第四章 材料的断裂韧度
第4章 金属的断裂韧度
2 (
x y
2
) 2 2 xy ) 2 2 xy
19/49
x y
2
(
x y
2
3 ( 1 2 )
19
第四章 金属的断裂韧性
裂纹尖端附近任一点P(r,θ)的主应力:
KI 1 cos (1 sin ) 2 2 2 r KI 2 cos (1 sin ) 2 2 2 r 3 0(平面应力) 2 K I 3 cos (平面应变) 2 2 r
3/49
3
第四章 金属的断裂韧性
第一节 线弹性条件下金属断裂韧度
大量断口分析表明,金属机件的低应力脆断 断口没有宏观塑性变形痕迹,所以可以认为 裂纹在断裂扩展时,尖端总处于弹性状态, 应力-应变应呈线性关系。 因此,研究低应力脆断的裂纹扩展问题时, 可以用弹性力学理论,从而构成了线弹性断 裂力学。
12/49
12
第四章 金属的断裂韧性
13/49
13
第四章 金属的断裂韧性
14/49
14
第四章 金属的断裂韧性
(三)断裂韧度KIc和断裂K判据
KI是决定应力场强弱的一个复合力学参量,就可将它 看作是推动裂纹扩展的动力,以建立裂纹失稳扩展的 力学判据与断裂韧度。 当σ和a单独或共同增大时,KI和裂纹尖端的各应力分 量随之增大。 当KI增大到临界值时,也就是说裂纹尖端足够大的范 围内应力达到了材料的断裂强度,裂纹便失稳扩展而 导致断裂。 这个临界或失稳状态的KI值就记作KIC或KC,称为断 裂韧度。
8/49
8
第四章 金属的断裂韧性
应力分量:
材料性能与测试课件-第四章材料的断裂韧性
等效裂纹塑性区修正: 等效裂纹塑性区修正:
K =Yσ a + r
Ⅰ
y
K =
Ⅰ
Yσ πa 1 − 0.16Y (σ / σ )
2 s 2
2
K =
Ⅰ
Yσ a 1 − 0.056Y (σ / σ )
等效裂纹修正K 图4-4 等效裂纹修正 Ⅰ
2
16
裂纹扩展能量释放率G 五、裂纹扩展能量释放率 Ⅰ及判据 1、GⅠ:
定义:驱使裂纹扩展的动力假设为弹性能的释放, 定义:驱使裂纹扩展的动力假设为弹性能的释放,令
∂U σ πa = G =− ∂a E ∂U (1 −ν )σ πa G =− = ∂a E
2 Ⅰ 2 2 Ⅰ
平面应力
平面应变
判据: 2、判据:
相似,是应力和裂纹尺寸相关的力学参量。 和KI相似,是应力和裂纹尺寸相关的力学参量。当GⅠ增大到临界值GⅠ C, 失稳断裂, 失稳断裂, GⅠC也称为断裂韧度。表示材料阻止裂纹失稳扩展时单位面 也称为断裂韧度。 积所消耗的能量。 积所消耗的能量。 裂纹失稳扩展断裂G 裂纹失稳扩展断裂G判据
8
图4-2 裂纹尖端的应力分析
应力分量
Ⅰ x
应变分量
Ⅰ x
θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν − sin sin ) σ = cos (1 − sin sin ) E 2πr 2 2 2 2πr 2 2 2 θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν + sin sin ) σ = cos (1 + sin sin ) E 2πr 2 2 2 2πr 2 2 2 2(1 + ν ) K θ θ 3θ K θ θ 3θ sin cos cos ) γ = τ = sin cos cos E 2πr 2 2 2 2πr 2 2 2
第四章 材料的断裂韧性
• 在平面应变条件下
• 对于Ⅰ型穿透裂纹,
• 对于一定材料和厚度的板材,不论其 裂纹尺寸如何,当裂纹张开位移达到 同一临界值δC时,裂纹就开始扩展。
• 临界值δC也称为材料的断裂韧度,表 示材料阻止裂纹开始扩展的能力。
• 平面应变状态应变分量为
2021/7/14
• 平面应变状态x、y轴方向的位移 分量为
2021/7/14
• 可以看出,裂纹尖端任意一点的应力、 应变和位移分量取决于该点的坐标(r, θ)、材料的弹性模数以及参量KI。
• 对于如图所示的平面应力情况,KI可用 下式表示。
2021/7/14
