输出n ,所以◇内填入“A ≤ 1 000?”.3.(2012·江西)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199答案 C解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.4.(2019·全国Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC .A =11+2AD .A =1+12A答案 A解析 A =12,k =1,1≤2成立,执行循环体;A =12+12,k =2,2≤2成立,执行循环体;A =12+12+12,k =3,3≤2不成立,结束循环,输出A .故空白框中应填入A =12+A.5.(2022·全国乙卷)执行如图所示的程序框图,输出的n 等于( )A .3B .4C .5D .6答案 B解析 第一次循环:b =1+2×1=3,a =3-1=2,n =1+1=2,⎪⎪⎪⎪b 2a 2-2=⎪⎪⎪⎪⎝⎛⎭⎫322-2=14>0.01;第二次循环:b =3+2×2=7,a =7-2=5,n =2+1=3,⎪⎪⎪⎪b 2a 2-2=⎪⎪⎪⎪⎝⎛⎭⎫752-2=125>0.01;第三次循环:b =7+2×5=17,a =17-5=12,n =3+1=4,⎪⎪⎪⎪b 2a 2-2=⎪⎪⎪⎪⎝⎛⎭⎫17122-2=1144<0.01,输出n =4. 6.(2017·全国Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 答案 D解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 7.(2016·全国Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________. 答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”. 8.(2015·陕西)观察下列等式: 1-12=12,1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …,据此规律,第n 个等式可为______________________________________________________. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .9.(2022·资阳模拟)执行如图所示的程序框图,在集合A ={x ∈R |-10≤x ≤10}中随机地取一个数值作为x 输入,则输出的y 值落在区间(-5,3)内的概率为( )A.23B.34C.45D.56 答案 C解析 根据程序框图可知,其功能为计算y =⎩⎪⎨⎪⎧0,x =0,x +3,x <0,x -5,x >0,∵输出的y 值落在区间(-5,3)内, 即-5<y <3,①当x <0时,y =x +3, ∴-5<x +3<3,解得-8<x <0, 故-8<x <0,符合题意; ②当x =0时,y =0∈(-5,3), 故x =0,符合题意; ③当x >0时,y =x -5, ∴-5<x -5<3,解得0<x <8, 故0<x <8,符合题意.综上可得,x 的取值范围为(-8,8),∵在集合A ={x ∈R |-10≤x ≤10}中随机地取一个数值作为x 输入, 故输出的y 值落在区间(-5,3)内的概率为8-(-8)10-(-10)=45.10.(2022·麻城实验中学模拟)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”即代表无限次重复,但它却是个定值,它可以通过方程1+1x=x 求得x =5+12.类似上述过程,则33+833+833+833+83…等于( )A.-3-52B .4C .3D .3或-3±52答案 C解析 令33+833+833+833+83…=m (m >0),两边立方得3+8m =m 3,解得m =3或m =-3±52(舍去).11.(2022·海东模拟)我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升,问:米几何?”如图是执行该计算过程的一个程序框图,若输出的s =3(单位:升),则器中米的数量k 应为( )A .6 升B .8 升C .12 升D .16 升答案 C解析 根据程序框图反向运算知: 当输出s =3时,3=s -s4,解得s =4;由s =4得4=s -s3,解得s =6;由s =6得6=s -s2,解得s =12,即k =s =12.12.(2022·洛阳模拟)在平面直角坐标系中,已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,若l 1⊥l 2,则A 1A 2+B 1B 2=0.