• 若裂纹体的材料一定,裂纹尖端附近某一点的 位置(r,θ)给定,则该点的各应力、应变和 位移分量唯一决定于KI值,KI值愈大,则该点 各 反映应了力裂、纹应尖变端和区位域移应分力量场之的值强愈度高,,故因称此之,为KI 应力场强度因子,它综合反映了外加应力、裂 纹形状、裂纹长度对裂纹尖端应力场强度的影 响,其一般表达式为
• 1968年,Rice提出了J积分,Hutchinson 证明J积分可以用来描述弹塑性体中裂纹 的扩展,在这之后,逐步发展起来弹塑 性断裂力学。
2021/7/14
• 断裂力学研究裂纹尖端的应力、应变 和应变能的分布情况,建立了描述裂 纹扩展的新的力学参量、断裂判据和 对应的材料力学性能指标—断裂韧度 ,以此对机件进行设计和校核。
• 式中:Y为裂纹形状系数,取决于裂纹的形状 。
• K型I的和脚Ⅲ标型表裂示纹I的型应裂力纹场,强同度理因,子KⅡ。、KⅢ表示Ⅱ • 对2021于/7/14 不同形状的I型裂纹裂纹,KI和Y的表达式
2021/7/14
2021/7/14
第四章 金属的断裂韧度
KⅠY a
(4-4)
式中 Y = 裂纹形状系数,是一个无量纲系数,一般,Y =l~2。
对于Ⅱ、Ⅲ型裂纹,其应力场强度因子的表达式为:
KⅡY a
KⅢY a
(三) 断裂韧度 KⅠc 和断裂K判据
当σ和a单独或共同增大时,K Ⅰ和裂纹尖端各应 力分量也随之增大。当 K Ⅰ 增大达到临界值时,裂纹 便失稳扩展而导致材料断裂。这个临界或失稳状态
说明会产生脆性断裂,因而不安全。
三、高强钢容器水爆断裂失效分析
解题思路简介
四、大型转轴断裂分析
解题思路简介
五、评价钢铁材料的韧脆性
1、超高强度钢的脆断倾向 允许裂纹1毫米
2、中、低强度钢脆断倾向 允许裂纹6~13毫米
3、高强度钢
4、球墨铸铁
允许裂纹63毫米
4.5 弹塑性条件下金属断裂韧度的基本概念
这个 称为COD。
c 也称为材料的断裂韧度,表示材料阻止
裂纹开始扩展的能力。
思考题与习题
1.解释下列名词: ⑴ 低应力脆断;⑵ 张开型(Ⅰ型)裂纹;⑶
应力场和应变场;⑷ 应力场强度因子K Ⅰ;⑸ 小范
围屈服;⑹ 塑性区;⑺ 有效屈服应力;⑻ 有效 裂纹长度;⑼ 裂纹扩展K判据;⑽ 裂纹扩展能量
(二)裂纹扩展能量释放率G Ⅰ
G (U 2ae)
(2a2)2a)(平面应 )
(2a) E
E
G ( 12) E2a)(平面应 ) 变
(三) 断裂韧度GⅠ c 和断裂G判据
≧
G ≧ G C
4.2 断裂韧度K Ic 的测试
一、试样的形状、尺寸及制备 二、测试方法 三、试验结果的处理
2r0
R0
材料力学性能第四章—金属的断裂韧度
K Ⅰ 、 K Ⅱ 、K Ⅲ
表4-1 几种裂纹的KI表达式
K I Y a
a:1/2裂纹长度 Y——裂纹形状系数(无量纲量)
裂尖应力分量除了决定其 KI 3 x cos (1 sin sin ) 位置外,还与KI有关。 2 2 2 2 r
对于某确定的点,其应力 y K I cos (1 sin sin 3 ) 2 2 2 2 r 分量由KI决定,KI↑,则 z ( x y )(平面应变) 应力场各应力分量也↑。
对应的力学性能指标——断裂韧度
断裂强度 1922,Griffith,首先在强度与裂纹尺度建立关系
格雷菲斯断裂强度(从吸收能量的角度考虑)
弹性能降低足以满足裂纹表面能的增加和塑性变形能从
而导致材料脆性断裂。
断裂韧度(从阻止裂纹扩展的角度考虑) 得到相应的K判据。
用应力应变分析方法,考虑裂纹尖端附近的应力场强度,
超高强度钢, D6AC,1400MPa
断裂力学
低应力脆断与断裂力学
机件设计,σ<σs/n,不考虑裂纹 出现低应力脆断 → 宏观裂纹存在→应力集中 断裂——裂纹扩展引起,研究裂纹体的扩展
主要内容
线弹性条件下的金属断裂韧度☆ 金属断裂韧度的测试 影响断裂韧度的因素
断裂K判据应用案例☆
弹塑性条件下金属断裂韧度的基本概念
2
x y
2
(
x y
2
3 ( 1 2 )
裂纹尖端附近任一点P(r,θ)的主应力:
1 2
第04章 金属的断裂韧度