类比可得在空间直角坐标系中,若平面ax +2y +2z -4=0与平面3x +5y +az +1=0垂直,则实数a 的值为( ) A .-2 B .-103 C .-65 D .-5答案 A解析 类比可得,若平面A 1x +B 1y +C 1z +D 1=0与平面A 2x +B 2y +C 2z +D 2=0垂直, 则A 1A 2+B 1B 2+C 1C 2=0,所以由平面ax +2y +2z -4=0与平面3x +5y +az +1=0垂直,可得3a +2×5+2a =0, 解得a =-2.13.(2022·安徽舒城中学模拟)执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A.s≥7? B.s≥21?C.s≥28? D.s≥36?答案 C解析第一次循环:s=1,不满足条件,i=2;第二次循环:s=3,不满足条件,i=3;第三次循环:s=6,不满足条件,i=4;第四次循环:s=10,不满足条件,i=5;第五次循环:s=15,不满足条件,i=6;第六次循环:s=21,不满足条件,i=7;第七次循环:s=28,满足条件,输出的值为7.所以判断框中的条件可填写“s≥28?”.14.(2022·宜宾模拟)某班举行了一次有意思的智力竞猜游戏,首先老师将三只冬奥会吉祥物冰墩墩进行了1,2,3三个数字的编号,然后将它们随机均分给甲、乙、丙三名同学,每人将得到的冰墩墩编号告知老师,老师根据三人抽取的号码情况给出了三种说法:①甲抽取的是1号冰墩墩;②乙抽取的不是2号冰墩墩:③丙抽取的不是1号冰墩墩.若三种说法中只有一个说法正确,则抽取2号冰墩墩的是()A.甲B.乙C.丙D.无法判定答案 A解析假设①正确,则③正确,不符合题意;假设②正确,若乙抽取到的是1号冰墩墩,则③正确,不符合题意;若乙抽取到的是3号冰墩墩,由于甲不能抽取1号冰墩墩,所以甲只能抽到2号冰墩墩,而丙抽取到1号冰墩墩,符合题意;假设③正确,若丙抽到的是2号冰墩墩,则甲抽到的是3号冰墩墩,乙抽取到1号冰墩墩,则②正确,不符合题意;若丙抽到的是3号冰墩墩,则甲抽到的是2号冰墩墩,乙抽到的是1号冰墩墩,则②正确,不符合题意.综上,甲抽到的是2号冰墩墩.15.(2022·内江模拟)随机抽取某产品n 件,测得其长度分别为a 1,a 2,…,a n ,则如图所示的程序框图输出的s 表示这组数据的特征数是________.答案 平均数 解析 由题意知,当i =1≤n 时,s =(1-1)×0+a 11=a 1,当i =2≤n 时,s =(2-1)×s +a 22=a 1+a 22,当i =3≤n 时,s =(3-1)×s +a 33=2×a 1+a 22+a 33=a 1+a 2+a 33,…,依此类推,s =a 1+a 2+…+a nn,表示样本的平均数.16.从一个边长为3的等边三角形开始,把三角形的每一条边三等分,并以每一条边三等分后的中段为边,向外作新的等边三角形(如图),但要去掉与原三角形叠合的边,接着对此图形每一个等边三角形“尖出”的部分继续上述过程.若按照上述规律,则第四个图形的周长是________.答案643解析 设四个图形的边长分别为a 1,a 2,a 3,a 4,边长个数为b 1,b 2,b 3,b 4,设周长为S n (n =1,2,3,4),a 1=3,a 2=a 1×13=1,a 3=13a 2=13,a 4=13a 3=19,b 1=3,b 2=3×4,b 3=3×4×4,b 4=3×4×4×4, 则S 1=9,S 2=12,S 3=16,S 4=643.[考情分析] 1.程序框图是每年高考的必考内容,难度为中低档.2.推理与证明以逻辑推理为主,常与新情景、新概念等结合考查,难度中等. 一、程序框图 核心提炼1.要分清是当型循环结构还是直到型循环结构,当型循环结构是在每次执行循环体前,对条件进行判断;直到型循环结构是在执行一次循环体以后,对条件进行判断. 2.注意选择准确的表示累计的变量.3.注意在哪一步开始循环,满足什么条件时不再执行循环体. 练后反馈题目 1 2 4 5 9 11 13 15 正误错题整理:二、推理证明 核心提炼1.在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.2.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.3.归纳推理关键是找规律,类比推理关键是看共性.练后反馈题目38101216正误错题整理:三、生活中的推理问题核心提炼生活中的推理问题,解题的关键是将现实生活背景下的条件转化为高中数学知识,考查考生的阅读理解能力、抽象概括能力、逻辑推理能力,体现了对数学应用性的考查.练后反馈题目6714正误错题整理:1.[T2补偿](2022·平顶山模拟)某同学为了3+33+333+…+10033333个…,设计了一个程序框图(如图所示),则在该程序框图中,①②两处应分别填入()A.m=11m,i>100?B.m=11m,i>101?C.m=10m+3,i>100?D.m=10m+3,i>101?