③夹杂、第二相 若本身脆裂或在相界面开裂而形成微孔(微孔与主裂纹连接使 裂纹扩展), KIC ↓; 当夹杂物体积分数增多,使得分散的脆性相数量越多,其平均 间距越小,促进裂纹的扩展, KIC ↓, 第二相或夹杂物呈球状分布时,有利减缓应力集中,↑KIC ; 当碳化物沿晶界呈网状分布(包括夹杂物沿晶界分布),裂纹 易沿此扩展, KIC ↓;
11
Note: KC与试样厚度有关, 当试样厚度增加时, KC趋于最低的KC值,i.e., KIC。 KIC是真正的材料常数。量纲与KI相同,MPa*m1/2 临界状态下对应的平均应力,即为断裂应力σc、对应的裂纹尺寸为临界裂 纹尺寸ac。三者的关系:
K Ic Y c
a
c
KIC值越大, σc、ac就越大,表明越难断裂。 所以KIC表示了材料抵抗断 裂的能力。 ② 断裂判据 KI < KIC 有裂纹,但不会扩展(称为破损安全) KI ≥ KIC (或 Y a ≥ KIC )裂纹扩展,直至断裂。 以上断裂判据式将 材料断裂韧度KIC 同机件(或构件)工作应力σ 及 裂 纹尺寸a 的关系定量的联系起来,可用于设计计算,如估算裂纹体的最大 承载能力σ,允许的裂纹尺寸a,以及用于优化选材、优化工艺。
用于设计: 已知 KIC和σ,求 amax。 已知 KIC和a c ,求构件最大承载能力。 已知 KIC和a,求σ。
讨论: KIC 的意义,测试原理,影响因素及应用。
3
§4.1 线弹性条件下的断裂韧度
4.1.1 裂纹扩展的基本形式
a) 张开型(I型)
正应力引起,裂纹扩展方向与之垂 直
b) 滑开型(II型)
7
②应力分析 在裂纹延长线上,(即x 的方向) θ=0
y x 0 xy k1 2r
第四章材料的断裂韧性..
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
1、裂纹尖端塑性区: 裂纹尖端附近的σ≥σs→塑性变形→存在裂纹尖端塑性区。
2、塑性区的边界方程
3、在x轴上,θ=0,塑性区的宽度r0为:
4、修正后塑性区的宽度R0为:
18
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
5、等效裂纹的塑性区修正值ry:
6、KⅠ的修正 (σ/σs≥0.6~0.7): 线弹性断裂力学计算得到σy的分布曲线为ADB; 屈服并应力松弛后σy的分布曲线为CDEF; 若将裂纹顶点由O虚移至O´点, 则在虚拟的裂纹顶点O´以外的弹性应力分布曲线为GEH。 采用等效裂纹长度(a+ry)代替实际裂纹长度a,即
14
材料性能学 三、断裂韧度KⅠc和断裂K判据
已知
K Y
1、平面应变断裂韧度KⅠc (MPa·m1/2)
σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→c 裂纹失稳扩展→断裂 →KⅠ=KⅠc 2、平面应力断裂韧度Kc σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→ c 裂纹失稳扩展→断裂 →KⅠ=Kc ***Kc>KⅠc
无限远处有均匀应力σ的线弹性问题。
AB两点的张开位移为
36
材料性能学
各种断裂韧度关系:
平面应力:
平面应变:
37
材料性能学
§4.3
一、化学成分、组织结构对断裂韧度的影响 1、化学成分的影响 2、基体相结构和晶粒尺寸的影响 3、夹杂和第二相的影响 4、显微组织的影响:影响材料的断裂韧度。 二、特殊改性处理对断裂韧度的影响 1、亚温淬火 2、超高温淬火 3、形变热处理 三、外界因素对断裂韧度的影响 1、温度 2、应变速率
8
材料性能学
材料性能学 4.断裂韧性
变。因此,工程 上 KⅠC 是指达到 一定厚度后(平
面应变)断裂韧
度。
过渡区
KC 平面应力
平面应变
KⅠC
B
B
2.5
K C
s
2
五、裂纹尖端塑性区及 KⅠ修正
按K1建立的脆性断裂判据,只适用于线弹性体。其实, 金属材料在裂纹扩展前,其尖端附近总要先出现或 大或小的塑性变形区,
如果塑性区尺寸裂纹尺寸及净截面尺寸小时,(小 一个数量级以上)即在小范围屈服下,对K进行修正 后,依然可用。
究点到裂纹尖端距离 r 有如下关系:
1
y r 2
或
1
r 2 y K
1
当 r →0 时, σy →∞,表明裂纹尖端前沿应力场具有 r 2阶奇异性。参
数 K 表征了应力场奇异性程度,其含义是,当 r →0 时, σy 以 K 的速度→∞, K 越大,则σy →∞的速度也越大,表明应力分布曲线越陡,即应力集中程度 越大,因此,参数 K 又称为“应力场强度因子”。
二、裂纹尖端应力状态
1、平面应力状态
x 0
y 0
xy 0
z 0
yz zx 0
z
E
x
y
对含穿透裂纹的薄板,可将裂纹顶端前沿视为平面应力 状态,此时材料受剪切力大,易于塑性变形,阻碍裂纹扩展。
2、平面应变状态
z 0
x 0 y 0 xy 0
x 0 y 0 z x y
2
R01
1
Hale Waihona Puke Ks平面应力
R02
2
1
2
K
s
2
平面应变
三维塑性区形状及塑性区内应力分布
4.第四章材料的断裂韧性
2012-4-10
(2)第三强度理论
(4-12)
即: (4-13) 于是有裂纹尖端的塑性区为: (4-14)
2012-4-10
平面应力下:(θ=0)
于是有:
(4-15)
2012-4-10
平面应变下:(θ=0) 因σ3 =2υσ1 ,按σ1 -σ3 =σs ,可计算出:
进而求得: (4-16)
2012-4-10
2012-4-10
第四章材料的断裂韧性
主讲 朱协彬
2012-4-10
目录
4.1 概述 4.2 裂纹尖端的应力场 4.3 断裂韧性和断裂判据 4.4 几种常见裂纹的应力强度因子 4.5 裂纹尖端的塑性区 4.6 塑性区及应力强度因子的修正 裂纹扩展的能量判据G 4.7 裂纹扩展的能量判据GI 4.8 GI和KI的关系 影响断裂韧性K 4.9 影响断裂韧性KIC的因素 金属材料断裂韧性K 4.10 金属材料断裂韧性KIC的测定 4.11 弹塑性条件下的断裂韧性
有效屈服应力: 通常将引起塑性变形的最大主应力,称为有效 屈服应力,以σys 记之。 有效屈服强度与单向拉伸屈服强度之比, 称 为塑性约束系数。 根据最大切应力理论:
2012-4-10
1)按第四强度理论计算
(4-7) 其中σ1 、σ2 、σ3 为主应力。 对裂纹尖端的主应力,可由下式求解: (4-8)
2012-4-10
将Irwin应力场代入上式得:
(4-9)
2012-4-10
代入到第四强度理论中,可计算得到裂纹尖端 塑性区的边界方程为: (4-10)
将上式用图形表示,塑性区的形状如下图:
2012-4-10
4.1 概述
随着高强度材料的使用,尤其在经车、轮船、桥梁和飞机等的意外事故。 传统设计思想: σ <σ许,使用应力小于许用应力。对于塑性材料σ许 =σs /n;对于脆性材料σ许=σb /n; n为安全系数。 从大量灾难性事故分析中发现,这种低应力脆性 破坏主要是由宏观尺寸的裂纹扩展而引起的,这 些裂纹源可能是因焊接质量不高、内部有夹杂或 存在应力集中等原因而引起的。
材料力学性能-第四章-金属的断裂韧度(4)
公式进行判断:
ac
0.25
KIC
2
2021年10月21日 星期四
第四章 金属的断裂韧度
1、高强度钢的脆断倾向 这类钢的强度很高,0.2≥1400MPa,主要用于航 空航天,工作应力较大,但断裂韧度较低,如18Ni马 氏体时效钢,0.2=1700MPa,KIC=78MPa·m1/2,若工 作应力=1250MPa时,利用上述公式可得ac=1mm,这 样小的裂纹在机件焊接过程中很容易产生,用无损检 测方法也容易漏检,所以此类机件脆断几率很大,因 此在选材时在保证不塑性失稳的前提下,尽量选用0.2 较低而KIC较高的材料。
B工艺:/0.2=1400/2100=0.67<0.7,故不必考虑
塑性区修正问题。由公式 KIC YcB a
可得: cB
1 Y
KIC a
Φ 1.1
KIC
a
1.273
47
1.1 3.14 0.001
971MPa
与其工作应力=1400MPa相比, cB< ,即工
作时会产生破裂,说明B工艺是不合格的,这和
2021年10月21日 星期四
第四章 金属的断裂韧度
其0.2=1800MPa,KIC=62MPa·m1/2,焊接后发现焊缝
中有纵向半椭圆裂纹,尺寸为2c=6mm,a=0.9mm,
试问该容器能否在p=6MPa的压力下正常工作?