答案 C解析程序框图功能为求3,33,333,…的前100项和,递推公式为a n+1=10a n+3,故①为m=10m+3,当i=100时继续循环,当i=101时退出循环,故②为i>100?.2.[T16补偿](2022·新余模拟)分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去,直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为()A.35B.36C.37D.38答案 C解析根据题意,第一次:剩下3=31;第二次:在3个里面又挖去一个,在原来的3个上每个多了3个,故有32个;依此类推,操作n次后,“谢尔宾斯基”图形中的小正三角形的个数为3n.故第7次有37个.3.[T10补偿](2022·银川一中模拟)苏格兰数学家科林·麦克劳林(Colin Maclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:ln(1+x)=x-x22+x33-x44+…+(-1)n-1x nn+…,试根据此公式估计下面代数式2+223+425-43+…+(-1)n-1(2)nn+…(n≥5)的近似值为(参考数据:ln 2.414≈0.881,ln 3.414≈1.23)() A.3.23 B.2.881 C.1.881 D.1.23答案 B解析依题意ln(1+x)=x-x22+x33-x44+…+(-1)n-1x nn+…,令x=2,则ln(1+2)=2-22+223-44+425-86+…+(-1)n-1·(2)nn+…,ln(1+2)+2=2+223+425-43+…+(-1)n-1·(2)nn+…,ln(1+2)+2≈ln 2.414+2≈2.881.4.[T6补偿](2022·连云港模拟)甲、乙、丙、丁四支足球队进行单循环比赛(每两个球队都要比赛一场),每场比赛的计分方法是:胜者得3分,负者得0分,平局两队各得1分,全部比赛结束后,四队的得分为:甲6分,乙5分,丙4分,丁1分,则()A.甲胜乙B.乙胜丙C.乙平丁D.丙平丁答案 C解析甲、乙、丙、丁四支足球队总比赛场次6场,总得分为6+5+4+1=16(分),由比赛计分规则:胜者得3分,负者得0分,平局两队各得1分,所以在6场比赛中有2场比赛是平局,即3×4+2×2=16,丁得1分,即1+0+0=1,所以丁在3场比赛中有1场是平局,丙得4分,即3+1+0=4,所以丙在3场比赛中有1场是平局,而乙得分5分,即3+1+1=5,所以乙在3场比赛中有2局是平局,所以乙可能平丙,乙可能平丁.5.[T9补偿](2022·宁夏模拟)执行如图所示的程序框图,若输入t∈[-1,3],则输出s的取值范围是________.答案[0,1]解析当t∈[-1,1)时,s=e t-1,∵s=e t-1在[-1,1)上单调递增,∴s∈[e-2,1);当t∈[1,3]时,s=log3t,∵s=log3t在[1,3]上单调递增,∴s∈[0,1],综上所述,输出的s∈[0,1].6.[T7补偿](2022·嘉峪关模拟)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:甲说:“A作品获得一等奖”;乙说:“C作品获得一等奖”;丙说:“B,D两项作品未获得一等奖”;丁说:“A或D作品获得一等奖”.评奖揭晓后发现这四位同学中只有两位预测正确,则获得一等奖的作品是________.答案C作品解析若获得一等奖的作品是A,则甲、丙、丁预测正确,与已知矛盾;若获得一等奖的作品是B,则甲、乙、丙、丁预测都不正确,与已知矛盾;若获得一等奖的作品是C,则只有乙、丙预测正确,与已知相符;若获得一等奖的作品是D,则只有丁预测正确,与已知矛盾.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序,推理证明(含答案)收集于网络,如有侵权请联系管理员删除复数练习1.【2012高考真题浙江理2】 已知i 是虚数单位,则31ii+-= A .1-2i B.2-i C.2+i D .1+2i2.【2012高考真题新课标理3】下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 343.【2012高考真题四川理2】复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i - 【答案】B【解析】22(1)1221222i i i ii i i--+-===- 4.【2012高考真题陕西理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】00=⇔=a ab Θ或0=b ,而复数bi a iba -=+是纯虚数00≠=⇔b a 且,iba ab +⇐=∴0是纯虚数,故选B. 5.【2012高考真题上海理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b6.【2012高考真题山东理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【答案】A 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