t
D
解:根据材料力学理 论可以确定该裂纹受 到的垂直拉应力:
pD 61.5 900MPa
趋于缓和,断裂机理不再发生
变化。
2021年10月21日 星期四
第四章 金属的断裂韧度
7.应变速率:应变速率έ具有 KIC
与温度相似的效应。增加έ相 当于降低温度,使KIC下降,
第4章 金属的断裂韧性全(材料07)
2
1 2
2 2 cos 2 1 3 sin 2 (平面应变状态)
K
I s
2
c o s
2
2
1
3
s i n
2
2
3 2 2 2 1-2 cos sin (平面应力状态) 2 4 2
37
3、两种重要裂纹的KI修正公式 (1)无限大板I型裂纹
K I=
Y=
(平面应力状态)
a
1-0.5 s
2
K I=
a
1-0.177 s
2
(平面应变状态)
(2)大件表面半椭圆裂纹
K I= 1.1 a
Y=
1.1
-0.608 s
1 KI R 0 =2r0 s
2
2
(平面应力状态)
1 KI =2r0 R0 (平面应变状态) 2 2 s
34
五、应力场强度因子的修正
1、修正条件:σ/ σs≥0.6~0.7 原因:比值大,塑性区大,影响应力场。
2、修正方法:虚拟有效裂纹
应力 张开型 (I型 ) 正应力 裂纹面 裂纹线 扩展方向 ⊥ ⊥ ⊥ 图例
滑开型 切应力 (Ⅱ型) 撕开型 切应力 (Ⅲ 型)
∥ ∥
⊥ ∥
∥ ⊥
提高:裂纹扩展的基本形式
二、裂纹顶端的应力场分析
1、裂纹尖端各点应力—弹性力学推导
2a
有I型穿透裂纹无限大板的应力分析图
第四章金属的断裂韧性
第四章金属的断裂韧性绪言-、按照许用应力设计的机件不一定安全按照强度储备方法确定机件的工作应力,即丁卜I-厂咚。
按照上述设计的零件应该n不会产生塑性变形更不会发生断裂。
但是,高强度钢制成的机件以及中、低强度钢制成的大型机件有时会在远低于屈服强度的状态下发生脆性断裂一一低应力脆性断裂。
二、传统塑性指标数值的大小只能凭经验。
像3(A)、书(Z)、A k、T k值,只能定性地应用,无法进行计算,只能凭经验确定。
往往出现取值过高,而造成强度水平下降,造成浪费。
中、低强度钢材料中小截面机件即属于此类情况。
而高强度钢材料机件及中、低强度钢的大型件和大型结构,这种办法并不能确保安全。
三、如何定量地把韧性应用于设计,确保机件运转的可靠性,从而出现了断裂力学。
断裂韧性一一能反映材料抵抗裂纹失稳扩展能力的性能指标。
大量事例和试验分析证明,低应力脆性断裂总是由材料中宏观裂纹的扩展引起的。
这种裂纹可能是冶金缺陷、加工过程中产生或使用中产生。
断裂力学运用连续介质力学的弹性理论,考虑了材料的不连续性,来研究材料和机件中裂纹扩展的规律,确定能反映材料抵抗裂纹扩展的性能指标及其测试方法,以控制和防止机件的断裂,定量地与传统设计理论并入计算。
本章主要介绍断裂韧性的基本概念、测试方法及影响因素,解决断裂韧性与外加应力和裂纹之间的定量关系。
第一节线弹性条件下的金属断裂韧性大量断口分析表明,金属机件或构件的低应力脆性断口没有宏观塑性变形痕迹。
由此可以认为,裂纹在断裂扩展时,其尖端总是处于弹性状态,应力和应变呈线性关系。
因此,在研究低应力脆断的裂纹扩展问题时,可以应用弹性力学理论,从而构成了线弹性断裂力学。
线弹性断裂力学分析裂纹体断裂问题有两种方法:一种是应力应变分析法(应力场分析法),考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据;另一种是能量分析法,考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判据。
从这两种分析方法中得到断裂韧度Ki c和Gc,其中K i c是常用的断裂韧性指标,是本章的重点。
材料力学性能 (4)
3、KI 裂纹扩展的动力,、a都是加剧应力场的因素
4、 K Y a
2 E a 2 E a
材料本质属性
?