7.【2012高考真题辽宁理2】复数22ii-=+ (A)3455i - (B)3455i + (C) 415i - (D) 315i +收集于网络,如有侵权请联系管理员删除9.【2012高考真题广东理1】 设i 为虚数单位,则复数56ii-= A .6+5i B .6-5i C .-6+5i D .-6-5i 【答案】D 【解析】56i i-=i ii i i 56156)65(2--=-+=-.故选D .10.【2012高考真题福建理1】若复数z 满足zi=1-i ,则z 等于 A.-1-I B.1-i C.-1+I D.1=i 【答案】A.【解析】根据i zi -=1知,i iiz --=-=11,故选A.11.【2012高考真题北京理3】设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件12.【2012高考真题安徽理1】复数z 满足:()(2)5z i i --=;则z =( )()A 22i -- ()B 22i -+()C i 2-2 ()D i 2+213.【2012高考真题天津理1】i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i 【答案】B 【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 14.【2012高考真题全国卷理1】复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【答案】C 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C.收集于网络,如有侵权请联系管理员删除15.【2012高考真题重庆理11】若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b +=16.【2012高考真题上海理1】计算:=+-ii13 (i 为虚数单位)。
【答案】i 21- 【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。
17.【2012高考江苏3】(5分)设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ .18.【2012高考真题湖南理12】已知复数2(3)z i =+ (i 为虚数单位),则|z|=_____. 【答案】10【解析】2(3)z i =+=29686i i i ++=+,228610z =+=.19.我们用记号eiθ来表示复数cosθ+isinθ,即eiθ=cosθ+isinθ.(其中e =2.718…是自然对数的底数,θ∈R),则①2ei π2=2i ②eiθ+e -iθ2=sinθ③(eiθ)2=e2iθ ④eiα·eiβ=ei(α+β) (α、β∈R). 其中正确的式子个数是 ( ) A .1个B .2个C .3个D .4个[答案] C[解析] ①2ei π2=2⎝ ⎛⎭⎪⎫cos π2+isin π2=2i 正确.②eiθ+e -iθ=cosθ+isinθ+cos(-θ)+isin(-θ) =2cosθ,eiθ+e -iθ2=cosθ.②错.③(eiθ)2=(cosθ+isinθ)2=cos2θ-sin2θ+2(cosθ·sinθ)i =cos2θ+isin2θ=e2iθ,∴③正确.eiα·eiβ=(cosα+isinα)(cosβ+isinβ)=cosαcosβ-sinαsinβ+(cosαsinβ+sinαcosβ)i =cos(α+β)+isin(α+β)=ei(α+β),∴④正确.19. (2011年高考江西卷理科7)观察下列各式:55=3125,65=15625,75=78125,…,则20115的末四位数字为A .3125B .5625C .0625D .8125收集于网络,如有侵权请联系管理员删除推理、框图1.如图是今年元宵花灯展中的一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )【答案】A2. 图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是( )A .25B .66C .91D .120【答案】C3、观察不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为________(n ∈N*). 