裂纹扩展的抗力 ?
4.4.4 断裂判据
随着应力
或裂纹尺寸a的增大,KI因子不断增大。当KI因子增大到临界
KI = KIC
值KIC时,裂纹开始失稳扩展,用KIC表示材料对裂纹扩展的阻力,称为平 面应变断裂韧度(性)。因此,裂纹体断裂判据可表示为:
/2
0
m sin
dx
m
= 2
m 2 /
a0为平衡状态时原子间距
√
材料在低应力作用下应该是弹性的,在这一条件下sinx≈x ;同时,曲线开始部分近似 为直线,服从虎克定律,有 Ex / a
m sin
2x
=
2x m
Ex a0
2 m
ij
当 r<<a, θ →0 时,
KI f ij ( ) 1/ 2 (2r )
f ij ( ) 1
ij 0
根据弹性力学,裂纹尖端O点的应力
0
= 2
a/
裂纹尖端的曲率
K I 0 2r 2 a
2r Y
a
裂纹形状系数,与裂纹形式、试件几何形状有关
K I a K IC
可用测定的断裂韧性求断裂应力和临界裂纹尺寸:
c
K IC
a
ac
K 2 IC
2
、G、 K
容易理解 容易测量
G1 G1C
K1 K1C
(能量平衡观点讨论断裂) (裂纹尖端应力场讨论断裂) (应力-屈服强度比较讨论断裂)
第四章 材料的断裂韧性
3. KI的修正 裂纹尖端的弹性应力超过 材料屈服强度之后, 便产生应 力松驰,使塑性区增长 ,改变 了裂纹前的应力分布,不适用 于线弹性条件。 裂纹虚拟向前扩展ry,此时 虚拟裂纹尖端0’前端弹性区的 应力分布GEF,基本上与线弹性 条件下的σ y相重合,对应的裂纹长度为a+ry,称为等效裂 纹 长度.根据线弹性理论: KⅠ=Yσ √(a+ry) KⅠ’= Yζ √a/[1-0.16(KⅠ/ζ s)2]1/2(平面应力)
ac= 40-1000mm
五、材料开发
KIC=(2Eγf)1/2 γf: 断裂能,可见,增大断裂能,即增大裂 纹扩展的阻力,手提高KIC。常在基体中 添加韧性相,如碳纤维增韧非晶玻璃材 料等。
第四章 材料的断裂韧性
传统机件强度设计: 塑性材料 σ ≤[σ ]= σ s/n 脆性材料: σ ≤[σ ]= σ b/n 实际上有时σ <<[σ ]时,机件仍断裂—低应力脆断,其原 因是传统设计把机件看成均匀、无缺陷、没有裂纹的理 想体.但实际工程材料在制造加工中会产生宏观缺陷乃 至裂纹,成为材料脆断的裂纹源, 从而引起低应力断裂. §4.1线弹性条件下的断裂韧性 线弹性体:裂纹体各部分的应力和应变符合虎克定律。 但裂纹尖端极小区存在塑性变形,也适用于线弹性条件。
将裂纹前端P (r,θ )的点应力表达式σ x、σ y、τ xy代 入上式,得P点的主应力表达式: σ 1= KⅠ/(2π r)1/2×cosθ /2(1+sinθ /2) σ 2= KⅠ/(2π r)1/2×cosθ /2(1-sinθ /2) σ 3=0 (平面应力,薄板) σ 3=2γ ×KⅠ/(2π r)1/2 cosθ /2 (厚板:平面应变) 由第四强度理论(Mises)屈服临界条件: 将上式代入 (σ 1-σ 2)2+(σ 2-σ 3)2+(σ 3-σ 1)2=2σ s2 ( σ 1>σ 2>σ 3 主应力)得屈服区大小: r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1+3sin2θ /2)] (平面应力) r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1-2γ )2+3sin2θ /2] (平面应变)
4第四章材料的韧性和断裂力学
(4-24)