1+12+13+…+12n -1>n24、古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .1378解析:根据图形的规律可知第n 个三角形数为a n =n n +12,第n 个正方形数为b n =n 2.由此可排除D(1378不是平方数).将A 、B 、C 选项代入到三角形表达式中检验可知,符合题意的是C 选项.答案:C5、现有5男5女共10个小孩设想做如下游戏:先让4个小孩(不全为男孩)等距离站在一个圆周的4个位置上,如果相邻两个小孩同为男孩或同为女孩,则在他(她)们中间站进一个男孩,否则站进一个女孩,然后让原来的4个小孩暂时退出,即算一次活动.这种活动按上述规则继续进行,直至圆周上所站的4个小孩都为男孩为止,则这样的活动最多可以进行________次.解析:按照小孩初始位置可以分为以下几种情况分类讨论: ①3男1女时,如下图所示,要经过4次活动可变为4个男孩:②2男2女时,经过2次或3次活动可变为4个男孩;③1男3女时,如下图所示,要经过4次活动可变为4个男孩;④4个女孩时,经过1次活动可变为4个男孩.综上可得,这样的活动最多可以进行4次.答案:46.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),L L,则第80个数对是。
(2,12)7.如图所示的程序框图,若输入的n是100,则输出的变量S和T的值依次是()A.2500,2500 B.2550,2550C.2500,2550 D.2550,2500 [答案] D[解析]解法1:由程序框图知:S>T,排除选项A、B、C,故选D.解法2:S=100+98+96+ (2)100+2×502=2550.T=99+97+…+3+1=99+1×502=2500,故选D.8、下面框图表示的程序所输出的结果是()A.1320 B.132C.11880 D.121[答案] A[解析]运行过程依次为:i=12,x=1→x=12,i=11→x=132,i=10→x=1320,i=9,此时不满足i≥10,输出x的值1320.收集于网络,如有侵权请联系管理员删除9、下面的程序框图运行时,依次从键盘输入a=0.312,b=55,c=0.3-2,则输出结果为()A.0.312 B.55C.0.3-2 D.以上都有可能[答案] B[解析]此程序框图是比较a,b,c的大小,输出三数中的最小数,∵y=0.3x是单调减函数,12>-2,∴0.312<0.3-2,∵55=⎝⎛⎭⎪⎫1512=0.212,y=x12在第一象限内为增函数,0.2<0.3.∴0.212<0.312,即55<0.312,∴55<0.312<0.3-2,故输出55.10、、某程序框图如图所示,该程序运行后输出的S为()A.2 B.-12C.-3 D.13[答案] B[解析]程序运行过程为:S=2,i=1,i≤2010满足,S=1+21-2=-3,i=1+1=2,再判断i≤2010满足,S=1+-31--3=-12,i=2+1=3,再判断i≤2010仍满足,S=1+⎝⎛⎭⎪⎫-121-⎝⎛⎭⎪⎫-12=13,i=3+1=4,依次进行下去,S=2,i=5,S=-3,i=6,…,可见S的值以4为周期重复出现,i=2008判断后,得S=2,i=2009,继续运行得S=-3,i=2010,得S=-12,i=2011,此时不满足i≤2010,输出S=-12后结束.11、.下图给出的是计算12+14+16+…+1100的值的一个程序框图,其中判断框内应填入的条件是()收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除A .i>100?B .i≤100?C .i>50?D .i≤50?[答案] B[解析] 最后加的一项为1100,不满足条件时跳出循环,故循环终止条件为i≤100.12、、已知函数f(x)=ax3+12x2在x =-1处取得极大值,h(x)=f ′(x),如图所示的程序框图运行后,输出结果S>20092010,那么判断框中可以填入的关于k 的判断条件是( )A .k<2010B .k<2009C .k>2010D .k>2009[答案] A[解析] 由条件知f ′(-1)=(3ax2+x)|x =-1=3a -1=0,∴a =13,∴h(x)=x2+x ,程序框图表示的算法是计算S =11×2+12×3+…+1k k +1=kk +1,由于输出结果S>20092010,∴k =2010,故条件为k<2010,选A.13、如图所示的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( )A.2500,2500 B.2550,2550C.2500,2550 D.2550,2500[答案] D[解析]解法1:由程序框图知:S>T,排除选项A、B、C,故选D.解法2:S=100+98+96+…+2=100+2×502=2550.T=99+97+…+3+1=99+1×502=2500,故选D.14、、已知某程序框图如图所示,则该程序运行后输出的结果为。