• 是裂纹的临界状态:
• 当δ> δc时,裂纹开裂; • 当δ< δc时,裂纹不开裂。 • 用D-M模型计算的裂纹张开位移如(图4-
11)所示:
{E
其中 E’=
(4-25)
• 则裂纹开裂的临界条件为 :
式中ac为临界裂纹尺寸,σc为屈服应力, σ为工作应力。利用上式也可以计算临界 裂纹尺寸ac,只要事先测得σc。 在小范围屈服条件下,COD值也可以和 应力强因子KI,及断裂韧度KIC建立确定 的关系:
• 2.应力松弛的修正
• 若考虑到因塑性区内塑性变形引起的应 力松弛,则将使得到的塑性区有所扩大。 分析结果,考虑了应力松弛后得到的塑 性区尺寸为:
平面应变
(4-17)
平面应力
(4-18)
• 应力松驰使塑性区尺寸增加了一倍。
• 以上考虑的是无强化材料,对于实际的 强化材 料,裂纹尖端塑性区的形状和尺 寸与上述结果有些出入,但这一结果是 偏于安全的
• (1)裂纹尖端的应力和位移分析及应力强 度因子的概念:
• 设一无限大板,具有长度为2α的中心穿透裂 纹,受双轴拉应力作用,如图1-7示。按弹 性力学的平面问题求解,得出裂纹尖端附近 的应力场为
平面应力
平面应变
位移场为:
w =0
平面应变 (4-4)
平面应力
• 式中r、θ为裂纹尖端附近点的极座标; • σx,σy,σz,τxy,τxz,τyz为应力分量; • u,v, w为位移分量; • G为剪切弹性模量;E为扬氏模; • υ为波松比。
• 假若是厚板,则裂纹前端区域除了靠近板表 面的部位之外,在板的内部,由于z方向受 到严重的形变约束, σz≠0,而w=0。所以, 应力是三维的,处于三向拉伸状态,但应变 是二维的,u≠0,v≠0,即是平面型的。这种 状态称为平面应变状态。
第四章 断裂韧性
塑性变形 产生,韧 窝;解理 裂纹-微观
连 续 体
成 机 理
切
口
bN
k 、Tk
按GB
切口-宏观 裂纹体
缺口敏感度NSR
测试
韧窝;解 (切口)
性
理裂纹-微观
能
落锤实验:零塑性
温度:NDT
假如构件内部有宏观裂纹,上述测试的性能如果 满足要求,能否保证构件运行安全?
构件内部宏观裂纹危害较大。
板越宽(b越大),
KI越大。裂纹长度为
2a时,板的宽度长度 也用2b表示。
(3)有限宽板单边直裂纹:
(4)对无限大物体表面有半椭圆裂纹 , 远处受均匀拉伸:
Plane strain fracture toughness
KI综合反映了外加应力、裂纹长度对裂纹尖端应力场强
度的影响。 一般表达式为:
KIC和KI如何区别?
第四章 材料的断裂韧性
Fracture toughness of materials
为何测试材料的断裂韧性?
性能指标
标准测试? 裂纹从何 材料是连 裂
b、 k、 、ψ
而来?大 续体?裂 纹
小?
纹体?
形
抗扭强度b、 k
抗弯强度bb HB、HRC、HV、HK 表面HR、显微硬度
按GB 测试
G.R. Irwin(欧文)主要借鉴Griffth理论模型:
The Griffith(1893-1963) approach was global and could not easily be extended to accommodate structures with finite geometries subjected to various types of loadings. The theory was considered to apply only to brittle materials, such as glasses or ceramics.
金属的断裂 断裂韧度KIC的测试和影响因素、应用举例
纹的真实扩展和由裂纹尖端产生的塑性区所造成的等效扩 展在内)达到裂纹原始长度a的2%(即 a / a 2% )时的 载荷作为条件临界载荷 F5 FQ ;
Ⅱ:当材料韧性和尺寸居中时,有一个类似于 屈服平台的台阶,同样,越过这个平台载荷有 一个上升段,这时开始屈服的点作为条件临界 载荷 FQ ; Ⅲ:材料很脆或者尺寸很大(裂纹前端处于平 面应变的强约束状态),则裂纹一开始扩展即 呈失稳态而很快导致试样断裂,这时最大裂纹 载荷 Fmax 既是裂纹开始扩展的临界载 荷 Fmax FQ ;
3、杂质及第二相的影响
钢中的非金属夹杂物和第二相如果为脆性,则会 在应力的作用下造成相界面的开裂形成裂纹,造 成 KIC下降;第二相的形状也有影响,例如球状碳 化物比板条状和网状碳化物造成的 KIC 下降要小 一些(如铸铁)。
4、显微组织的影响
(1)板条马氏体是位错型亚结构,具有较高的强度和 塑性,裂纹扩展阻力较大,呈韧性断裂,K IC 较高;
三、试验结果的处理
三点弯曲的实验结果通过Eq.(4-30)进行计算
Eq.(4-30)是计算三点弯曲KQ的
断裂韧度 KIC 有效性判断
(1)厚度判据: B 2.5(KQ /s )2 (2)载荷比判据:Fmax / FQ 1.10
满足上述条件的话 KQ KIC ,否则,应该加 大试样的尺寸重做试验,新试样尺寸至少 应为原试样的1.5倍,直到满足上述条件。
试样的取样规定
美国ASTM E 399取样标准规定
某型动车组车轮取样规定
试样的形状、尺寸及制备
国家标准种规定了四种试样:标准三点弯曲试样、紧 凑拉伸试样、C型拉伸试样和圆形紧凑拉伸试样。常 用的三点弯曲和紧凑拉伸两种试样如下图4-7:
材料性能学课件第四章 材料的断裂韧性
JI
dy
u x
ds
JⅠ为Ⅰ型裂纹的能 量线积分
第二节 弹塑性条件下的断裂韧性
2r 2
2
3
2K I 2r
cos
2
(平面应变)
3 0 (平面应力)
第一节 线弹性条件下的断裂韧性
四、裂纹尖端塑性区及KⅠ的修正
将各主应力代入Von Mises 判据式(4-8),化简后得 到塑性区的边界方程:
图4-3 裂纹尖端塑性区的形状
(平面应力)
2
r
1
2
KI
s
c os2
2
1
3sin
在这些裂纹的不同扩展形式中,以Ⅰ型裂纹
扩展最危险,最容易引起脆性断裂。所以,在 研究裂纹体的脆性断裂问题时,总是以这种裂 纹为对象。
二、裂纹尖端的应力场及应力场强度因子KⅠ
设有一承受均匀拉应力σ的无限大板,中心含有长 为2a的I型穿透裂纹。
12
第一节 线弹性条件下的断裂韧性
应力分量为
x
K I cos 1 sin sin 3
应力状态软性系数小,因而是危险的应力状态。
平面应变状态分量为
x
1 K I
E 2r
cos 1 2
2
sin sin
2
3
2
y
1 K I
E 2r
cos 1 2
2
sin sin 3
22
图4-2 裂纹尖端的应力分析
xy
1 K I
E 2r
sin
2
cos
2
cos 3
2
第一节 线弹性条件下的断裂韧性
第一节 线弹性条件下的断裂韧性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章材料的断裂韧度
1.解释下列名词:
低应力脆断应力场强度因子断裂韧度能量释放率J积分裂纹尖端张开位移2.说明下列符号的名称和含义:
KⅠc GⅠc JⅠcδc
3.说明KⅠ和KⅠc的异同。
4.试述K判据、G判据、J判据和COD判据的意义和用途。
5.简述塑性区修正的意义、方法和条件。
6.试述低应力脆断的原因和预防措施。
7.讨论KⅠc、GⅠc、JⅠc与δc的关系和异同。
8.讨论KⅠc与材料强度、塑性、冲击韧性间的关系,并说明研究这一问题的意义。
9.分析影响断裂韧度的因素。
10.有一大型板件,材料的σ0.2=1200MPa,KⅠC=115MPa·m1/2,探伤发现有20mm长的横向穿透裂纹,若在平均轴向应力900MPa下工作,试计算KⅠ和塑性区宽度,并判断该件是否安全?
11.有一构件加工时,出现表面半椭圆裂纹,若a=1mm, a/c=0.3, 在1000MPa的应力下工作,对下列材料应选哪一种?
σ0.2(MPa)1100 1200 1300 1400 1500
KⅠC(MPa·m1/2)110 95 75 60 55。